
AnyLink

Runtime Engine Server Guide

AnyLink 7

Copyright © 2019 TmaxSoft Co., Ltd. All Rights Reserved.

Document Information

Title: AnyLink Runtime Engine Server Guide

Publication Date: 2019-06-20

Software Version: AnyLink 7

Edition: v2.1.1

Website

http://www.tmaxsoft.com

Copyright Notice

Copyright © 2019 TmaxSoft Co., Ltd. All Rights Reserved.

Restricted Rights Legend

All TmaxSoft Software (Tmax AnyLink®) and documents are protected by copyright laws and international

convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft License

Agreement and may only be used or copied in accordance with the terms of this agreement. No part of this

document may be transmitted, copied, deployed, or reproduced in any form or by any means, electronic, mechanical,

or optical, without the prior written consent of TmaxSoft Co., Ltd.

Nothing in this software document and agreement constitutes a transfer of intellectual property rights regardless

of whether or not such rights are registered) or any rights to TmaxSoft trademarks, logos, or any other brand

features.

This document is for information purposes only. The company assumes no direct or indirect responsibilities for

the contents of this document, and does not guarantee that the information contained in this document satisfies

certain legal or commercial conditions.

The information contained in this document is subject to change without prior notice due to product upgrades or

updates. The company assumes no liability for any errors in this document.

Trademarks

Tmax AnyLink® is registered trademark of TmaxSoft Co., Ltd. Other products, titles or services may be registered

trademarks of their respective companies.

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses. : APACHE2.0, CDDL1.0,

EDL1.0, OPEN SYMPHONY SOFTWARE1.1, TRILEAD-SSH2, Bouncy Castle, BSD, MIT, SIL OPEN FONT1.1

Detailed Information related to the license can be found in the following directory :

${AnyLink_HOME}\AnyLink-licenses

Table of Contents

About This Document .. vii

Chapter 1. Introduction ... 1

1.1. Overview ... 1

1.2. Key Functions .. 1

1.3. Server Configuration ... 4

Chapter 2. Runtime Engine Server .. 7

2.1. Server Components .. 7

2.1.1. Service Flow Engine .. 7

2.1.2. Adapter ... 8

2.1.3. Multi-binding Router ... 9

2.2. Server Architecture .. 9

2.2.1. System Architecture ... 10

2.2.2. Delivery Channel ... 11

2.2.3. Runtime Engine Service ... 13

2.3. Runtime Engine Error Processing .. 13

2.3.1. Delivery Channel ... 14

2.3.2. Service Flow .. 14

2.3.3. Adapter ... 15

Chapter 3. Runtime Engine Server Resource .. 17

3.1. Overview .. 17

3.2. Business Resources ... 17

3.2.1. Transactions and Transaction Groups .. 17

3.2.2. Environment Configurations for Transactions and Transaction Groups 21

3.2.3. Java Class Loader and Transaction Tree Class Loading Method 21

3.3. Libraries ... 23

3.4. Adapter Resources ... 23

3.5. Configuring Business System Information .. 24

3.5.1. Thread Pool ... 26

3.5.2. System Logging ... 27

3.5.3. Cluster .. 28

3.5.4. Deployment Policy ... 29

3.5.5. Encryption Algorithm .. 29

3.5.6. Debugging Mode .. 30

Chapter 4. Service Flow Engine .. 31

4.1. Service Flow Diagram ... 31

4.1.1. Basic Elements of Service Flow Diagrams ... 31

4.1.2. Service Flow Parallel Processing .. 32

4.1.3. Diagram Graphs and Block Structure .. 33

4.2. Basic Pattern .. 34

AnyLink iii

4.2.1. Basic Flow Pattern ... 34

4.2.2. More Split and Merge Patterns ... 36

4.3. Service Implementation Method and Service Flow Type .. 42

4.3.1. Proxy Service .. 42

4.3.2. Composite Service ... 43

4.3.3. Service Implementation .. 43

4.4. Service Flow Variable and Activity Parameter ... 44

4.5. Service Activity and Parameter .. 44

4.6. Mapping ... 45

4.7. Service Flow Expression ... 46

4.7.1. Structured Expression .. 47

4.7.2. Variable Expression ... 47

4.7.3. Mapping Expression .. 48

4.8. User Code and Handler .. 50

4.9. Correlation ... 53

Chapter 5. Multi-binding Router .. 55

5.1. Overview .. 55

5.2. Multi-binding Rule ... 55

5.2.1. Value ... 56

5.2.2. WeightBased ... 56

5.2.3. TimeRange .. 57

5.2.4. Handler ... 57

Appendix A. Server APIs ... 59

A.1. com.tmax.anylink.api Package .. 59

A.2. com.tmax.anylink.api.serviceflow Package ... 60

A.2.1. ActivityContext .. 60

A.2.2. ActivityErrorHandler ... 61

A.2.3. ActivityHandler .. 61

A.2.4. BlockContext ... 62

A.2.5. ErrorCodeMapper .. 63

A.2.6. UserMapping .. 64

A.2.7. ProcessContext ... 64

A.2.8. ProcessHandler ... 65

A.2.9. ServiceActivityHandler ... 66

A.2.10. UserActivity ... 67

A.2.11. VariableContext ... 67

A.3. com.tmax.anylink.api.multibinding Package .. 68

A.4. Default Abstract Class List .. 68

Index .. 71

iv AnyLink Runtime Engine Server Guide

List of Figures

[Figure 1.1] Integration between AnyLink and Other Systems .. 2

[Figure 1.2] External Integration ... 2

[Figure 1.3] Role of AnyLink in an Enterprise System Architecture ... 3

[Figure 1.4] Proxy Service Structure ... 3

[Figure 1.5] Internal Linkage - Hub & Spoke Structure ... 4

[Figure 1.6] AnyLink Development and Deployment Structure .. 5

[Figure 2.1] AnyLink Components .. 7

[Figure 2.2] AnyLink Service Flow Engine Triggering ... 8

[Figure 2.3] Protocol Adapter ... 8

[Figure 2.4] Runtime Engine Service Container Configuration .. 10

[Figure 2.5] Runtime Engine I/O and Thread Architecture .. 11

[Figure 2.6] Delivery Channel System Architecture .. 11

[Figure 2.7] Request-Response-ACK Component Communication ... 12

[Figure 3.1] Transaction Tree and Message Parsing ... 18

[Figure 3.2] Symbolic Links and Java Class References .. 19

[Figure 3.3] The Basic Hierarchy of a Java ClassLoader .. 22

[Figure 3.4] ClassLoader Hierarchy Diagram Including an Example of the AnyLink Business

ClassLoader .. 22

[Figure 3.5] Error from a Symbolic Link Circular Reference .. 23

[Figure 4.1] Events .. 32

[Figure 4.2] Boundary Event .. 32

[Figure 4.3] Gateways ... 32

[Figure 4.4] Efficient Thread Processing Structure of Service Flow Engine without Wait Time 33

[Figure 4.5] Elements of a Graph Structure in a Service Flow - Activities 33

[Figure 4.6] Block Structure Elements of a Service Flow - Block Activity 34

[Figure 4.7] Sequential Execution ... 35

[Figure 4.8] Parallel Split and Synchronization .. 35

[Figure 4.9] Exclusive Choice and Simple Merge ... 36

[Figure 4.10] Multiple Choice and Synchronizing Merge ... 37

[Figure 4.11] Join without Synchronization .. 38

[Figure 4.12] Discriminator ... 39

[Figure 4.13] Arbitrary Cycle .. 40

[Figure 4.14] Implicitly Terminating Service Flows .. 40

[Figure 4.15] Deferred Choice .. 42

[Figure 4.16] Service Flow that Implements Proxy Services ... 43

[Figure 4.17] Service Flow that Implements Composite Services .. 43

[Figure 4.18] Service Flow in Service Implementation Type .. 43

[Figure 4.19] Activity Input and Output .. 44

[Figure 4.20] Service Activity Input ... 45

[Figure 4.21] Mapping Editor .. 46

AnyLink v

[Figure 4.22] Two Steps of Service Correlation .. 53

[Figure 5.1] Splitting a Service According to the Multi-binding Router Rule 55

vi AnyLink Runtime Engine Server Guide

About This Document

Intended Audience

This guide is intended for developers and system administrators who want to understand how the Tmax

AnyLink® (hereafter AnyLink) system works.

AnyLink consists of a Data Integration Server (DIS) which manages deployment resources and environment

configuration information, as well as a Runtime Engine (RTE) Server which implements services. This

guide describes the internal architecture and components of the Runtime Engine Server. For more

information about Data Integration Server, refer to the relevant guide.

Required Knowledge

Prior knowledge of the following is necessary to understand this guide.

● System and application integration.

● Servers (especially Java EE servers such as JEUS) that run on the Java Virtual Machine.

● Service oriented architecture.

Document Scope

This document does not cover detailed information about the core features of AnyLink such as integration

tasks and methods. For more information, refer to documents related to EAI (Enterprise Application

Integration) or ESB (Enterprise Service Bus) technologies.

This document does not describe Java EE or Java specs mentioned in this document. For more information,

refer to relevant Java documents.

About This Document vii

Document Organization

This guide consists of five chapters and one appendix as follows:

● Chapter 1: Introduction

Describes the basic functions and configurations of the AnyLink server.

● Chapter 2: Runtime Engine Server

Describes the AnyLink runtime engine server's components and architecture.

● Chapter 3: Runtime Engine Server Resources

Describes how to define and manage the resources required for executing the AnyLink runtime engine

server.

● Chapter 4: Service Flow Engine

Describes the basic elements and patterns of diagrams created by using the AnyLink service flow

engine.

● Chapter 5: Multi-binding Router

Describes how to split services in the multi-binding router and the router’s rules.

● Appendix A : Server APIs

Describes the AnyLink user APIs.

viii AnyLink Runtime Engine Server Guide

Conventions

MeaningConvention

File name of a program or source code<AaBbCc123>

Hold the Control key and press C<Ctrl>+C

Button or Menu name[Button]

EmphasisBoldface

Reference to chapters or sections in the manual, or to other related

documentation

" " (double quotes)

Description for an input item on the screen'Input Item'

E-mail account, website, or a link to other chapters or sectionsHyperlink

Progress order of menus>

Files or directories exist below+----

Files or directories do not exist below|----

Reference or note
Note

Figure name[Figure 1.1]

Table name[Table 1.1]

Command, execution result, or example codeAaBbCc123

Option parameter[command argument]

Information between '< >' are changed to actual values< xyz >

Option (E.g. A|B: One of A or B)|

Repeated…

About This Document ix

System Requirements

RequirementCategory

Solaris 9-11Platform

HP-UX 11.x, 11i, 11iV2

AIX 5L, 6L, 7L

Linux Kernel 2.6 or later

Windows 7 (32-bit, 64-bit)

More than 1 GB RAM recommended (At least 512 MB)Server

At least 500 MB hard disk space

Windows 7 (64-bit)Studio

1 GB RAM recommended (At least 512 MB)

At least 500 MB hard disk space

512 MB RAM recommended (At least 256 MB)Remote Agent

At least 512MB hard disk space

JDK 7.0Software

JEUS 7 (Fix#3)

IE 10 or laterSupported Browsers for

WebAdmin Chrome 41 or later

Oracle 10g, 11g, 12cSupported Databases

Tibero 6 FixSet03 or later

x AnyLink Runtime Engine Server Guide

Chapter 1. Introduction

This chapter describes the basic functions and configurations of the AnyLink server.

1.1. Overview
AnyLink consists of two separate servers with different roles.

● Runtime Engine (RTE) server

Actually implements services and handles requests. It consists of the following components.

– Service Flow Engine

Executes service flows that define a flow of handling a request.

– Adapter

Supports connections to various applications through appropriate protocols. For more information

about each adapter, refer to relevant guides.

– Multi-binding Router

Allows to dynamically perform routing between components at execution time

● Data Integration Server (DIS)

Manages resources to deploy and environment configuration information. It receives development

resources from Studio, manages them, sends them to the runtime engine server, and manages the

history. It also creates and compiles source code. It provides information for WebAdmin and Studio,

and handles commands requested by WebAdmin and Studio. It requires an RDBMS to manage

development resources and provide monitoring information such as log statistics.

1.2. Key Functions
AnyLink is responsible for integration between different systems, and provides external services for various

clients. AnyLink minimizes integration overhead in order to rapidly handle I/O tasks and minimize wait

time. Also, it has protocols and application adapter functions for handling requests and responses of

various types of servers and clients, as well as a function that orchestrates the flow of various services.

Chapter 1. Introduction 1

[Figure 1.1] Integration between AnyLink and Other Systems

AnyLink is responsible for internal integrations, as well as providing a layer of an integrated external

interface which hides the details of an internal system.

[Figure 1.2] External Integration

The following is a detailed description of the hierarchy role that AnyLink performs.

● Service Orchestration

AnyLink acts as a node that controls the entire enterprise system architecture.

AnyLink is a control node that handles I/O operations and events, and is responsible for orchestration

with each business process node.

2 AnyLink Runtime Engine Server Guide

[Figure 1.3] Role of AnyLink in an Enterprise System Architecture

● Proxy Service

– Wrapper Service

– Composite Service

[Figure 1.4] Proxy Service Structure

Chapter 1. Introduction 3

● Linkage Service

[Figure 1.5] Internal Linkage - Hub & Spoke Structure

● Self Implemented Service

– Integration logic and business logic are combined together

1.3. Server Configuration
AnyLink can be used in two types of environments: execution environments and development and

deployment environments. An execution environment consists of the AnyLink runtime engine servers and

target systems to be integrated, and has several structures depending on the configurations and structures

of the target systems (refer to [Figure 1.4]). A development and deployment environment consists of the

data integration server (for deployment), the runtime engine server (for execution), as well as WebAdmin

(for operation management) and Studio (for rule creation and environment configuration).

4 AnyLink Runtime Engine Server Guide

[Figure 1.6] AnyLink Development and Deployment Structure

AnyLink separates the development and deployment server (Data Integration Server, DIS) and the

operation server (Runtime Engine, RTE), so that in an actual operation environment, the RTE server can

normally execute services regardless of whether the DIS is running or not.

Chapter 1. Introduction 5

Chapter 2. Runtime Engine Server

This chapter describes the AnyLink runtime engine server's components and architecture.

2.1. Server Components
The AnyLink runtime engine server consists of a service flow engine (which determines the control flow),

an adapter (which performs I/O operations for each protocol), and a multi-binding router (which handles

multiple services as one).

[Figure 2.1] AnyLink Components

2.1.1. Service Flow Engine

The service flow engine executes a service flow when triggered by receiving an event that is a message

sent by other components such as an adapter.

A service flow expresses a process flow by using a diagram borrowed from BPMN (Business Process

Modeling Notation). BPMN is the modeling and notation standard that represents business processes

defined in OMG (Object Management Group). It is good for expressing asynchronous and concurrent

processes.

A service flow is defined in a diagram format (composed of activities and events) by using Studio, and

additionally provides variables, expressions, mapping, handlers, and user activity functions, in addition

to the process flow.

A service flow is created by a message sent by a component such as an adapter, and can call another

adaptor or a service flow or send and receive a message. Also, it supports conditional splitting, selective

execution, and concurrent execution, and has a variable for storing the status for controlling flows.

Chapter 2. Runtime Engine Server 7

The AnyLink service flow engine has a special architecture that allows it to easily run asynchronous and

concurrent processes, and executes them by using thread pools allocated in the engine.

[Figure 2.2] AnyLink Service Flow Engine Triggering

2.1.2. Adapter

The adapter allows AnyLink to easily link with various applications, by using I/O processing through the

protocol for a target application or by using a library of a target application.

[Figure 2.3] Protocol Adapter

The AnyLink Adapter can define two types of rules, inbound and outbound rules, depending on the direction

of the I/O.

● The inbound rule sends requests from external systems to AnyLink, and returns responses to external

systems.

8 AnyLink Runtime Engine Server Guide

● The outbound rule calls external systems from AnyLink, and receives responses.

Depending on the protocol, it may be difficult to distinguish between the request message of the inbound

rule and the response message of the outbound rule. To efficiently handle this problem, AnyLink is

designed to distinguish them by using a parsing rule that parses messages coming from an external

system.

2.1.3. Multi-binding Router

The multi-binding router allows to dynamically perform routing between components at execution time.

In AnyLink, a component triggers another component by sending a message.

AnyLink triggers other components by sending and receiving messages internally between components.

Function names, request and response message types in a specific format, and error response message

types are standardized in AnyLink as services.

AnyLink uses the following as internal services.

● Receive Message Events

Receive message events defined by service flows receive messages from the adapter.

● Outbound Rule

An adapter's outbound rule receives messages from service flows.

● Multi-binding Rule

Used to group different services together as one service. Message events of different service flows,

different outbound rules of an adapter, or other multi-binding rules can be grouped together to be

expressed as one service. A multi-binding rule can be used to split a group that consists of multiple

services into specific services according to rules or conditions, or multi-cast to multiple services.

2.2. Server Architecture
The AnyLink runtime engine server consists of two large service components which are an adapter that

communicates with external systems and a service flow engine in charge of processing logic, as well as

a multi-binding router service component that provides routing between various services. It also has a

delivery channel for inter-component communication and rule deployment, and a resource manager.

Chapter 2. Runtime Engine Server 9

2.2.1. System Architecture

This section describes the runtime engine server's system architecture.

Runtime Engine Service Container

Runtime Engine Service Container (RTE Service Container) manages components' lifecycles as well as

defines and provides services required for components. Also, it executes the service flow engine,

multi-binding router, and adapter manager.

Main services provided are an internal communication channel called the delivery channel, the resource

manager which manages deployment and loading of the service flow engine and adapter rules, the system

resource manager which manages system resources such as thread pools and logs, and the Business

ClassLoader which loads Java code used in various rules and flows.

Only one service flow engine component and multi-binding router component exist for each container,

but there can be multiple adapter components for each adapter type.The adapter manager is responsible

for starting and loading the adapter components. The multi-binding router component is located in the

delivery channel and used to route services by using a method other than the service ID method.

[Figure 2.4] Runtime Engine Service Container Configuration

Engine Architecture

The AnyLink engine has an I/O structure which efficiently manages a large number of I/O channels, and

an asynchronous process structure which minimizes waste from thread resources.

AnyLink's main communication adapter performs I/O processing in the I/O multiplexing method, and it

implements the full non-blocking processing method so that other channels' processing is not affected by

buffering of a specific I/O channel. The service flow engine, which uses thread pools, is implemented as

10 AnyLink Runtime Engine Server Guide

asynchronously as possible to minimize wait time. Therefore, even if multiple service flows are

simultaneously executed, there is no lag from lack of thread pools.

[Figure 2.5] Runtime Engine I/O and Thread Architecture

2.2.2. Delivery Channel

Delivery channel is a service that asynchronously supports internal communication between service

components by using a pre-defined message pattern. It is the core architecture that reduces dependency

between service components, and has the ability to use appropriate thread pools according to the

messaging API.

[Figure 2.6] Delivery Channel System Architecture

● Messaging Pattern

The delivery channel provides the following patterns of internal communication between service

components.

Chapter 2. Runtime Engine Server 11

DescriptionPattern

Sends a response message to a request message. The most common

messaging pattern.

Request-Response (2-way)

Only sends a request message and does not wait for its response

message.

Oneway

Sends an ACK message after a request message has been processed.

Typically, the delivery channel guarantees the delivery and sends an

ACK or a NAK message as a response.

Oneway-ACK

Sends an ACK or a NAK message to notify whether a response message

to a request message has been properly handled.

Request-Response-ACK

(3-way)

Inquires whether a request message can be processed. Used for

correlation matching routing in multi-binding routers. For information

about correlation matching, refer to "4.9. Correlation".

Test-Message

[Figure 2.7] Request-Response-ACK Component Communication

● Reliable Messaging and XA Messaging

The delivery channel selectively supports reliable messaging and XA messaging when the OneWay

messaging pattern is used.

DescriptionType

Stores messages in a permanent storage device such as a hard disk or

RDBMS, and then sends an ACK message.

Reliable Messaging

Supports global transactions. Usually used to send multiple messages

when global transactions are in progress in the Tmax adapter. Multiple

XA Messaging

messages grouped in a single transaction can be batch processed

because global transaction messages such as prepare, commit, and

rollback through 2-phase commit by using the Tmax adapter.

12 AnyLink Runtime Engine Server Guide

● Transaction Propagation

The delivery channel starts or ends transactions depending on the message properties, or propagates

the transaction context. Also, it can manage global transactions' XA resources.

The delivery channel provides functions that can participate in transactions by receiving the transaction

context of the message sent from a transaction manager such as Tmax or JEUS. As a transaction

manager, it can also start transactions internally in AnyLink and propagate global transactions to XA

resource managers such as external RDBMSs, or JEUS and Tmax. Each transaction's configuration

can be set by using properties of a service flow or adapter rule.

2.2.3. Runtime Engine Service

The runtime engine service container provides services required for runtime execution in addition to the

delivery channel.

● Resource Manager

Manages various rules, resources, and Java code contained in transactions and transaction groups of

businesses that are internally defined.

● System Resource Manager

Manages the thread pools and system logging used by the runtime engine.

● Business Class Loader

Java code classloader that implements dependency processing such as the hierarchical structure of

Java code and major resources, as well as the symbolic link.

● Deploy Manager

Dynamically and reliably deploys various resources received from the data integration server (DIS)

through 2-phase deployment. If resources are undeployed or redeployed, then the existing resource

files are moved to the backup directory, and either deleted or updated. If the runtime engine's deploy

service generates an error in the first phase (prepare) of deployment, then the DIS rolls back the

deployment to all servers.

2.3. Runtime Engine Error Processing
AnyLink provides a method for dealing with errors in various situations. Depending on the level in which

an error is generated, the terms as well as error handling are different. This section briefly describes how

to handle the errors that occur in the runtime engine.

Chapter 2. Runtime Engine Server 13

2.3.1. Delivery Channel

There are instances where an error occurs when a message is sent from a service component to another

service component from the delivery channel, which is a communication channel between service

components inside the AnyLink runtime engine. This is an internal system error, so AnyLink users do not

have to concern themselves of it, but it does help users to understand the internal operation of AnyLink.

The delivery channel that is responsible for communication between service components internally in the

engine can distinguish between responses to requests and error responses. The delivery channel's error

response is used to send an error as a response when an internal error occurs while handling a message

in the service component.

The delivery channel's error response is different from abnormal responses from the business perspective.

Abnormal responses from the business perspective must be sent via response messages, same as normal

responses. Hence, when service components send abnormal response messages, they use the same

APIs as the normal response messages in the delivery channel, and use a separate API to send an error.

2.3.2. Service Flow

The AnyLink service flow internally defines error events, error handlers, and error code mappers. Also,

it defines mechanisms for handling abnormal responses for service requests.

● Error Events

The AnyLink service flow generates (when using an error event as the last event) or detects (when

using an error event as a boundary event) error events for controlling flows.

Error codes are used for throwing or receiving error events.When an unexpected error (a Java exception)

occurs during the execution of a service flow instance, the error code mapper converts the error to an

error code. Hence, the error code mapper is an interface that converts a Java exception to an error

code in which a service flow can recognize. By default, the error code mapper is not defined. However,

for an exception that is not converted to an error code, the exception object's entire class name is used

as the error code. An error code can be specified to handle an error by using a boundary event. If ALL

is specified, all errors can be handled regardless of the exception type or error code value.

● Error Handlers

There is a process error handler which is specified for each service flow, and an activity error handler

which is specified for each activity. When an exception occurs during the execution of a service flow

instance, if a process or an activity error handler is specified, then the service flow can be normally

executed because the error handler handles the error.

● Service Activity's Abnormal Responses

14 AnyLink Runtime Engine Server Guide

An abnormal response can be received when a service such as an adapter outbound rule or multi-binding

router rule is invoked. An abnormal response is contextually defined on the side that sends the abnormal

response. When an abnormal response occurs, mapping for the abnormal response can be separately

specified.

Take caution in that if an abnormal response mapping or abnormal response parameter is not specified

in the activity when a service sends an abnormal response, then instead of using a response mapping

or response parameter, an abnormal response message is not stored in a parameter.

An abnormal response in an AnyLink service flow has nothing to do with an error event. Hence, the

abnormal response is not related to the flow control method that handles errors in the service flow.

2.3.3. Adapter

Adapters define abnormal response messages in addition to response messages in the parsing rules. As

well, an adapter can define system error messages when internal system errors occur in the adapter's

endpoint.

Adapters define request messages and response messages as well as abnormal response messages in

the parsing and outbound rules. As well, an adapter has rules designed for specifying responses for

various error scenarios such as system errors and format errors. For more information about how each

adapter handles errors, refer to the relevant adapter guide.

Chapter 2. Runtime Engine Server 15

Chapter 3. Runtime Engine Server Resource

This chapter describes how to define and manage the resources needed for the execution of the AnyLink

runtime engine server.

3.1. Overview
The AnyLink runtime engine server defines and manages the following resources needed for execution.

● Business resources related to businesses or transactions.

● Adapter resources related to adapters and adapter endpoints.

● System settings information related to thread pools and system logging.

3.2. Business Resources
Business resources are resources related to businesses or transactions, and consist of resources included

in transactions and transaction groups defined in Studio. These are elements that configure the business

concept, and are divided into transaction groups which consist of multiple layers and transactions which

are end nodes. In the runtime engine server, business resources are located under each server's home

directory by default.

${server.home}/repository/services

3.2.1.Transactions and Transaction Groups

The following business resources can exist in transactions and transaction groups. These resources are

made up of a single compressed file (with the .iar extension) under a specific directory that indicates

transactions in the runtime engine server.

● Definition Files for Transactions and Transaction Groups (XML Document Files with the .biztx

Extension)

Transactions and transaction groups have a hierarchical tree structure in which a desired transaction

can be found by parsing a request message. A transaction group is represented as a parent directory

that contains sub transaction groups and transactions. Business resources related to the transaction

Chapter 3. Runtime Engine Server Resource 17

group are in the .iar archive file, just like a transaction. Transaction and transaction group information

are in the XML document with the .biztx extension in the .iar archive file.

A transaction consists of a request message, a response message, and an abnormal response message,

and inherits the information of transaction groups contained in the parent node.

A transaction group that is located in the parent node or the intermediate node of a transaction tree

can have a sub-transaction identifier to find a sub transaction group or a transaction node (which is the

end node) by parsing a request message.

[Figure 3.1] Transaction Tree and Message Parsing

The basic purpose of a transaction tree is to find a transaction that matches the information of a message

by parsing a request message and to invoke a service (service flows, outbound rules, or multi-bound

rules) of the AnyLink engine.

Transaction and transaction group information contain symbolic link information that is referenced by

a transaction node or a transaction group node. A symbolic link links other transaction nodes that contain

the resources referenced by the transaction node. Since basically only resources in a parent node can

be referenced, a symbolic link is useful when sharing resources in transaction or transaction group

nodes other than the parent node.

Among the resources that are managed together in AnyLink transactions or transaction group nodes,

there are various resources that are converted to Java code. For example, messages, mappings,

expressions, and various user classes are resources that can be used in Java code.

Java code is read through a class loader, and each AnyLink transaction tree is designed to have parent

and child relationships in the class loader.

A symbolic link node is not a parent on a class loader, but the node can be used as if it were a parent

thanks to the AnyLink ClassLoader implementation.

18 AnyLink Runtime Engine Server Guide

[Figure 3.2] Symbolic Links and Java Class References

● Service Flow Definition File (XML Document Files with the .sfdl Extension)

A service flow definition file is drawn by using a BPMN (Business Process Modelling Notation) diagram

in AnyLink Studio's service flow editor.

Service flows are managed in the service flow engine, and the message events that are received are

registered as AnyLink's internal services.

In the most basic form of AnyLink transactions, messages are typically received through an inbound

adapter, and the messages are parsed through a transaction tree for identifying internal services.

Typically, an internal service of AnyLink is a message event of a service flow, and it proceeds according

to the flow defined in the service flow, and then calls the service activity of the service flow. Service

activities drawn in a flow are mostly adapter outbound rule services.

The following describes the most basic form of an AnyLink transaction: an external system is called

though an outbound rule service and a response is received.The response is then passed to the calling

flow and the response message is sent to the adapter that sent the initial message.

● Parsing Rule

Parsing rules, which are rules for parsing external messages, are not managed as separate resources

but instead are defined in transactions and transaction groups.

● Adapter Outbound Rule (XML document files with a .orule extension)

A document that defines outbound adapter rules used to send requests from AnyLink to other systems.

The configuration information differs according to the protocol and implementation of each adapter.

Basic configuration information consists of request messages, response messages, abnormal response

messages, and adapter and endpoint IDs.

An outbound rule is one of AnyLink's internal services. If an outbound rule service is called internally

from another component, it identifies the adapter and endpoint that are set in the rule, and sends

messages to an external system.

Chapter 3. Runtime Engine Server Resource 19

● Multi-binding Rule (XML Document Files with the .mbind Extension)

If an internal service of AnyLink needs to be routed differently depending on the situation, multiple

services can be grouped together as a single group. This type of service is a multi-binding router rule.

The following can be configured: service splitting, round robin, weight-based or time-based round robin,

service flow correlation, handlers, etc. Request, response, and abnormal response message mapping

(message conversion) can also be specified.

● Message (XML Document File with the .Umsg Extension)

Multiple messages can exist inside a .Umsg file. AnyLink distinguishes two different types of messages:

DTO (Data Transfer Object) which expresses the internal structure of the data used for input and output,

and messages in specific formats. A .Umsg file can contain a single DTO and messages in many

different formats. The messages must have the same structure with the DTO. The supported message

formats include XML, fixed length, delimiter, NameValue, and JSON.

AnyLink converts DTOs and messages into Java code and manages it.This is for optimizing performance

and efficiency.This means that the .class files generated by compiling .Java source files that correspond

to .Umsg documents are included in transaction resources.

● Message Mapping (XML Document Files with the .Map Extension)

A message mapping document defines the rules for converting input messages to output messages.

AnyLink specifies conversion rules in the form of connecting the fields of each input message and output

message, and can use various expressions as mapping sources in addition to the input message.

To improve the execution speed of mapping that consists of a combination of input/output fields or

expressions, AnyLink internally converts mapping to Java code and manages it. Hence, just like message

files, the .class file generated by compiling .Java source file is included in the transaction resource.

● Expression (XML Document Files with the .expr Extension)

AnyLink uses expressions to indicate a part of a message or express a function expression.

An AnyLink expression can express the structure of a message. For example, if a field named field 1

exists in msg1, it is represented by the expression "msg1.field1". In a service flow, the user can access

a DataField variable which is declared in a flow. For example, to access a field named "name" of a

variable named dataField1, the user uses the expression "$dataField1.name".

In an AnyLink expression, the user can use parentheses to represent groups, and call Java methods.

For example, in the variable example above, if a field named "name" corresponds to the Java String

class, the user can extract only the first two characters as follows.

"$dataField1.name.substring(0, 2)"

20 AnyLink Runtime Engine Server Guide

Optionally, the user can explicitly specify the Java type of the variable. For example, if a variable named

dataField1 has a datatype of com.example.NamedPerson, the user can rewrite the above expression

as follows.

"$dataField1<com.example.NamedPerson>.name.substring(0,2)"

AnyLink converts expressions to Java code by considering the execution speed. Incorrect expressions

will cause errors when converting and compiling Java code during deployment in Studio. Same as

message and mapping files, .class files generated by compiling .expr files are included in transaction

resources.

In AnyLink, expressions are used in splitting condition statements of service flows, correlation

calculations, and multi-binding router rules.

Expressions that can be used to represent the source information of a message mapping have a slightly

special form in order to support mapping characteristics, such as creating an empty object if there is

an object reference of an empty source, and supporting array type mapping.

3.2.2. Environment Configurations for Transactions and Transaction

Groups

The following describes the environment configuration files of transactions and transaction groups.

● Environment Configuration for Transactions and Transaction Groups (XML document files with

the .bizcfg extension)

Environment configuration documents of transactions and transaction groups are not directly related

to transaction information, but stores information related to the transaction environment.

Transactions and transaction group resources are managed in a single .iar file for each node, but the

environment configuration document files of transaction nodes exist separately in a document format

with the .bizcfg extension under the directory that indicates the transaction node or transaction group

node.

The environment configuration document can set the transaction and outbound rule trace log levels.

The user can also specify thread pools to be used in service flows of corresponding transaction nodes.

3.2.3. Java Class Loader and Transaction Tree Class Loading

Method

Business resources that indicate transactions and transaction groups contain automatically created Java

code such as messages, mappings, and expressions, in addition to Java code such as user classes and

handlers.

Chapter 3. Runtime Engine Server Resource 21

As mentioned earlier in explaining the symbolic link, each Java code follows the code reference structure

by class loader configuration according to the characteristics of Java. AnyLink is executed in the Java EE

environment, so a basic class loader has the following structure.

[Figure 3.3] The Basic Hierarchy of a Java ClassLoader

The AnyLink business ClassLoader is not a single ClassLoader, and has child ClassLoaders in a transaction

tree format under the root ClassLoader.

[Figure 3.4] ClassLoader Hierarchy Diagram Including an Example of the AnyLink Business

ClassLoader

Due to the nature of the ClassLoader hierarchy, circular references across multiple layers are not allowed.

This is also true when using symbolic links. Symbolic links create a type of parent ClassLoader-like

relationship.

22 AnyLink Runtime Engine Server Guide

[Figure 3.5] Error from a Symbolic Link Circular Reference

If a specific transaction or transaction group node's information is modified and redeployed, then the node

and all its child nodes are reloaded. The child nodes here contain logical child nodes that are referenced

using a symbolic link.

3.3. Libraries
If there is a common Java library in an AnyLink transaction tree, then this library is managed in the library

directory, separate from the transaction tree.

In the AnyLink business classloader hierarchy, a library is loaded by the top business classloader. When

a library is deployed at the time of operation, due to the nature of loading the library code to the top level

node of the classloader, the classloader of the entire transaction tree including the child nodes is loaded

again.

By default, the library files are located under each server home directory on the runtime engine server.

${server.home}/repository/lib

3.4. Adapter Resources
The AnyLink runtime engine manages resources such as adapter communication endpoints and

configuration information needed for adapters responsible for communication with various protocols and

applications. Major adapter-related resources are adapter configuration information, endpoints, and

endpoint groups.

By default, adapter resources are located under each server home directory on the runtime engine server.

${server.home}/repository/adapters

The following are the types of adapter resources.

Chapter 3. Runtime Engine Server Resource 23

● Adapter

The adapter configuration information file is an XML document with the .adt extension, and sets

information such as protocol, thread pool ID, trace log level, and clustering information.

Note

AnyLink can set and generate trace logs and transaction logs by task. These logs are handled by the

log adapter. For more information, refer to the adapter guide.

● Endpoints and Endpoint Groups

An endpoint information file is an XML document with the .ep extension, and sets information such as

communication direction, synchronization mode, transaction node ID, connection timeout, thread pool

ID, trace log level, outbound endpoint log level, clustering information, and system error message.

An endpoint group groups together multiple endpoints, and is set in an XML document with the .epg

extension. Set the method for splitting into child endpoints and endpoint groups. For example, routing

methods such as round-robin, minimum-request, handler, and dedicated round-robin are supported.

An endpoint group is represented by a parent directory with a child endpoint group or endpoint.

3.5. Configuring Business System Information
A business system is configured with a single runtime engine server or a runtime engine server cluster.

Servers included in a cluster of Java EE servers (which are the basis of AnyLink) belong to the same

business system. In AnyLink, transaction tree information is shared within a business system. Therefore,

the basic deployment unit of an application executed in AnyLink can be thought of as a business system

unit. Hence, businesses such as transactions that are deployed differ according to the business system.

AnyLink runtime engine's system settings are divided into common settings for business systems and

settings for each individual runtime engine server. Mostly, thread pools, logging, Java EE server domain

user ID, and password are set. If there are no special settings, then the default thread pool ID and service

timeout are set. The user can set the basic trace log level of the system, as well as thread pool and

queueing information in the file.The file also has various additional settings needed in the runtime engine

server.

The section will describe the major configuration areas. For more information, refer to the description in

the relevant section.

Business system configurations are saved in the following path for each server.

${server.home}/repository/bizsystem/bizsystem.config

24 AnyLink Runtime Engine Server Guide

<bizsystem.config>

<?xml version="1.0" encoding="UTF-8"?>

<ns0:bizSystemInfo xmlns:ns2="http://www.tmaxsoft.com/schemas/AnyLink/reliableQueue/"

xmlns:ns1="http://www.tmaxsoft.com/schemas/AnyLink/common/"

xmlns:ns3="http://www.tmaxsoft.com/schemas/AnyLink/serverPlugin/"

xmlns:ns0="http://www.tmaxsoft.com/schemas/AnyLink/">

<ns0:sysId>IFL_SYS</ns0:sysId>

 <ns0:id>IFL_SYS</ns0:id>

 <ns0:name>IFL_SYS</ns0:name>

 <ns0:version>4</ns0:version>

 <ns0:registererdDate>2014-10-13 12:54:03.514</ns0:registererdDate>

 <ns0:registeringUser>admin</ns0:registeringUser>

 <ns0:modificationDate>2014-11-10 20:20:09.829</ns0:modificationDate>

 <ns0:user>administrator</ns0:user>

 <ns0:passwd>ba05778dea933f47bc150c743b122336</ns0:passwd>

 <ns0:bizSystemDefaultThreadPoolId>bizSystemDefaultThreadPool

</ns0:bizSystemDefaultThreadPoolId>

 <ns0:threadPool>

 <ns0:id>bizSystemDefaultThreadPool</ns0:id>

 <ns0:name>bizSystemDefaultThreadPool</ns0:name>

 <ns0:queueFullPolicy>SystemError</ns0:queueFullPolicy>

 <ns0:useVipThread>false</ns0:useVipThread>

 <ns0:threadPriority>-1</ns0:threadPriority>

 <ns0:vipThreadPriority>-1</ns0:vipThreadPriority>

 <ns0:commonSetting>

 <ns0:queueSize>-1</ns0:queueSize>

 <ns0:min>60</ns0:min>

 <ns0:max>100</ns0:max>

 <ns0:keepAliveTime>300</ns0:keepAliveTime>

 <ns0:vipThreadCount>10</ns0:vipThreadCount>

 </ns0:commonSetting>

 </ns0:threadPool>

 <ns0:systemLogging>

 <ns0:fileLocation>${server.home}/logs/AnyLink_rte_%d{1}.log</ns0:fileLocation>

 <ns0:logLevel>FINEST</ns0:logLevel>

 <ns0:logger>

 <ns0:name>com.tmax.anylink.dis.level</ns0:name>

 <ns0:logLevel>INFO</ns0:logLevel>

 </ns0:logger>

 </ns0:systemLogging>

 <ns0:nodeList>

 <ns0:node>

 <ns0:name>server1</ns0:name>

 </ns0:node>

 </ns0:nodeList>

 <ns0:clusterGroup>

Chapter 3. Runtime Engine Server Resource 25

 <ns0:adapterClusterGroup>

 <ns0:adapterCluster>

 <ns0:clusterId>TCP_ADT</ns0:clusterId>

 <ns0:activeCount>2</ns0:activeCount>

 <ns0:construction>

 <ns0:serverId>server4</ns0:serverId>

 <ns0:priority>0</ns0:priority>

 <ns0:clusterMember>true</ns0:clusterMember>

 </ns0:construction>

 <ns0:construction>

 <ns0:serverId>server5</ns0:serverId>

 <ns0:priority>1</ns0:priority>

 <ns0:clusterMember>true</ns0:clusterMember>

 </ns0:construction>

 <ns0:construction>

 <ns0:serverId>server6</ns0:serverId>

 <ns0:priority>2</ns0:priority>

 <ns0:clusterMember>false</ns0:clusterMember>

 </ns0:construction>

 </ns0:adapterCluster>

 </ns0:adapterClusterGroup>

 </ns0:clusterGroup>

 <ns0:deploymentPolicy>allowPartialDeploy</ns0:deploymentPolicy>

 <ns0:encryptAlgorithm>AES128</ns0:encryptAlgorithm>

 <ns0:debuggingMode>false</ns0:debuggingMode>

</ns0:bizSystemInfo>

3.5.1.Thread Pool

Set thread pools that can be used in the runtime engine. Detailed configurations for thread pools can be

set commonly to all business systems or differently for each development runtime engine server.

The following shows a configuration example and a description of each item.

<ns0:threadPool>

 <ns0:id>bizSystemDefaultThreadPool</ns0:id>

 <ns0:name>bizSystemDefaultThreadPool</ns0:name>

 <ns0:queueFullPolicy>SystemError</ns0:queueFullPolicy>

 <ns0:useVipThread>false</ns0:useVipThread>

 <ns0:threadPriority>-1</ns0:threadPriority>

 <ns0:vipThreadPriority>-1</ns0:vipThreadPriority>

 <ns0:commonSetting>

 <ns0:queueSize>-1</ns0:queueSize>

 <ns0:min>60</ns0:min>

 <ns0:max>100</ns0:max>

 <ns0:keepAliveTime>300</ns0:keepAliveTime>

26 AnyLink Runtime Engine Server Guide

 <ns0:vipThreadCount>10</ns0:vipThreadCount>

 </ns0:commonSetting>

</ns0:threadPool>

DescriptionProperty

Thread pool ID.id

Thread pool name.name

Sets policies for full queues.queueFullPolicy

– SystemError : system error handling

– CallerThread : caller thread

Sets whether to use a specific number of VIP threads.useVipThread

Sets the priority level of general threads. (Default value: 6)threadPriority

Sets the priority level of VIP threads. (Default value: 3)vipThreadPriority

Sets the maximum size of job queues in thread pools. (Can be set for each

server)

queueSize

Maximum size of general thread pools. (Can be set for each server)max

Minimum size of general thread pools. (Can be set for each server)min

Default time for not cancelling an allocated thread. (Can be set for each server)keepAliveTime

VIP thread count (fixed). (Can be set for each server)vipThreadCount

3.5.2. System Logging

Set system logging information in the business system configuration information. A System log is an

internal log of the AnyLink runtime engine server.

The user can set the default log level and the log level for each logger. The log level for each logger can

be specified differently for each server.

The following predefined variable values can be used for fileLocation, which indicates where the log file

will be stored.

<ns0:systemLogging>

<ns0:fileLocation>${server.home}/logs/AnyLink_rte_%d{1}%h{1}%m{30}.log</ns0:fileLocation>

 <ns0:logLevel>FINEST</ns0:logLevel>

 <ns0:logger>

 <ns0:name>com.tmax.anylink.serviceflow.level</ns0:name>

 <ns0:logLevel>INFO</ns0:logLevel>

Chapter 3. Runtime Engine Server Resource 27

 </ns0:logger>

 <ns0:logger>

 <ns0:name>com.tmax.anylink.runtime.level</ns0:name>

 <ns0:logLevel>FINE</ns0:logLevel>

 </ns0:logger>

</ns0:systemLogging>

DescriptionProperty

Location of the home directory for each server of the AnyLink runtime engine.server.home

Location of the home directory for each AnyLink domain.domain.home

Root directory location in which the AnyLink binary is installed.install.root

Current AnyLink server name.server.name

Data integration server name of AnyLink.adminServer.name

3.5.3. Cluster

Set cluster configuration for each adapter of business systems that uses clusters. All adapters are enabled

if no configuration is set.

The following is a configuration example and description of each item.

 <ns0:clusterGroup>

 <ns0:adapterClusterGroup>

 <ns0:adapterCluster>

 <ns0:clusterId>TCP_ADT</ns0:clusterId>

 <ns0:activeCount>2</ns0:activeCount>

 <ns0:construction>

 <ns0:serverId>server4</ns0:serverId>

 <ns0:priority>0</ns0:priority>

 <ns0:clusterMember>true</ns0:clusterMember>

 </ns0:construction>

 <ns0:construction>

 <ns0:serverId>server5</ns0:serverId>

 <ns0:priority>1</ns0:priority>

 <ns0:clusterMember>true</ns0:clusterMember>

 </ns0:construction>

 <ns0:construction>

 <ns0:serverId>server6</ns0:serverId>

 <ns0:priority>2</ns0:priority>

 <ns0:clusterMember>false</ns0:clusterMember>

 </ns0:construction>

 </ns0:adapterCluster>

 </ns0:adapterClusterGroup>

 </ns0:clusterGroup>

28 AnyLink Runtime Engine Server Guide

DescriptionProperty

Cluster ID.clusterId

Maximum number of active nodes.activeCount

Sets the following for each server node.construction

– serverId : sets the server ID.

– priority : sets the server priority.

– clusterMember : option to include in a cluster.

3.5.4. Deployment Policy

By default, if a resource is not deployed to all servers, then the resource deployment will have failed.

However, if some servers suffer from abnormal operation in a clustered environment, then deployment

to just some servers can be performed.

The following shows a configuration example and a description of a property.

<ns0:deploymentPolicy>allowPartialDeploy</ns0:deploymentPolicy>

DescriptionProperty

Sets the deployment policy.deploymentPolicy

– allOrNothing : Failed if not all are successfully deployed.

– allowPartialDeploy : Allows deployment for alive servers. Automatically

synchronized if an undeployed server is started.

3.5.5. Encryption Algorithm

Set the common encryption algorithm used in AnyLink.

The following shows a configuration example and a description of a property.

<ns0:encryptAlgorithm>AES128</ns0:encryptAlgorithm>

DescriptionProperty

Sets the encryption algorithm.encryptAlgorithm

– AES128 : Encrypts by using AES128. No separate configuration is

necessary.

Chapter 3. Runtime Engine Server Resource 29

DescriptionProperty

– AES256 : Encrypts by using AES256. Need to set configuration to allow

JRE to use the encryption algorithm.

3.5.6. Debugging Mode

Set whether to allow flow debugging in the business system.

The following is a configuration example and a description of a property.

<ns0:debuggingMode>false</ns0:debuggingMode>

DescriptionProperty

Sets the debugging mode.debuggingMode

– true : Allow debugging mode. Studio can use flow debugging for deployed

resources.

– false : Do not allow debugging mode. Cannot use flow debugging.

30 AnyLink Runtime Engine Server Guide

Chapter 4. Service Flow Engine

This chapter describes the basic elements and patterns of diagrams created using the service flow engine.

4.1. Service Flow Diagram
AnyLink provides functionalities for linking and orchestrating various adapters and services via the service

flow engine. AnyLink connects incoming and outgoing services via a service flow to handle additional

tasks or create new values.

AnyLink service flows use Business Process Modeling Notation (BPMN), which is the standard used for

modelling business processes. Diagrams in the BPMN format are stored in the Service Flow Description

Language (SFDL) format, which is an XML document format.

4.1.1. Basic Elements of Service Flow Diagrams

The following is a description of the basic elements of service flow diagrams.

● Service Flow

Called a process and consists of activities, events, and transitions.

● Activity

Called a task, and represents the tasks to be executed when a flow reaches the applicable position in

the service flow.

● Transition

An arrow indicating the order of a flow between activities or events.

● Event

A special activity that indicates events such as messages, errors, and timeouts. Events consist of start

events which do not have incoming transitions, intermediate events which have both incoming and

outgoing transitions, and end events which do not have outgoing transitions.

Chapter 4. Service Flow Engine 31

[Figure 4.1] Events

Boundary events, which are a special form of intermediate events, are events that are positioned at

the boundary of an activity or block, and if there is an event that occurs at the time a block or activity

is activated, it will split off to the boundary event.

[Figure 4.2] Boundary Event

● Gateway

A special activity type used for controlling flows. It consists of a split gateway which splits off a single

transition flow to multiple transition flows, and a join gateway which joins multiple transition flows into

a single transition flow.

[Figure 4.3] Gateways

4.1.2. Service Flow Parallel Processing

AnyLink service flows are executed in the service flow engine of the runtime engine server.

Typically, an instance of a service flow defined by a message delivered by an inbound adapter is created.

A message or timer information sent to a service flow is called a trigger in a service flow.

32 AnyLink Runtime Engine Server Guide

Typically, a service flow generated by a single trigger is executed with a single thread. However, an SFDL

that defines service flows can be split off in parallel or joined.

The AnyLink service flow engine can also execute a single service flow instance simultaneously with

multiple threads according to the service flow diagram type. As well, the AnyLink service flow engine is

designed in a way so that when a service flow is created and the flow is processed, the usage of threads

(which are system resources) is maximized and multiple threads are simultaneously processed.

[Figure 4.4] Efficient Thread Processing Structure of Service Flow Engine without Wait Time

The service call thread (thread 1) does not wait for a response after sending a request. The service

response processing thread (thread 2) is created in an adapter when a response is received.

4.1.3. Diagram Graphs and Block Structure

An AnyLink service flow is based on a graph structure in which activities are connected with arrows. The

graph structure has the advantage of being intuitive and flexible because it can express flows in the way

a person thinks.

Each activity, transition (represented by arrows), and gateway (which represents splitting off and joining

of various flows) efficiently represents the service flow of such graph structure.

[Figure 4.5] Elements of a Graph Structure in a Service Flow - Activities

Chapter 4. Service Flow Engine 33

When handling events and exceptions that occur in a particular area, it is efficient to group them together

and express them. Typically, a grouping of a particular flow is called a block.

In programming languages like Java, the basic execution unit is a block or function that groups together

multiple statements. Errors that are generated in a particular block or function can be handled by a single

error processing logic. In an AnyLink flow, the grouping of activities is called a subprocess or a block.

Events such as errors or timeouts that occur during the execution of an activity or transaction in a block

move according to the error event or timer event attached to the block boundary.Typically, a good process

consists of a graph structure and a block structure. An AnyLink service flow partially supports the block

structure based on the graph structure.

In an AnyLink service flow diagram, boundary events that are attached at the boundary between a block

activity and another block activity are examples of implementing the flow of the block structure.

[Figure 4.6] Block Structure Elements of a Service Flow - Block Activity

In addition to block activities, error handlers can be specified in service flows, which means errors generated

when executing service flows can be handled. This can be thought of as a form of a block structure.

4.2. Basic Pattern
As shown in the previous AnyLink service flow diagram, flows are expressed by combining the graph

structure and block structure based on the BPMN standard.

This section describes the commonly used service flow patterns.

4.2.1. Basic Flow Pattern

The following describes the basic flow patterns.

34 AnyLink Runtime Engine Server Guide

● Sequential Execution

Sequential flows are the most basic flows, and an activity is executed after activities prior to it finish

executing.

[Figure 4.7] Sequential Execution

● Parallel Split

A single activity is split into multiple activities, and each of the split activities is executed independently

of each other. Typically represented by the And Split gateway.

● Synchronization

Threads executed in parallel are synchronized and combined into a single flow. Typically represented

by the And Join gateway.

[Figure 4.8] Parallel Split and Synchronization

● Exclusive Choice

A single execution path among multiple execution paths is selected. Typically represented by the XOR

Split gateway.

Chapter 4. Service Flow Engine 35

● Simple Merge

Only a single execution path among multiple execution paths is enabled for merging. Typically

represented by the XOR Join gateway.

[Figure 4.9] Exclusive Choice and Simple Merge

4.2.2. More Split and Merge Patterns

The following describes more split and merge patterns.

● Multiple Choice

Selects several execution paths among multiple execution paths and executes in parallel. Typically

represented by the OR Split gateway.

36 AnyLink Runtime Engine Server Guide

● Synchronizing Merge

Joins while synchronizing multiple execution paths. Typically represented by the OR Join gateway.

[Figure 4.10] Multiple Choice and Synchronizing Merge

Chapter 4. Service Flow Engine 37

● Multiple Merge

Joins multiple execution paths into a single path without synchronization. Goes through a single path

multiple times if multiple paths are running.

Runs as follows if merged with an XOR Join gateway after an And Split gateway.

[Figure 4.11] Join without Synchronization

38 AnyLink Runtime Engine Server Guide

● Discriminator

Without synchronizing multiple execution paths, only the first arriving flow goes through continuously.

If multiple paths are running, then only the first arriving thread goes through a single path.

If Complex Join gateway's flow condition is 1 when merging through a Complex Join gateway after an

And Split gateway, the following occurs.

[Figure 4.12] Discriminator

● N-out-of-M Join

Synchronizes until the specified number of execution paths is reached, and then flows as one. Only

one flow goes through for paths after this gateway.

If joining through a Complex Join gateway after an And Split gateway, the number of flows that come

into the Complex Join gateway is N.

Chapter 4. Service Flow Engine 39

● Arbitrary Cycle

In AnyLink, repeat settings can be used for blocks. However, to repeat more freely, cycles can be set

using a transition.

[Figure 4.13] Arbitrary Cycle

● Implicit Termination

If all running service flows are finished, they are terminated implicitly. For reference, they can be

terminated explicitly by using a terminate event.

[Figure 4.14] Implicitly Terminating Service Flows

● Multiple Instances

Multiple activities are processed sequentially or in parallel with multiple instances. Multiple instances

are created for each activity.

Multiple instances set the following.

40 AnyLink Runtime Engine Server Guide

DescriptionProperty

Specifies the Boolean condition that represents the completion condition

or the number of instances.

Iteration Completion Condition

Two types exist: sequential and parallel.The sequential execution type

is executed in the same method as a typical iteration statement, and

Iteration Type

the parallel execution type executes multiple instances at the same

time. The parallel execution type is similar to the way multiple paths

are executed through And Split.

There are four transition methods.Transition Method

– Transition occurs after all instances have been completed. Similar

to the And Join method.

– Transition occurs immediately if a single instance has been

completed among multiple instances.

– Transition occurs whenever each instance has been completed

among multiple instances.

– Transition occurs if a specified Boolean condition is met.

The following describes some key usage patterns related to multiple instances (MI).

– MI without Synchronization

This is for a case where multiple instances of an activity are created without synchronization, and a

transition occurs every time an instance is completed.

– MI with a Prior Known Design Time Knowledge

This is for a case where the number of instances to be created for an activity to be executed in the

MI method is known during design, and the instance count is designated as a constant in the iteration

completion condition.

– MI with a Prior Known Runtime Knowledge

This is for a case where the number of instances to be created for an activity to be executed in the

MI method can be known during the activity execution, and the instance count is designated as a

variable in the iteration completion condition.

– MI without a Prior Runtime Knowledge

This is for a case where the number of instances to be created for an activity to be executed in the

MI method cannot be known in advance even during execution. The iteration completion condition

is specified by a Boolean condition.

Chapter 4. Service Flow Engine 41

● Deferred Choice

Selects a single path among multiple paths like the XOR gateway, but determines the path according

to an event that occurs first among the queued events in multiple paths. Typically represented by the

XOREvent gateway.

[Figure 4.15] Deferred Choice

4.3. Service Implementation Method and Service Flow Type
This section describes various service implementation methods and service flow types.

4.3.1. Proxy Service

A service model which integrates service endpoints so that existing or separately constructed services

are serviced via AnyLink, and adds additional functions such as logging or security to existing services.

For example, if an existing service is a web service, the WSDL of the service is imported to create a

wrapper service.

A service flow is based on an incoming message event, outgoing service activity, and reply activity. Among

them, activities for handling necessary logging and security are added.

42 AnyLink Runtime Engine Server Guide

[Figure 4.16] Service Flow that Implements Proxy Services

4.3.2. Composite Service

A service model in which AnyLink creates new services by joining various services that exist already or

are separately constructed.

A service flow is based on an incoming message event, multiple outgoing service activities, and a reply

activity. Among them, necessary logging, security, message conversion, and other activities are inserted.

[Figure 4.17] Service Flow that Implements Composite Services

4.3.3. Service Implementation

AnyLink implements new services. The service logic is implemented mostly through user class activities,

various adapter activities, and by splitting off.

A service flow is based on an incoming message event, a reply activity, and various adapter service

activities and user class activities.

[Figure 4.18] Service Flow in Service Implementation Type

Chapter 4. Service Flow Engine 43

4.4. Service Flow Variable and Activity Parameter
The most basic form of an AnyLink service flow expresses a flow by connecting an activity and event with

a transition. Here, the activity has parameters that correspond to input and output.

[Figure 4.19] Activity Input and Output

● An input parameter is a variable that an activity uses to read.The variable is declared in a block activity

that includes processes or activities.

● An output parameter is a variable that an activity uses to write. The variable is declared in a block

activity that includes processes or activities.

A service flow variable can be declared in a service flow (which is a process) or in a block activity that

groups activities. The scope for process variables is all the activities, events, and transitions belonging

to the process.The scope for block variables is all the activities, events, and transitions in the block activity.

4.5. Service Activity and Parameter

In an AnyLink service flow, calling another service is usually expressed as a call through an activity that

represents the service. Services consist of message events, adapter outbound rules, and multi binding

router rules of each service flow managed in the service flow engine.

The act of calling another service flow in a service flow is called a Service Flow Activity. An adapter

outbound rule call is represented by each adapter's activity (TCP, HTTP, Tmax, web service, etc.). As

well, a multi binding activity is used for calling a multi binding router rule.

The characteristics of each service that calls service call activities may be different, but in the service flow

perspective, they are operated the same as services called through a delivery channel. However, in the

case of calling another service flow, the service flow engine internally calls itself, so it does not go through

the delivery channel but is logically the same.

In an AnyLink service, request, response, and abnormal response messages are divided into input and

output messages. A service activity is an activity that calls services, and can declare abnormal output

parameters in addition to input and output parameters. In a typical service activity, an input parameter is

44 AnyLink Runtime Engine Server Guide

sent as a service's request message, and response and abnormal response messages are stored in

output parameters and abnormal output parameters. If the input parameter and request message formats

are different, data conversion can be specified by using the service activity's request mapping. As well,

if the response message and output message formats are different, data can be converted by using

response mapping, and if the abnormal response message and the abnormal output message formats

are different, data can be converted by using abnormal response mapping.

[Figure 4.20] Service Activity Input

4.6. Mapping
Data conversion in an AnyLink service flow is done through mapping activities or service activities' request

mapping, response mapping, and abnormal response mapping.

An AnyLink service flow can declare a process variable shared in a process. As well, a block activity can

declare a block variable shared in a block.

Supported variables are String, Float, Integer, DateTime, and Boolean. In addition, message data types

(which are structured data types) are supported. Message data types used in an AnyLink service flow are

represented as a class that indicates data in the Java programming language. They can be thought of as

classes in the form of value objects or data transfer objects in the Java programming language.

In an AnyLink service flow, variables are internally converted to Java classes, and mapping is generated

in Java code that converts and passes data between Java objects to improve execution performance.

The most basic form of mapping is linking each field of the source message and target message. Hence,

the most basic form is to assign a specific field value in the source message to a specific field in the target

message.

In addition to the field of a message, an expression can be used as the source. Expressions that can be

used in an AnyLink service flow will be described separately later. A mapping activity of an AnyLink service

flow is an activity that directs message conversion between these process variables or block variables.

Chapter 4. Service Flow Engine 45

The source variable and target variable can be set, and the conversion rule between them can be specified

using a diagram as follows.

[Figure 4.21] Mapping Editor

There are request mapping (for request data needed when calling the start event of an adapter rule or

other service flow), response mapping (for changing the format of the results value), and abnormal

response mapping (when an abnormal response message is sent). The request mapping maps the input

parameter of a service activity into the request message format of a service (adapter rule or another

service rule) to be called.The response mapping maps the response message of a service into the output

parameter of a service activity. Like the response mapping, the abnormal response mapping maps the

abnormal response message of a service into the abnormal output parameter of a service activity. A reply

activity can specify the response mapping or abnormal response mapping.

4.7. Service Flow Expression
Expressions are used to hierarchically represent a specific value of a data object (variable) in statements

for representing conditional branches of service flows, calculating correlation values, representing multi

binding router conditions, etc.

By considering the performance of frequently called expressions, the AnyLink service flow engine creates

the expressions in Java code and then compiles and deploys them.

46 AnyLink Runtime Engine Server Guide

4.7.1. Structured Expression

The most basic format of an expression is "variable name"."field name". For example, if there is a variable

named "child" and if a field named "name" is defined in this variable, then the source can be expressed

as child.name. If used as a source, child.name is converted to the same type as child.getName() when

converted to Java code.This kind of expressions that represent structure is called structured expressions.

In mapping's each assignment operation, both the source and target can be specified as structured

expressions. In the case of the source, various types of functions can be used in addition to structured

expressions. Taking into consideration the characteristics of expressions generated as Java code, it is

possible to use Java methods or operators in expressions of the mapping source. For example, if the

name field of a variable named child is a string class in Java code, then the following expression can be

used.

child.name.substring(3) + "_ChildName"

The above expression is converted in Java code as follows.

child.getName().substring(3) + "_ChildName"

4.7.2. Variable Expression

In the case of variable names, if there is no special notation, the beginning token of the structured

expression is regarded as a variable name. Variables in a service flow are internally predefined and

generated as code. It may be necessary to reference a service flow variable or a block variable during

the execution of a service flow.The variables are represented by the "$" notation. For example, if a variable

named dataField1 is declared, it can be used as follows.

$dataField1.content

As previously described, expressions are created in Java code. If the exact type of a variable or field is

not known, then the Java code cannot be generated correctly. For variables defined in a service flow,

their information is extracted from their definitions and then used to assume their actual data types in

order to generate the Java code. The data type of a variable can be explicitly specified by using "<>". For

example, if the exact data type of a variable named dataField1 is the com.tmax.anylink.ContentContainer

class, then it can be expressed as in the following. AnyLink internally converts expressions into Java code

and compiles them, so if an exact data type is unknown, then an error will occur during deployment. In

the case a data type cannot be assumed in AnyLink, compile errors can be avoided by explicitly specifying

the data type.

$dataField1<com.tmax.anylink.ContentContainer>.content

The above expression is converted into the following Java code.

((com.tmax.anylink.ContentContainer) _varCtx.getVariable("dataField1")).getContent()

Chapter 4. Service Flow Engine 47

4.7.3. Mapping Expression

Use mappings in mapping activities to convert input/output data in service activities or to change variable

values in service flows. In mapping, the source data can be represented by a separate expression instead

of the input value.The expression at this time is slightly different from expressions such as the conditional

statements or the correlation value calculation statements described above. The basic form of the

expression used in a mapping's source is a structured expression. Hence, specify the field of the object

value by using a period (.). In a hierarchical structure separated by a period (.), the first part of the mapping

expression is the source or the target variable name. Unlike regular expressions, mapping expressions

do not support variable names that begin with "$". Instead, the beginning of a structured expression is

the variable name. For example, input1 in the below example is the variable name.

input1.person.name

If the field object used in the source is null, and the child field object is hierarchically specified (that is,

input1.person.name is specified when the input1.getPerson() value is null), then the object is created as

an empty object so that no error is generated. In addition, if the field of the mapping is an array, an asterisk

(*) can be attached after the field name used in the target and the field name used in the source to represent

an array mapping. Unlike regular expressions, functions are expressed in the form starting with "@" in a

mapping expression.

@substring(input1.person.name, 0, 4)

The following are the functions that can be used in a mapping expression.

DescriptionFunction

Returns the array size.@arraySize(arg1)

– arg1 : structured expression.

Returns the current date in the format indicated by the argument.

(Default format: yyyy-MM-dd)

@date(arg1?)

– arg1 : Date format pattern string that can be used in Java's

SimpleDateFormat.

Returns the current time in the format indicated by the argument.@time(arg1)

– arg1 : Date format pattern string that can be used in Java's

SimpleDateFormat.

Returns the string length.@strlen(arg1)

– arg1 : Structured expression that represents a string object.

48 AnyLink Runtime Engine Server Guide

DescriptionFunction

Returns a string with no white space characters before and after the

string.

@trim(arg1)

– arg1 : Structured expression that represents a string object.

Returns the substring of the string represented by the structured

expression.

@substring(arg1, arg2, arg3?)

– arg1 : Structured expression that represents a string.

– arg2 : Starting offset.

– arg3 : Ending offset.

Returns a string that combines multiple strings together. Each

argument is a structured expression that represents a string, char,

or numeric value.

@concat(arg1, arg2?, arg3?, ...)

Returns a string that replaces a part of the string with another string.@replace(arg1, arg2, arg3)

– arg1 : Structured expression that represents the original string.

– arg2 : Substring to be replaced.

– arg3 : Substring to replace with.

Converts a string represented by a specific date format to another

date format.

@dateformat(arg1, arg2, arg3)

– arg1 : Structured expression that represents a string expressed in

a specific date format.

– arg2 : Date format to be parsed.

– arg3 : New date format.

Returns a character at a specific position in a string.@charAt(arg1, arg2)

– arg1 : Structured expression that represents a string.

– arg2 : Position of the character.

Returns whether the result value of the structured expression is null.@isNull(arg1)

– arg1 : Structured expression.

Chapter 4. Service Flow Engine 49

DescriptionFunction

Converts the numeric value to a specific format.@numberformat(arg1, arg2)

– arg1 : New format.

– arg2 : Structured expression that represents the numeric value.

Returns a string URL-encoded with UTF8 charset.@urlEncode(arg1)

– arg1 : Structured expression that represents the string to be

URL-encoded.

Returns the null object.@getNull()

Compares the equality of two objects.@equals(arg1, arg2)

– arg1, arg2 : Structured expression.

Acquires a sequence.@sequence(arg1, arg2, arg3)

– arg1 : Represents the sequence ID.

– arg2 : Represents the length of the sequence string.

– arg3 : Selects whether to left pad the sequence string by the

number of digits.

4.8. User Code and Handler
The AnyLink service flow provides a function in which users can write Java code to execute activities or

execute additional code during error or at a specific point in time of the service flow and activity.

The following user code can be used in the service flow engine.

● User Class Activity

Activity that executes the Java code written by the user.

The Java code written by the user must inherit the DefaultUserActivity class of the

com.tmax.anylink.api.serviceflow package.

// Main method of the user activity

void action(ActivityContext ctx) throws AnyLinkException;

● Process Handler

Handler class that is called at the start and end of the service flow.

50 AnyLink Runtime Engine Server Guide

The Java code written by the user must inherit the DefaultProcessHandler class of the

com.tmax.anylink.api.serviceflow package.

// Called at the beginning of the service flow.

void started(ProcessContext ctx) throws AnyLinkException;

 // Called at the end of the service flow.

void finished(ProcessContext ctx) throws AnyLinkException;

// Only defined internally. Not actually called.

void paused(ProcessContext ctx) throws AnyLinkException;

// Only defined internally. Not actually called.

void resumed(ProcessContext ctx) throws AnyLinkException;

● Process Error Handler

Handler class that is called when an error that cannot be handled during service flow execution occurs.

The Java code written by the user must inherit the DefaultProcessErrorHandler class of the

com.tmax.anylink.api.serviceflow package.

// Called when an error occurs during the execution of a service flow in which the

 error handler is defined.

void handle(ProcessContext context, Throwable error) throws AnyLinkException;

● Activity Handler

Handler class that is called at the start and end (due to normal termination, cancellation, or an error)

of the activity.

The Java code written by the user must inherit the DefaultActivityHandler class of the

com.tmax.anylink.api.serviceflow package.

// Called at the start of the activity in which the handler is defined.

void started(ActivityContext ctx) throws AnyLinkException;

// Called at the end of the activity in which the handler is defined.

void finished(ActivityContext ctx) throws AnyLinkException;

// Called at the end (due to cancellation) of the activity in which the handler is

 defined.

void cancelled(ActivityContext ctx, String cause) throws AnyLinkException;

// Called at the end (due to an error) of the activity in which the handler is

defined.

void errorOccurred(ActivityContext ctx, Throwable t) throws AnyLinkException;

Chapter 4. Service Flow Engine 51

● Activity Error Handler

Handler class that is called when an error that cannot be handled during activity execution occurs.

The Java code written by the user must inherit the DefaultActivityErrorHandler class of the

com.tmax.anylink.api.serviceflow package.

// Called when an error occurs while an activity defined in the error handler is

executed.

void handle(ActivityContext context, Throwable error) throws AnyLinkException;

● Error Code Mapper

The service flow uses error code when generating or handling an error event. Hence, an error event

written by the end event generates the specified error code's error events, and the boundary error event

is responsible for handling errors in the activity according to the error code. The error code mapper

converts Java exception objects that are generated during the execution of an activity to error code.

The error code mapper class can be specified in the service flow.

The Java code written by the user must inherit the DefaultErrorCodeMapper of the

com.tmax.anylink.api.serviceflow package.

// Implement this method which identifies an exception and determines its

corresponding error code.

String getErrorCode(Throwable throwable);

● Service Activity Handler

Handler class that is called before and after the call of the service.

The Java code written by the user must inherit the DefaultServiceActivityHandler class of the

com.tmax.anylink.api.serviceflow package.

// Called just before the service call of the service activity in which the handler

 is defined.

void beforeServiceCall(ActivityContext ctx, MessageContext mctx) throws

AnyLinkException;

// Called just after the service call of the service activity in which the handler

 is defined.

void afterServiceCall(ActivityContext ctx, MessageContext mctx) throws

AnyLinkException;

52 AnyLink Runtime Engine Server Guide

4.9. Correlation
A correlation refers to the association of independent objects. Correlation in AnyLink is used by adapters

to find request messages and corresponding response messages. In AnyLink, a correlation does the

following: when an event that represents a specific service is generated, an instance related to the event

is found among the currently executed service flow instances, and the event is sent to the service flow

instance. It associates a service flow instance with an event.

Typically, if an event generated in the service flow engine is a start event, it creates a new service flow

instance. Events that use correlation are usually intermediate events where the service flow waits for an

event to occur during execution, or boundary events.

In the service flow engine, a correlation event performs correlation between the service flow instance and

service through the following two steps: the process of registering the expected correlation value, and a

matching process for finding a matching correlation event instance when a corresponding service occurs.

[Figure 4.22] Two Steps of Service Correlation

When a service flow reaches an intermediate event using correlation through a transition, the AnyLink

service flow engine internally calculates the value for correlation and registers it in the correlation information

table.

If a message is sent to the service flow engine via the AnyLink delivery channel, it is handled by the

service flow engine in the following order.

1. If the service is a service that corresponds to the start message event of the service flow, a new service

flow instance is created.

2. If the service is a service that corresponds to the message event that requires correlation, it attempts

correlation matching. If a message event that matches the correlation value is found, then the message

Chapter 4. Service Flow Engine 53

is sent to the service flow instance in which the event belongs to so that the flow instance transitions

to the next step.

3. If correlation matching is not successful, it finds a message event waiting for the corresponding service

without correlation, and delivers the service flow instance method in which the event belongs to so that

the flow instance transitions to the next step.

4. If none of the message events waiting for the service are registered, then it is stored in the early arrived

message map under the assumption that the message event has reached before the message event

is registered in the service flow engine. The period of time to wait for a message arriving before the

event registration is three seconds by default.

Correlation matching occurs in the AnyLink service flow engine when Service IDs (composed of a

combination of the service flow ID and the corresponding message event ID) are the same and the

calculated correlation value is the same as the correlation value registered by the service flow instance.

For the correlation matching, intermediate events in the service flow can specify registration and matching

expressions.

If you need correlation between different service flows or message events, you can use a multi-binding

router. When the routing method of the multi-binding router is selected as the service flow correlation,

correlation value matching can be performed between different services.

54 AnyLink Runtime Engine Server Guide

Chapter 5. Multi-binding Router

This chapter describes how to split services in the multi-binding router and the router's rules.

5.1. Overview
Multi-binding router provides the functionality for selectively splitting or multi-casting AnyLink services.

Services that the multi-binding router can split or multi-cast are AnyLink internal services such as a service

flow's received message events, adapter outbound rules, and other multi-binding router rules.

A multi-binding router rule is assumed to be an AnyLink service. Hence, it can call a multi-binding rule by

using the adapter's parsing rule, and can also be called through multi-binding activities among the service

activities of the service flow or other multi-binding rules.

[Figure 5.1] Splitting a Service According to the Multi-binding Router Rule

5.2. Multi-binding Rule
A multi-binding rule consists of the following elements.

● Request, response, and abnormal response messages that call multi-binding rules as services.

● Information about target services to be called according to routing rules.

● Routing methods and parameters by service.

The com.tmax.anylink.api.multibinding.DefaultRoutingHandler class declares the following methods.

Chapter 5. Multi-binding Router 55

String route(MessageContext ctx) throws AnyLinkException;

The routing methods and parameters used in the multi-binding router are as follows.

MethodRouting Method

Performed according to the value of a user-defined variable.Value

Round robin. Services are routed sequentially.RoundRobin

Weighted round robin.WeightBased

Can be used only for one-way services. Services are sent to all registered entries.Multicast

Calls services that correspond to the specified time period.TimeRange

Service flow's correlation method. Uses value matching to route to the service item

that is matched first. Here, the target service must be a service flow message event

that supports correlation.

FlowCorrelation

User handler class.Handler

Note

For more information about each routing method, refer to the relevant section.

5.2.1. Value

Performed according to the value of a user-defined variable. Routes to the service item that matches the

value of calculating an expression. The request message can be used as a variable called input in the

expression.

– Format

$input.field1 (variable name)

– Example

1, 2, svc1

5.2.2. WeightBased

Weighted round robin.

– Format

weight. integer value

56 AnyLink Runtime Engine Server Guide

5.2.3.TimeRange

Calls services that correspond to the specified time period. If there is no service item for the matching

time period, then routes to the default service item.

– Format

HH:MM - HH:MM

If the succeeding time is greater than the preceding time and the current time is in the middle, routing

is performed. If the preceding time is greater than the succeeding time, routing is performed only when

the current time is less than the succeeding time or greater than the preceding time.

– Example

09:30-15:10 or default

5.2.4. Handler

User handler class. Routes to the service item that matches the result value of calling a user handler

class implemented by inheriting the DefaultRoutingHandler class.

– Format

telco.binding.TaxRRBinding (class name)

– Example

a, b

Chapter 5. Multi-binding Router 57

Appendix A. Server APIs

This appendix describes AnyLink user APIs, especially related to service flows and the multi-binding

router.

Note

Most of APIs described in this appendix are defined along with a default implementation user class

whose name starts with 'Default'. It is recommended to implement a user interface by inheriting the

class.

A.1. com.tmax.anylink.api Package
The MessageContext interface which is used commonly in various packages is defined.

<MessageContext>

package com.tmax.anylink.api;

/**

 * Standard interface that represents a message.

 */

public interface MessageContext {

 /**

 * Returns the data of the @return message.

 */

 Object getContent();

 /**

 * Returns the property value of the @return message.

 */

 Object getProperty(String propertyName);

 /**

 * Specifies the message's property value.

 *

 * @param propertyName, property name

 * @param propertyValue, property value

 */

 void setProperty(String propertyName, Object propertyValue);

}

Appendix A. Server APIs 59

A.2. com.tmax.anylink.api.serviceflow Package
Defines interfaces for user classes and handlers used in service flows' processes or activities, and their

default implementation classes. For example, the interface for a user activity is defined as the UserActivity

interface, and the default implementation class is defined as the DefaultUserActivity abstract class.

DescriptionInterface

Represents the execution context of an activity.ActivityContext

Handler interface that can handle activity errors.ActivityErrorHandler

AnyLink activity handler interface.ActivityHandler

Represents the execution context of a block activity including the currently

executed activity.

BlockContext

Converts internal errors into error code that can be recognized by the AnyLink

service flow.

ErrorCodeMapper

Allows the user to write data conversion code in the AnyLink service flow.UserMapping

Represents the execution context of the currently executed service flow.ProcessContext

AnyLink process handler interface.ProcessHandler

AnyLink service activity handler interface.ServiceActivityHandler

Represents the user activity.UserActivity

Defines the interface that corresponds to the service flow variable.VariableContext

Note

It is recommended to implement a user interface by inheriting a default abstract class.

A.2.1. ActivityContext

Represents the execution context of an activity.

package com.tmax.anylink.api.serviceflow;

/**

 * Interface that represents the execution context of an activity

 */

public interface ActivityContext {

 /**

 * @return returns the activity ID.

 */

 String getActivityId();

60 AnyLink Runtime Engine Server Guide

 /**

 * @return returns the variable context with the specified name as seen in this

 activity scope.

 */

 VariableContext getVariable(String variableName);

 /**

 * @return returns the context of the service flow that contains this activity.

 */

 ProcessContext getProcessContext();

 /**

 * @return returns the context of the block activity including this activity.

 * If the block activity is not enclosed, null is returned.

 */

 BlockContext getBlockContext();

}

A.2.2. ActivityErrorHandler

Handler interface that can handle activity errors.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.common.AnyLinkException;

/**

 * Handler interface used to handle activity errors

 */

public interface ActivityErrorHandler {

 /**

 * Method called when an error occurs during the execution of an activity in

which the handler is defined.

 */

 void handle(ActivityContext context, Throwable error) throws AnyLinkException;

}

A.2.3. ActivityHandler

AnyLink activity handler interface.

Appendix A. Server APIs 61

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.common.AnyLinkException;

/**

 * AnyLink activity handler interface.

 * When an object implementing this interface is registered as a handler for the

activity,

 * corresponding methods are called according to the life cycle time of the activity

 instance.

 */

public interface ActivityHandler {

 /**

 * Method called at the start of the activity

 */

 void started(ActivityContext ctx) throws AnyLinkException;

 /**

 * Method called at normal end of the activity

 */

 void finished(ActivityContext ctx) throws AnyLinkException;

 /**

 * Method called when an activity is canceled without being terminated.

 * An activity can be canceled for a number of reasons, usually canceled

 * by another activity or event in the service flow.

 */

 void cancelled(ActivityContext ctx, String cause) throws AnyLinkException;

 /**

 * Method called when the activity is terminated by an error

 */

 void errorOccurred(ActivityContext ctx, Throwable t) throws AnyLinkException;

}

A.2.4. BlockContext

Represents the execution context of a block activity including the currently executed activity.

package com.tmax.anylink.api.serviceflow;

/**

 * Interface representing the execution context of a block activity including the

currently executed activity.

62 AnyLink Runtime Engine Server Guide

 */

public interface BlockContext {

 /**

 * @return returns the variable context with the specified name as seen in this

 block scope.

 */

 VariableContext getVariable(String variableName);

 /**

 * @return returns the execution context of the parent block activity including

 the block activity.

 * If there is no parent block activity, null is returned.

 */

 BlockContext getParentBlockContext();

 /**

 * @return returns the context of the service flow that contains the block

activity.

 */

 ProcessContext getProcessContext();

}

A.2.5. ErrorCodeMapper

Converts internal errors into error code that can be recognized by the AnyLink service flow.

package com.tmax.anylink.api.serviceflow;

/**

 * Interface for converting internal errors into error code that can be recognized

by the AnyLink service flow.

 * If the AnyLink service flow does not need to catch all exceptions, it needs to

know the error code to handle the error.

 * This interface converts the generated Java objects into error codes so that error

 events in the service flow can catch them.

 */

public interface ErrorCodeMapper {

 /**

 * @param throwable, the generated Java exception object

 * @return returns the error code value to be handled by the error event of the

 service flow.

 */

 String getErrorCode(Throwable throwable);

}

Appendix A. Server APIs 63

A.2.6. UserMapping

Allows the user to write data conversion code in the AnyLink service flow.

package com.tmax.anylink.api.serviceflow;

/**

 * Interface that allows users to write data conversion code in the AnyLink service

 flow.

 * Used for request, response, abnormal response, and custom log mappings by using

user-written code.

 */

public interface UserMapping {

 /**

 * User-written mapping method

 *

 * @param ctx, the current activity context

 * @param inputParams, input parameters are sent via this variable.

 * @return, the mapped result data. The number of result parameters and the array

 size must be the same.

 */

 Object[] mapping(ActivityContext ctx, Object[] inputParams) throws

AnyLinkException;

}

A.2.7. ProcessContext

Represents the execution context of the currently executed service flow.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.logging.Logger;

/**

 * Interface that represents the execution context of the currently executing service

 flow

 */

public interface ProcessContext {

 /**

 * @return returns the service flow ID.

 */

 String getProcessId();

64 AnyLink Runtime Engine Server Guide

 /**

 * @return returns the instance ID of the service flow.

 */

 String getProcessInstanceId();

 /**

 * @return returns the system logger object.

 */

 Logger getUserLogger();

 /**

 * @return returns the variable information of the specified name in the scope

of this service flow.

 */

 VariableContext getVariable(String variableName);

 /**

 * Returns the AnyLink execution environment variable value.

 * server.name, cluster.name, bizsystem.id are the currently supported environment

 variable keys.

 *

 * @param, key environment variable key

 * @return, environment variable value that corresponds to the key

 */

 String getenv(String key);

}

A.2.8. ProcessHandler

AnyLink process handler interface.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.common.AnyLinkException;

/**

 * AnyLink process handler interface.

 * When an object implementing this interface is registered as a handler of the

corresponding service flow,

 * the corresponding methods are called according to the lifecycle of the service

flow.

 */

public interface ProcessHandler {

 /**

 * Method called when the service flow is started.

Appendix A. Server APIs 65

 */

 void started(ProcessContext ctx) throws AnyLinkException;

 /**

 * Method called when the service flow is finished.

 */

 void finished(ProcessContext ctx) throws AnyLinkException;

 /**

 * Method called when the service flow is paused. Currently, this method is not

 used.

 */

 void paused(ProcessContext ctx) throws AnyLinkException;

 /**

 * Method called when the paused service flow is resumed. Currently, this method

 is not used.

 */

 void resumed(ProcessContext ctx) throws AnyLinkException;

}

A.2.9. ServiceActivityHandler

AnyLink service activity handler interface.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.api.MessageContext;

import com.tmax.anylink.common.AnyLinkException;

/**

 * AnyLink service activity handler interface.

 * This interface defines additional methods for each point in time in the service

call.

 */

public interface ServiceActivityHandler extends ActivityHandler {

 /**

 * Method called just before calling the service.

 */

 void beforeServiceCall(ActivityContext ctx, MessageContext context) throws

AnyLinkException;

 /**

 * Method called immediately after calling the service.

 */

66 AnyLink Runtime Engine Server Guide

 void afterServiceCall(ActivityContext ctx, MessageContext context) throws

AnyLinkException;

}

A.2.10. UserActivity

Represents the user activity.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.common.AnyLinkException;

/**

 * Interface that represents the user activity.

 * To create a user class activity, users need to create a class that inherits the

DefaultUserActivity abstract class that implements this interface.

 */

public interface UserActivity {

 /**

 * Main method that the user activity class should implement.

 */

 void action(ActivityContext ctx) throws AnyLinkException;

}

A.2.11. VariableContext

Defines the interface that corresponds to the service flow variable.

package com.tmax.anylink.api.serviceflow;

import com.tmax.anylink.api.MessageContext;

/**

 * Defines the interface that corresponds to the service flow variable.

 */

public interface VariableContext extends MessageContext {

 /**

 * Specify the variable data.

 *

 * @param content, data to be specified in the variable

 */

Appendix A. Server APIs 67

 void setContent(Object content);

}

A.3. com.tmax.anylink.api.multibinding Package
Handler interfaces used by multi-binding routers are defined.

RoutingHandler

package com.tmax.anylink.api.multibinding;

import com.tmax.anylink.api.MessageContext;

import com.tmax.anylink.common.AnyLinkException;

/**

 * Multi-binding router's handler interface.

 * This handler class can be used when the multi-binding rule's routing method is

specified as "Handler".

 */

public interface RoutingHandler {

 /**

 * @return returns the routing entry name.

 * To process the entry, the entry name must match at least one of entry values

 in the router rule.

 */

 String route(MessageContext ctx) throws AnyLinkException;

}

A.4. Default Abstract Class List
List of abstract classes that implement each of the interfaces mentioned above.

● com.tmax.anylink.api.serviceflow.DefaultUserActivity

● com.tmax.anylink.api.serviceflow.DefaultActivityHandler

● com.tmax.anylink.api.serviceflow.DefaultProcessHandler

● com.tmax.anylink.api.serviceflow.DefaultActivityErrorHandler

● com.tmax.anylink.api.serviceflow.DefaultProcessErrorHandler

68 AnyLink Runtime Engine Server Guide

● com.tmax.anylink.api.serviceflow.DefaultErrorCodeMapper

● com.tmax.anylink.api.multibinding.DefaultRoutingHandler

Note

It is recommended to implement an interface by inheriting the default abstract class, for future

extensibility.

Appendix A. Server APIs 69

Index

A
Activity Error Handler, 52

Activity Handler, 51

Activity), 31

ActivityContext, 60

ActivityErrorHandler, 60, 61

ActivityHandler, 60, 61

Adapter, 1

Inbound Rule, 8

Outbound Rule, 9

Adapter Resources, 23

Adapter, 24

Endpoints and Endpoint Groups, 24

Arbitrary Cycle, 40

B
Basic Pattern, 34

Block, 34

BlockContext, 60, 62

BPMN, 7, 31

Business Resources, 17

Transactions and Transaction Groups, 17

Business System Configuration Information

Cluster, 28

Debugging Mode, 30

Deployment Policy, 29

Encryption Algorithm, 29

System Logging, 27

Thread Pool, 26

C
com.tmax.anylink.api, 59

MessageContext, 59

com.tmax.anylink.api.multibinding

RoutingHandler, 68

com.tmax.anylink.api.serviceflow

ActivityContext, 60

ActivityErrorHandler, 60, 61

ActivityHandler, 60, 61

BlockContext, 60, 62

ErrorCodeMapper, 60, 63

ProcessContext, 60, 64

ProcessHandler, 60, 65

ServiceActivityHandler, 60, 66

UserActivity, 60, 67

UserMapping, 60, 64

VariableContext, 60, 67

Composite Service, 3, 43

Configuring Business System Information, 24

Correlation, 53

D
Data Integration Server (DIS), 1

Data Transfer Object, 45

Deferred Choice, 42

Delivery Channel, 9, 11

E
Engine Architecture, 10

Environment Configurations for Transactions and

Transaction Groups, 21

Environment Configurations for Transactions and

Transaction Groups (XML document files with the

.bizcfg extension), 21

Error Code Mapper, 52

ErrorCodeMapper, 60, 63

Event, 31

Exclusive Choice, 35

Expression, 46

F
FlowCorrelation, 56

G
Gateway, 32

H
Handler, 56, 57

Index 71

I
Implicit Termination, 40

Inbound Rule, 8

Input Parameter, 44

J
Java Class Loader and Transaction Tree Class Loading

Method, 21

L
Libraries, 23

M
Mapping, 45

Mapping Expression, 48

MessageContext, 59

Messaging Pattern, 11

Oneway, 12

Oneway-ACK, 12

Request-Response (2-way), 12

Request-Response-ACK (3-way), 12

Test-Message, 12

MI with a Prior Known Design Time Knowledge, 41

MI with a Prior Known Runtime Knowledge, 41

MI without a Prior Runtime Knowledge, 41

MI without Synchronization, 41

Multi-binding Router, 1, 9, 55

Multi-binding Rule, 9

Outbound Rule, 9

Receive Message Events, 9

Multi-binding Router Method

FlowCorrelation, 56

Handler, 56, 57

Multicast, 56

RoundRobin, 56

TimeRange, 56, 57

Value, 56

WeightBased, 56

Multi-binding Rule, 55

Multicast, 56

Multiple Choice, 36

Multiple Instances, 40

Iteration Completion Condition, 41

Iteration Type, 41

Transition Method, 41

Multiple Merge, 38, 39

N
N-out-of-M Join, 39

O
Outbound Rule, 9

Output Parameter, 44

P
Parallel Split, 35

Parsing Rule, 9

Process Error Handler, 51

Process Handler, 50

ProcessContext, 60, 64

ProcessHandler, 60, 65

Protocol Adapter, 8

Proxy Service, 3, 42

R
Reliable Messaging, 12

Reliable Messaging and XA Messaging, 12

Resource Manager, 9

RoundRobin, 56

RoutingHandler, 68

Runtime Engine (RTE) server, 1

Runtime Engine Error Processing, 13

Runtime Engine Server

Multi-binding Router, 1

Service Flow Engine, 1

Runtime engine server

Adapter, 1

Runtime Engine Service, 13

Business Class Loader, 13

Deploy Manager, 13

Resource Manager, 13

System Resource Manager, 13

Runtime Engine Service Container (RTE Service

Container), 10

72 AnyLink Runtime Engine Server Guide

S
Sequential Execution, 35

Server Architecture, 9

Server Component

Adapter, 8

Server Components, 7

Service Flow Engine, 7

Service, 9

Service Activity, 44

Service Activity and Parameter, 44

Service Activity Handler, 52

Service Flow, 31

Service Flow Activity, 44

Service Flow Diagram, 31

Service Flow Engine, 1

Service Flow Expression, 46

Service Flow Parallel Processing, 32, 33

Service Flow Variable, 44

Service Implementation, 43

Service Implementation Method and Service Flow Type,

42

Service Orchestration, 2

ServiceActivityHandler, 60, 66

SFDL, 31

Simple Merge, 36

Structured Expression, 47

Subprocess, 34

Symbolic Links and Java Class References, 19

Synchronization, 35

Synchronizing Merge, 37

T
The Basic Hierarchy of a Java Class Loader, 22

TimeRange, 56, 57

Transaction Propagation, 13

Transaction Tree and Message Parsing, 18

Transactions and Transaction Groups

Adapter Outbound Rule (XML document files with a

.orule extension), 19

Definition Files for Transactions and Transaction

Groups (XML Document Files with the .biztx

Extension), 17

Expression (XML Document Files with the .expr

Extension), 20

Message (XML Document File with the .Umsg

Extension), 20

Message Mapping (XML Document File with the .Map

Extension), 20

Multi-binding Rule (XML Document Fields with the

.mbind extension), 20

Parsing Rule, 19

Service Flow Definition File (XML Document Files

with the .sfdl Extension)), 19

Transition, 31

Trigger, 32

U
User Class Activity, 50

User Code and Handler, 50

UserActivity, 60, 67

UserMapping, 60, 64

V
Value, 56

Value Object, 45

Variable Expression, 47

VariableContext, 60, 67

W
WeightBased, 56

Wrapper Service, 3

X
XA Messaging, 12

Index 73

	AnyLink
	Table of Contents
	About This Document
	Chapter 1. Introduction
	1.1. Overview
	1.2. Key Functions
	1.3. Server Configuration

	Chapter 2. Runtime Engine Server
	2.1. Server Components
	2.1.1. Service Flow Engine
	2.1.2. Adapter
	2.1.3. Multi-binding Router

	2.2. Server Architecture
	2.2.1. System Architecture
	2.2.2. Delivery Channel
	2.2.3. Runtime Engine Service

	2.3. Runtime Engine Error Processing
	2.3.1. Delivery Channel
	2.3.2. Service Flow
	2.3.3. Adapter

	Chapter 3. Runtime Engine Server Resource
	3.1. Overview
	3.2. Business Resources
	3.2.1. Transactions and Transaction Groups
	3.2.2. Environment Configurations for Transactions and Transaction Groups
	3.2.3. Java Class Loader and Transaction Tree Class Loading Method

	3.3. Libraries
	3.4. Adapter Resources
	3.5. Configuring Business System Information
	3.5.1. Thread Pool
	3.5.2. System Logging
	3.5.3. Cluster
	3.5.4. Deployment Policy
	3.5.5. Encryption Algorithm
	3.5.6. Debugging Mode

	Chapter 4. Service Flow Engine
	4.1. Service Flow Diagram
	4.1.1. Basic Elements of Service Flow Diagrams
	4.1.2. Service Flow Parallel Processing
	4.1.3. Diagram Graphs and Block Structure

	4.2. Basic Pattern
	4.2.1. Basic Flow Pattern
	4.2.2. More Split and Merge Patterns

	4.3. Service Implementation Method and Service Flow Type
	4.3.1. Proxy Service
	4.3.2. Composite Service
	4.3.3. Service Implementation

	4.4. Service Flow Variable and Activity Parameter
	4.5. Service Activity and Parameter
	4.6. Mapping
	4.7. Service Flow Expression
	4.7.1. Structured Expression
	4.7.2. Variable Expression
	4.7.3. Mapping Expression

	4.8. User Code and Handler
	4.9. Correlation

	Chapter 5. Multi-binding Router
	5.1. Overview
	5.2. Multi-binding Rule
	5.2.1. Value
	5.2.2. WeightBased
	5.2.3. TimeRange
	5.2.4. Handler

	Appendix A. Server APIs
	A.1. com.tmax.anylink.api Package
	A.2. com.tmax.anylink.api.serviceflow Package
	A.2.1. ActivityContext
	A.2.2. ActivityErrorHandler
	A.2.3. ActivityHandler
	A.2.4. BlockContext
	A.2.5. ErrorCodeMapper
	A.2.6. UserMapping
	A.2.7. ProcessContext
	A.2.8. ProcessHandler
	A.2.9. ServiceActivityHandler
	A.2.10. UserActivity
	A.2.11. VariableContext

	A.3. com.tmax.anylink.api.multibinding Package
	A.4. Default Abstract Class List

	Index

