
MQ Guide
JEUS 9

Copyright

Copyright 2025. TmaxSoft Co., Ltd. All Rights Reserved.

Company Information

TmaxSoft Co., Ltd.

TmaxSoft Tower 10F, 45, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea

Website: https://www.tmaxsoft.com/en/

Restricted Rights Legend

All TmaxSoft Software (JEUS®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

JEUS® is registered trademark of TmaxSoft Co., Ltd.

Java, Solaris are registered trademarks of Oracle Corporation and its subsidiaries and affiliates.

Microsoft, Windows, Windows NT are registered trademarks or trademarks of Microsoft Corporation.

HP-UX is a registered trademark of Hewlett Packard Enterprise Company.

AIX is a registered trademark of International Business Machines Corporation.

UNIX is a registered trademark of X/Open Company, Ltd.

Linux is a registered trademark of Linus Torvalds.

Noto is a trademark of Google Inc. Noto fonts are open source. All Noto fonts are published under
the SIL Open Font License, Version 1.1. (https://www.google.com/get/noto/)

Other products and company names are trademarks or registered trademarks of their respective

https://www.tmaxsoft.com/en/
https://www.google.com/get/noto/

owners.

The names of companies, systems, and products mentioned in this manual may not necessarily be
indicated with a trademark symbol (TM, ®).

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: APACHE2.0,
CDDL1.0, EDL1.0, OPEN SYMPHONY SOFTWARE1.1, TRILEAD-SSH2, Bouncy Castle, BSD, MIT, SIL OPEN
FONT1.1

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks

JEUS 9 3.1.2 2025-03-24 -

JEUS 9 3.1.1 2024-12-24 -

Contents
1. Introduction . 1

1.1. Jakarta Messaging(JMS) . 1

1.2. JEUS MQ Features. 1

2. JEUS MQ Client Programming . 3

2.1. Overview . 3

2.2. JMS Administered Objects. 5

2.2.1. Defining JNDI Services . 5

2.2.2. Connection Factory. 7

2.2.3. Destination. 8

2.3. Connections and Sessions . 11

2.3.1. Creating Connections. 11

2.3.2. Sharing Physical Connections. 12

2.3.3. Creating Sessions . 13

2.3.4. Client Facility Pooling . 14

2.3.5. NONE_ACKNOWLEDGE Mode . 15

2.3.6. JMSContext. 16

2.4. Messages. 17

2.4.1. Message Header Field . 17

2.4.2. Message Properties . 18

2.4.3. Message Body . 19

2.4.4. FileMessage . 19

2.5. Transactions . 23

2.5.1. Local Transactions . 23

2.5.2. Distributed Transactions . 24

3. JEUS MQ Server Configuration. 26

3.1. Overview . 26

3.1.1. Directory Structure . 26

3.2. Configuring JMS Resources. 26

3.2.1. Configuring Destinations . 27

3.2.2. Configuring Durable Subscription . 28

3.3. Configuring JMS Quotas . 29

3.3.1. Configuring Quotas . 29

3.4. Configuring JMS Engines. 29

3.4.1. Basic Information . 29

3.4.2. Configuring Service Channels. 31

3.4.3. Configuring Connection Factories . 32

3.4.4. Configuring Persistence Stores . 33

3.4.5. Message Sorting . 34

3.5. Management and Monitoring . 34

3.5.1. Server Management. 35

3.5.2. Server Monitoring. 36

4. JEUS MQ Clustering . 38

4.1. Overview . 38

4.2. Clustering Type. 38

4.2.1. Connection Factory Clustering . 38

4.2.2. Destination Clustering . 39

4.3. How to Use Clustering. 40

4.3.1. Server Configuration . 40

4.3.2. Client Settings for Clustering . 40

4.4. Example . 41

4.4.1. Example of Best JEUS MQ Clustering Practice . 41

4.4.2. Example of Poor JEUS MQ Clustering Practice . 42

5. JEUS MQ Failover . 44

5.1. Overview . 44

5.2. Server Failover . 44

5.2.1. Network Configuration . 44

5.2.2. Configuring Connection Factories . 46

5.2.3. Configuring Persistence Stores . 47

5.2.4. Automatic Failback . 48

5.3. Client Failover . 48

5.3.1. Reconnection. 48

5.3.2. Reusing the Connection Factory . 48

5.3.3. Reusing Destinations . 49

5.3.4. Request Blocking Time. 49

5.3.5. Connection Recovery . 49

5.3.6. Session Recovery . 50

5.3.7. Transmission Error Message Recovery . 52

5.3.8. Reception Error Message Recovery . 53

5.3.9. Message Loss Prevention and Transactions. 55

6. JEUS MQ Special Functions . 56

6.1. JEUS MQ Message Bridge . 56

6.1.1. Server Configuration . 56

6.2. JEUS MQ Message Sort . 58

6.2.1. Server Configuration . 59

6.2.2. Client Configuration . 60

6.3. JEUS MQ Global Order . 60

6.3.1. Client Settings . 60

6.4. JEUS MQ Message Group . 60

6.4.1. Server Configuration . 61

6.4.2. Client Configuration . 61

6.5. JEUS MQ Message Management Functions . 62

6.5.1. Message Monitoring . 63

6.5.2. Message Control . 64

6.5.3. Destination Monitoring . 66

6.5.4. Destination Control . 67

6.6. JEUS MQ Topic Multicast . 67

6.6.1. Server Configuration . 68

6.7. Reliable Message Transmission . 68

6.7.1. LPQ Activation . 69

6.7.2. Enabling LPQ . 70

6.7.3. LPQ Listener Configuration. 71

6.7.4. LPQ Configuration . 72

Appendix A: Additional Journal Store Properties . 75

Appendix B: JDBC Persistence Store Columns. 77

B.1. Destination Table . 77

B.2. Durable Subscription Table . 77

B.3. Message Table . 78

B.4. MetaInfo Table . 78

B.5. Subscription Message Table. 78

B.6. Transaction Table . 79

1. Introduction
This chapter briefly introduces Jakarta Messaging (hereafter JMS), and describes the features of JEUS
MQ.

1.1. Jakarta Messaging(JMS)
Jakarta Messaging (JMS) is a Java Standard API defined to execute inter-application communication
through messaging. This section defines the necessary messaging components and message model
interfaces, and describes the relationships between them.

JMS has the following features.

• Loosely coupled structure

Message producers and message consumers operate independently.

• Asynchronous communication

Message consumers can receive messages as soon as they reach the server even if there are no
requests.

• Reliable message transmission

Messages are guaranteed to be delivered exactly once.

JMS Messaging

For more information about JMS or API usage, refer to JMS specification.

1.2. JEUS MQ Features
JEUS MQ is the implementation entity of the Jakarta Messaging specification that is included in JEUS
(TmaxSoft Jakarta EE server). JEUS MQ supports non-blocking I/Os and XA transactions. It also
provides highly available message services with enhanced security.

JEUS MQ supports JMS version 2.0 specification and provides the following key features.

• Supports non-blocking I/O

1. Introduction | 1

https://jakarta.ee/specifications/messaging/

By using non-blocking I/O, JEUS MQ can simultaneously process more clients by using the same
system resources.

• Supports XA Transaction

Supports XA transaction that is an option defined in the JMS specification.

• Enhanced Security

Supports the secure socket layer (SSL) communication. JEUS security can be configured to
strengthen the security.

• High Availability

Clients can automatically recover from server or network failures.

• Scalability

Loads can be balanced by JEUS MQ clustering when the number of clients or messages increases.

2 | MQ Guide

2. JEUS MQ Client Programming
This chapter describes JEUS MQ client types, procedures for creating a client, and administered
objects.

2.1. Overview
This section discusses JEUS MQ client types and procedures for creating a client.

Client Types

There are two types of JMS clients, message producers and message consumers, and a single client
can play both roles. JEUS MQ clients can be divided into the following categories according to the
methods used for Java application deployment and execution.

• Independent applications

Independently executed in the Java Standard Edition (SE) environment.

• Jakarta EE applications

Deployed to Jakarta EE servers, like EJBs and servlets. For information about deploying Jakarta EE
applications to JEUS and executing them, refer to "JEUS Applications & Deployment Guide".

• Message Driven Bean

A message-driven bean (MDB) is a type of EJB. It allows a single-threaded Java SE application to
run by using multiple threads concurrently. For more information about MDBs, refer to EJB
related books or "Jakarta EE Tutorials".

For information about how to configure MDB in JEUS, refer to "Message Driven Bean(MDB)" in
JEUS EJB Guide.

Currently, JEUS MQ does not support clients that are written in a language other
than Java.

Steps for Creating a Client

The following are the steps for creating a JEUS MQ client using an independent application.

When a client program that runs in the Jakarta EE environment is specified in the XML Deployment
Descriptor, the lookup process of the initial Java Naming and Directory Interface (hereafter JNDI) is
not required.

1. Create a JNDI InitialContext.

2. JEUS MQ Client Programming | 3

https://eclipse-ee4j.github.io/jakartaee-tutorial/

Context context = new InitialContext();

The JEUS JNDI service configuration will be discussed in Defining JNDI Services�.

2. Obtain a connection factory through JNDI.

ConnectionFactory connectionFactory =
 (ConnectionFactory) context.lookup("jms/ConnectionFactory");

A connection factory can be obtained by using the JEUS MQ API, without using a JNDI lookup. For
more information, refer to Connection Factory�.

3. Create a connection through the obtained connection factory.

Connection connection = connectionFactory.createConnection();

4. Create a session from the connection.

Session session = connection.createSession(false, AUTO_ACKNOWLEDGE);

5. Look up a destination through JNDI.

Destination destination = (Destination) context.lookup("ExamplesQueue");

Like the connection factory, a destination can be obtained using JEUS MQ API, without using a
JNDI lookup. For more information, refer to Destination�.

6. To send a message, create a message producer using the session object.

MessageProducer producer = session.createProducer(destination);

To receive a message, create a message consumer using the session object.

MessageConsumer consumer = session.createConsumer(destination);

To asynchronously receive the message, register the object that implements the MessageListener
interface in the message consumer.

MessageListener listener = new MyMessageListener();
consumer.setMessageListener(listener);

4 | MQ Guide

7. Initiate the connection.

connection.start();

8. Send or receive messages to execute the business logic.

Send a message through the message producer.

TextMessage message = session.createTextMessage("Hello, World");
producer.send(msg);

To synchronously receive messages, invoke the receive() method of the message consumer.

Message message = consumer.receive();

To asynchronously receive messages, the received messages are processed by the onMessage()
method of the MessageListener object registered in Step 6.

9. After all messages have been sent and received, close the connection.

connection.close();

2.2. JMS Administered Objects
There are two types of JMS administered objects, the connection factory and destination.

In general, they are created on the server through JMS server settings, and managed by the
administrator. The JMS client obtains the objects or object references from the server in order to use
the JMS Service. A JNDI lookup is a typical way for the client to obtain the JMS administered objects
from the server.

This section explains how to obtain a connection factory or destination reference from the JEUS MQ
server, and how to implement the JEUS JNDI service in the client programs to use JNDI lookup. In
addition, it discusses how to dynamically create a destination in the JEUS MQ server by using the API,
and describes the dead message destination of the JEUS MQ server.

2.2.1. Defining JNDI Services

The JNDI service should be defined first to obtain JMS administered objects with a JNDI lookup.

The JNDI service can be defined using the following three properties.

• java.naming.factory.initial

2. JEUS MQ Client Programming | 5

• java.naming.factory.url.pkgs

• java.naming.provider.url

The three properties can be applied in the following ways.

• Creating a JNDI property file

The easiest way to define JNDI service is to create the jndi.properties file where the property
values are configured.

The following is an example of the jndi.properties file that defines the environment for using JEUS
JNDI service.

<jndi.properties>

java.naming.factory.initial=jeus.jndi.JEUSContextFactory
java.naming.factory.url.pkgs=jeus.jndi.jns.url
java.naming.provider.url=127.0.0.1:9736

To enable InitialContext objects to read the jndi.properties file settings, put the jndi.properties file
in the class path, or include it in a JAR file with other files for deployment.

• Passing the parameters to system property

It is difficult to modify the jndi.properties file included in the JAR file at runtime. The configuration
values should be passed to the system properties when executing the client as in the following.

java -Djava.naming.factory.initial=jeus.jndi.JEUSContextFactory \
 -Djava.naming.factory.url.pkgs=jeus.jndi.jns.url \
 -Djava.naming.provider.url=127.0.0.1:9736 \
 . . .

• Passing the parameters as applet properties

If the JEUS MQ client is an applet, it is better to pass the parameters by using the <param>
element inside the <applet> element in the HTML file rather than creating a jndi.properties file as
in the following.

<applet code="JeusMqApplet" width="640" height="480">
 <param name="java.naming.factory.initial"
 value="jeus.jndi.JEUSContextFactory"/>
 <param name="java.naming.factory.url.pkgs" value="jeus.jndi.jns.url"/>
 <param name="java.naming.provider.url" value="127.0.0.1:9736"/>
</applet>

In the applet, configure an environment that is needed to create the InitialContext using the
Applet.getParameter() method.

6 | MQ Guide

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, getParameter("java.naming.factory.initial"));
env.put(Context.URL_PKG_PREFIXES, getParameter("java.naming.factory.url.pkgs"));
env.put(Context.PROVIDER_URL, getParameter("java.naming.provider.url"));

Context context = new InitialContext(env);

• Inserting the configuration value in the code

The environment that is needed to create the InitialContext can be directly implemented in the
client code.

Include the properties in the Hashtable object, and use them as the parameters of the
InitialContext constructor.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "jeus.jndi.JEUSContextFactory");
env.put(Context.URL_PKG_PREFIXES, "jeus.jndi.jns.url");
env.put(Context.PROVIDER_URL, "127.0.0.1:9736");

Context context = new InitialContext(env);

However, this method may incur maintenance inconvenience because the
source code needs to be modified to use other JNDI services or change the
service definition.

2.2.2. Connection Factory

A connection factory has useful information on creating a connection to the JEUS MQ server.

In general, the JMS client obtains a connection factory through JNDI lookup, and uses it to create a
connection with the JMS server.

ConnectionFactory connectionFactory =
 (ConnectionFactory) context.lookup("jms/ConnectionFactory");
QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup("jms/QueueConnectionFactory");
TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory) context.lookup("jms/TopicConnectionFactory");

To use distributed transactions in JEUS MQ, look up XAConnectionFactory,
XAQueueConnectionFactory, and XATopicConnectionFactory classes as in the following.

The Jakarta EE client can obtain a connection factory by using the Resource annotation, instead of
using the InitialContext.lookup() method.

2. JEUS MQ Client Programming | 7

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

If the JNDI Service is not available, a connection factory can be obtained by using the API provided by
JEUS MQ.

jeus.jms.client.util.JeusConnectionFactoryCreator connectionFactoryCreator =
 new jeus.jms.client.util.JeusConnectionFactoryCreator();
connectionFactoryCreator.setFactoryName("ConnectionFactory");
connectionFactoryCreator.addServerAddress("127.0.0.1", 9741, "internal");
ConnectionFactory connectionFactory =
 (ConnectionFactory) connectionFactoryCreator.createConnectionFactory();

When using JNDI lookup or the Resource annotation, the JNDI name of the
connection factory object (e.g., "jms/ConnectionFactory" in the example) is used
to obtain a connection factory. When using the JeusConnectionFactoryCreator
object, the connection factory name (e.g., "ConnectionFactory" in the previous
example) which is internally used by JEUS MQ server is used. For the difference
between the connection factory name and JNDI name, refer to the example in
Connection Factory Configuration.

2.2.3. Destination

There are two types of destinations—queue and topic—used as storage for messages managed by
the server.

Queue supports one message to one client (one to one), and Topic supports one message to all
clients (one to many).

The JMS client obtains a reference to the destination object managed by the server in order to receive
or send a message from/to a destination

In general, the JEUS MQ client obtains a destination by looking up the JNDI name on the JNDI server
where the destination references are registered.

Queue queue = (Queue) context.lookup("jms/ExamplesQueue");
Topic topic = (Topic) context.lookup("jms/ExamplesTopic");

The Jakarta EE client can obtain a destination reference by using the @Resource annotation, instead
of using the InitialContext.lookup() method as in the following.

@Resource(mappedName="jms/ExamplesQueue")
private static Queue queue;

8 | MQ Guide

Like connection factories, JEUS MQ API can be used to obtain a destination reference without JNDI
Lookup. To refer to the destination, use the destination name that is internally used by the JEUS MQ
server.

jeus.jms.client.util.JeusDestinationCreator destinationCreator =
 new jeus.jms.client.util.JeusDestinationCreator();
destinationCreator.setDestinationName("__ExamplesQueue__");
destinationCreator.setDestinationClass(Destination.class);
Destination destination = (Destination) destinationCreator.createDestination();

It is also possible to use the Session.createQueue (string) and Session.createTopic (string) methods.
They are implemented differently for each JMS implementation. As shown in the previous example,
the actual destination name must be passed as a parameter.

Queue queue = session.createQueue("ExamplesQueue");
Topic topic = session.createTopic("ExamplesTopic");

Dynamic Creation of Destinations

JEUS MQ enables a client to dynamically create a destination on the server by using the
Session.createQueue (string) and Session.createTopic (string) methods.

When specifying a destination string, append a "?" after the destination name. To use options,
append each option using the form "param=value" after the "?". To set two or more options, use "&"
as a delimiter. The destination parameters and values can be specified like those set in the
domain.xml configuration file.

The export-name is used to dynamically create a destination.

The following example shows how to dynamically create a queue by using the destination name
"DynamicQueue" and the JNDI name "jms/DynamicQueue".

QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup("jms/QueueConnectionFactory");
QueueConnection queueConnection = queueConnectionFactory.createQueueConnection();
QueueSession queueSession =
 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = queueSession.createQueue(
 "DynamicQueue?export-name=jms/DynamicQueue");

The API has the following features.

◦ If the specified destination name already exists on the server, or another object is already
registered as the specified JNDI name, a JMSException is thrown. If a JNDI name is not provided,
the destination name is used as the JNDI name.

2. JEUS MQ Client Programming | 9

◦ A connection needs to be created in order to enable the JEUS MQ server security function. If the
subject used for creating a connection does not have "createDestination" permission on the
"jeus.jms.destination.creation" resource, a JMSException is thrown.

◦ Other settings follow the basic settings of the destination.

◦ The dynamically created destinations are deleted when the JEUS MQ server shuts down.

Destinations created in the above example operate in the same way as destinations depending on
settings until JEUS MQ server shuts down.

A destination cannot be dynamically created when JEUS MQ clustering is enabled.

Dead Message Destination

Dead message destination is a system destination where failed messages are saved. A message may
fail if the destination of the message could not be found, or the message has been recovered more
than the allowed number of times.

The following are the cases when a message that is received by the consumer is recovered to the
server-side destination.

• The message consumer calls Session.recover(), etc.

• An exception occurs while executing the onMessage() method of the message listener.

The recovered message gets re-sent to the message consumer. However, if message processing fails
repeatedly due to a business logic or client program error, messages will accumulate at the
destination and the client cannot receive them. To resolve this problem, JEUS MQ limits the number
of times that a message can be recovered. Set a value in the "JMS_JEUS_RedeliveryLimit" message
property variable, and send the message.

message.setIntProperty("JMS_JEUS_RedeliveryLimit", <integer value>)

You can change the default message property value by setting the "jeus.jms.client.default-redelivery-
limit" system property when executing the message producer client.

-Djeus.jms.client.default-redelivery-limit=<integer value>

If not set, 3 is used as the default value. When booting, the JEUS MQ server creates a dead message
destination with the name "JEUSMQ_DLQ". In general, the messages saved in the dead message
destination are processed using the system administration tool. General clients can also access and
process the dead message destination by using this name.

Too many messages in a dead message destination may cause an
OutOfMemoryError. To avoid this error, you can specify a client that will receive

10 | MQ Guide

messages, or remove messages in the dead message destination periodically by
using a system management tool.

2.3. Connections and Sessions
When a JMS client exchanges messages with a server, it must connect to the server and create a
session. The connections and the sessions are very important client resources in JMS that may affect
the system performance and determine error response methods. JEUS MQ provides a number of
options to enhance connection performance.

This section describes how to set the connection options and how the JEUS MQ client runs based on
the specified options.

2.3.1. Creating Connections

Connection is the first object that a client creates to work with a JMS server, and is physically or
logically linked with the JMS server. Connections are created by calling the createConnection()
method of the connection factory.

public Connection createConnection()
 throws JMSException;
public Connection createConnection(String userName, String password)
 throws JMSException;

If the JEUS MQ server uses the security function and the subject that has the userName/password
does not have "createConnection" permission on the "jeus.jms.client.connectionFactory" resource, a
JMSException is thrown.

The following option can be set as a system property when executing the JEUS MQ client.

-Djeus.jms.client.connect.timeout=<long value>

This option specifies the amount of time that the ConnectionFactory.createConnection() method
waits for a successful connection. The default value is 5 seconds, and the unit is in milliseconds. If not
connected within this time, a JMSException occurs in the ConnectionFactory.createConnection()
method. If set to "0", it waits for a successful connection indefinitely.

This setting can be modified at runtime by adding either of the following statements to the client
code:

System.setProperty("jeus.jms.client.connect.timeout", <long value>);

2. JEUS MQ Client Programming | 11

or

System.setProperty(jeus.jms.common.JeusJMSProperties.KEY_CLIENT_CONNECT_TIMEOUT, <long value>);

2.3.2. Sharing Physical Connections

An application sends a message using the following steps.

1. Create a connection

2. Create a session

3. Create a message producer

4. Send a message

5. Close a connection

If a JMS connection can be connected to only one physical connection (socket), performance is
reduced because a new physical connection has to be created whenever a message is sent. Creating
a physical connection takes longer than sending a message. The more physical connections are
created, the more file descriptors are used which may cause IOExceptions to occur and disrupt
system stability.

In a JEUS 6 Fix#6 and later, physical connections can be shared to resolve performance and stability
problems mentioned previously. However, in some environments, since it would be better to create a
new physical connection each time instead of sharing connections, an option is provided to set this
function.

In general, one physical connection is connected to each ConnectionFactory, but if JEUS MQ failover
is configured or "jeus.jms.client.use-single-server-entry" is set to "false", one physical connection is
used for each connection. For more information about JEUS MQ Failover, refer to JEUS MQ Failover.

The following are JVM options related to physical connection sharing.

•
-Djeus.jms.client.use-single-server-entry=<boolean value>

This option determines whether to create one physical connection for each ConnectionFactory
and share it with other connections. The default value is true. If set to false, the physical
connection is used for only one connection.

This setting can be modified at runtime by adding either of the following statements to the client
code:

System.setProperty("jeus.jms.client.use-single-server-entry", <boolean value>);

or

12 | MQ Guide

System.setProperty(jeus.jms.common.JeusJMSProperties.USE_SINGLE_SERVER_ENTRY,
 <boolean value>);

•
-Djeus.jms.client.single-server-entry.shutdown-delay=<long value>

This option determines when to disconnect the physical connection if it is not in use. Idle physical
connections are not maintained but returned to the system. (Unit: milliseconds, default value:
600,000 (10 minutes))

This setting can be modified at runtime by adding either of the following statements to the client
code:

System.setProperty("jeus.jms.client.single-server-entry.shutdown-delay", <long value>);

or

System.setProperty(jeus.jms.common.JeusJMSProperties.SINGLE_SERVER_ENTRY_SHUTDOWN_DELAY, <long
value>);

The JMS specification has a restriction on closing connections in onMessage of
MessageListener as this may cause a deadlock.

2.3.3. Creating Sessions

JMS session is the basic unit for all messaging tasks such as sending a created message to the
destination or receiving a message from the destination. A session is also a unit that is used for a JMS
client that participates in a local or XA transaction.

A session and all tasks processed in the session need to be processed by a single thread context, and
this means that the session objects are not thread-safe.

The JEUS MQ client does not guarantee safe operation when multiple threads use
a single session. It is recommended to create as many sessions as the number of
threads. However, since creating multiple sessions means that multiple threads
are used, the JMS specification has a restriction on more than one session created
for a client that operates on Jakarta EE web or EJB container.

The following API is used to create a session from the connection object.

public Session createSession(boolean transacted, int acknowledgeMode)

2. JEUS MQ Client Programming | 13

 throws JMSException;

The JMS specification defines the following four acknowledge modes.

Session.AUTO_ACKNOWLEDGE = 1
Session.CLIENT_ACKNOWLEDGE = 2
Session.DUPS_OK_ACKNOWLEDGE = 3
Session.SESSION_TRANSACTED = 0

JEUS MQ supports an additional acknowledge mode to maximize the messaging performance.

jeus.jms.JeusSession.NONE_ACKNOWLEDGE = -1

The JMS specification does not allow a client that operates on Jakarta EE web or
EJB container to use local transactions. Thus, such a client cannot create
transacted sessions, and CLIENT_ACKNOWLEDGE is disabled for ACKNOWLEDGE
mode.

2.3.4. Client Facility Pooling

As mentioned in the previous section, the client facilities including connections, sessions, and
message producers are repeatedly created for use. However, these objects exchange messages with
the server each time they are created and multiple messages have to be sent and received in order
to send a single user message, which can result in performance degradation.

To resolve this issue, JEUS MQ provides client facility pooling. This function can only be used when
the message producer is used in a non-transaction environment or an environment where the JEUS
MQ failover is not configured. If a message consumer or a transaction is used, the client facilities that
are not pooled are removed immediately when they are closed.

This function is optional. To enable the function, configure the following JVM options.

•
-Djeus.jms.client.use-pooled-connection-factory=<boolean value>

Option to enable Client Facility Pooling function. (Default value: true)

•
-Djeus.jms.client.pooled-connection.check-period=<long value>

Interval for deleting unused pooled objects. (Unit: milliseconds, default value: 60,000 (1 minute))

•
-Djeus.jms.client.pooled-connection.unused-timeout=<long value>

14 | MQ Guide

Option to remove the pooled objects that have been idle longer than the specified time period.
(Unit: milliseconds, default value: 120,000 (2 minutes))

2.3.5. NONE_ACKNOWLEDGE Mode

Except for transacted sessions, JMS message acknowledge modes are meaningful only when
receiving messages, but the NONE_ACKNOWLEDGE mode also affects the sending of messages.

The acknowledge mode improves performance, but makes reliable messaging difficult. Therefore,
when deciding whether to use the NONE_ACKNOWLEDGE mode, consider the message’s
characteristics, performance and reliability requirements, etc.

When exchanging FileMessages or in transacted sessions, the
NONE_ACKNOWLEDGE mode works like the AUTO_ACKNOWLEDGE mode.

Sending Messages

In general, after a client sends a message to the JMS server, the client thread calls the
MessageProducer.send() method and suspends its operation until it receives a reply from the server.

In the NONE_ACKNOWLEDGE mode, MessageProducer.send() returns immediately after the client
sends a JMS message to the server. This can improve message transmission performance reducing
the client waiting time.

The following shows the difference in how a message is sent in general and in the
NONE_ACKNOWLEDGE mode. The grey boxes indicate that the messages are logged when they
arrive at the server.

In the following cases, a message may be lost.

• When a network failure occurs while a message is being transmitted from the client to the server.

• When an error occurs on the JEUS MQ server before a message arrives at the JEUS MQ server and
is added to the destination.

The lost message is not recovered even if the message transmission method is set to
DeliveryMode.PERSISTENT.

Receiving Messages

A JMS server does not delete the message information until it receives an acknowledgement from the
client that received the message. This can help improve the reliability of messaging, but is not good
for performance because each acknowledgment message incurs network overhead.

In the NONE_ACKNOWLEDGE mode, a user can expect faster message transmission speed. This is
because the JEUS MQ server sends a JMS message to the client and then immediately deletes the
message information from the server without sending an acknowledgement message to the client.

2. JEUS MQ Client Programming | 15

The following figure shows how a message is received in the AUTO_ACKNOWLEDGE and
NONE_ACKNOWLEDGE modes. The gray box indicates that a message is deleted from the server.

Receiving Messages in AUTO_ACKNOWLEDGE and NONE_ACKNOWLEDGE modes

In the following cases, a message may be lost.

• When a network failure occurs while a message is being transmitted from the server to the client.

• When an error occurs while the message is being processed by the JEUS MQ client library.

• When an exception occurs in the onMessage() method of the MessageListener object registered
by the client.

The lost message cannot be recovered by calling the Session.recover() method.

2.3.6. JMSContext

The JMS specification provides the JMSContext interface that combines connections and sessions, and
has roles in both of them. Just like in connections, JMSContext can be created by using the following
APIs defined in ConnectionFactory.

public Connection createContext()
 throws JMSException;
public Connection createContext(int sessionMode)
 throws JMSException;
public Connection createContext(String userName, String password)
 throws JMSException;
public Connection createConnection(String userName, String password, int sessionMode)

16 | MQ Guide

 throws JMSException;

The ACKNOWLEDGE mode is set just like when creating a session. However, transactions are used
according to the mode, not a parameter. In JEUS MQ, JMSContext uses client facility pooling just like
connections and sessions. As a result, connections and session pools are shared. Therefore, detailed
configuration depends on the settings for connections and session pools.

2.4. Messages
This section discusses the extended features of JMS messaging supported by JEUS MQ.

2.4.1. Message Header Field

JMS defines the following message header fields.

• JMSDestination

• JMSDeliveryMode

• JMSMessageID

• JMSTimestamp

• JMSCorrelationID

• JMSReplyTo

• JMSRedelivered

• JMSType

• JMSExpiration

• JMSPriority

Because JEUS MQ assigns a unique ID to each message, it does not support the following functions:

◦ MessageProducer.setDisableMessageID(boolean) method disables message ID assignment to
each JMS message.

◦ MessageProducer.setDisableTimestamp(boolean) method disables timestamp assignment to
each JMS message.

◦ Overriding of the JMSDeliveryMode, JMSExpiration and JMSPriority field values that are set in the
client.

If a client calls the Message.getJMSMessageID() method after sending a message using the session
whose acknowledge mode is set to NONE_ACKNOWLEDGE, the message ID is displayed as NULL. This
is because MessageProducer.send() returns before receiving a response from the server. For more
information, refer to NONE_ACKNOWLEDGE Mode�.

2. JEUS MQ Client Programming | 17

2.4.2. Message Properties

JMS defines the following property names that start with "JMSX?".

• JMSXUserID

• JMSXAppID

• JMSXDeliveryCount

• JMSXGroupID

• JMSXGroupSeq

• JMSXProducerTXID

• JMSXConsumerTXID

• JMSXRcvTimestamp

• JMSXState

The "JMSX?" message properties are not required, except for JMSXDeliveryCount,
and they are not supported by JEUS MQ.

The following message properties are supported by JEUS MQ.

• JMS_JEUS_Schedule

The amount of time that the JEUS MQ server waits before sending a message to the message
consumer. The property is identical to Message Delivery Delay defined by JMS. The JEUS MQ
server sends the message to the message consumer after the specified amount of time
(JMSTimestamp value) has passed since the arrival of the message. The timestamp is a "long"
value in milliseconds.

Message.setLongProperty("JMS_JEUS_Schedule", <long value>);

Message Delivery Delay overrides this property.

• JMS_JEUS_Compaction

The option to compact the message body. If set to true, the message body is compacted by using
the ZLIB library when transmitting the message over the network.

Message.setBooleanProperty("JMS_JEUS_Compaction", <boolean value>);

• JMS_JEUS_RedeliveryLimit

18 | MQ Guide

The maximum number of times to re-send a message to a message consumer. When the number
of re-send attempts exceeds the specified limit, the message is saved in the dead message
destination (Dead Message Destination).

Message.setIntProperty("JMS_JEUS_RedeliveryLimit", <integer value>);

2.4.3. Message Body

JMS specification defines the following five types of messages, according to the message body type.

• StreamMessage

• MapMessage

• TextMessage

• ObjectMessage

• BytesMessage

Each message type can be created by the session object using the following APIs.

public StreamMessage createStreamMessage()
 throws JMSException;
public MapMessage createMapMessage()
 throws JMSException;
public TextMessage createTextMessage()
 throws JMSException;
public TextMessage createTextMessage(String text)
 throws JMSException;
public ObjectMessage createObjectMessage()
 throws JMSException;
public ObjectMessage createObjectMessage(Serializable object)
 throws JMSException;
public BytesMessage createBytesMessage()
 throws JMSException;

2.4.4. FileMessage

JEUS MQ supports the FileMessage type in addition to the basic JMS message types. Since JMS runs
based on the message content, the memory has to retain the message content when sending and
receiving messages. This may cause memory overflow on the client or server if the message size is
too big. To avoid this problem, JEUS MQ supports the FileMessage type that sends message contents
in block units.

Creating Messages

Create a FileMessage using the following method defined in the jeus.jms.JeusSession class.

2. JEUS MQ Client Programming | 19

public jeus.jms.FileMessage createFileMessage()
 throws jakarta.jms.JMSException;
public jeus.jms.FileMessage createFileMessage(java.net.URL url)
 throws jakarta.jms.JMSException;

The Session, QueueSession, and TopicSession objects created by the JEUS MQ client library can be
casted to a jeus.jms.JeusSession, jeus.jms.JeusQueueSession, and jeus.jms.JeusTopicSesison objects
respectively.

FileMessage Interface

The following is the definition of the jeus.jms.FileMessage interface.

public interface FileMessage extends jakarta.jms.Message {
 public java.net.URL getURL();
 public void setURL(java.net.URL url)
 throws jakarta.jms.MessageNotWriteableException;
 public boolean isURLOnly();
 public void setURLOnly(boolean urlOnly);
}

To send a message, the URL of the message file can be set using the setURL() method. The file can
also be passed to the JeusSession.createFileMessage() method as a parameter when the message is
created. The urlOnly property determines whether to only send the URL of the file on the server to
the message consumer. This property determines the return value of getURL() that is called on the
FileMessage object.

The following describes getURL() value according to the urlOnly property.

urlOnly getURL()

true URL of a file on the JEUS MQ server. This URL is used to receive the file using
protocols such as HTTP and FTP.

false URL of a temporary file on the local server where JEUS MQ client library saves the
entire content of the file that it receives. For more information, refer to "Temporary
File Path".

When sending a FileMessage, the MessageProducer.send() method always returns a value after all
file contents are sent to the server. This is also applicable in the NONE_ACKNOWLEDGE mode.

A file included in a FileMessage is divided into 4 KB blocks. The block size can be
modified by specifying the system property like "-Djeus.jms.file.blocksize=<integer
value>" when executing the JEUS MQ client.

20 | MQ Guide

Temporary File Path

If a message consumer receives a file in a FileMessage, the file is saved in the temporary file path.
The path is specified according to the following conditions.

• If the application is deployed to JEUS:

SERVER_HOME/.workspace/client/

• If the jeus.jms.client.workdir system property is set:

Path specified with system property

• Otherwise:

USER_HOME/.jeusmq_client_work/

FileMessage Transmission Example

This section shows how to use the FileMessage API to send a FileMessage.

2. JEUS MQ Client Programming | 21

FileMessage Transmission Example

The following Java code shows how to send the "/home/jeus/send_test/send.file" file using a
FileMessage object.

Sending a FileMessage

. . .

jeus.jms.JeusSession session = (jeus.jms.JeusSession)
 connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer(destination);

jeus.jms.FileMessage message = session.createFileMessage();
File file = new File("/home/jeus/send_test/send.file");
message.setURL(file.toURI.toURL());

producer.send(message);

. . .

The following example shows how to obtain an InputStream from the file’s URL and write the file
contents in the "/home/jeus/recv_test/recv.file" file.

22 | MQ Guide

Receiving a FileMessage

. . .
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
MessageConsumer consumer = session.createConsumer(destination);
Message message = consumer.receive();

if (message instanceof jeus.jms.FileMessage) {
 URL url = ((jeus.jms.FileMessage) message).getURL();
 if (url != null) {
 InputStream inputStream = url.openStream();
 BufferedInputStream bufInputStream = new BufferedInputStream(inputStream);

 File outFile = new File("/home/jeus/recv_test/recv.file");
 FileOutputStream fileOutputStream = new FileOutputStream(outFile);
 BufferedOutputStream bufOutputStream = new BufferedOutputStream(fileOutputStream);

 int buf;
 while ((buf = bufInputStream.read()) != -1) {
 bufOutputStream.write(buf);
 }
 bufOutputStream.close();
 bufInputStream.close();
 }
}
. . .

2.5. Transactions
This section discusses the features of local transactions in JEUS MQ and distributed(XA) transactions
and the scope of the transactions. It also explains what a client developer needs to know to process a
transaction.

JMS transaction involves the task of sending and receiving messages inside a session. JMS
specification defines the local transaction that starts and ends inside a session. It also defines the
distributed transaction that involves the processing of other resources such as one or more JMS
sessions, EJBs, and JDBCs.

Since a message sent through a session that is involved in a transaction is not seen as having arrived
at the server, the message does not get delivered to the message consumer that is created in the
same session. They also do not appear in a queue browser that is created in the same session.

2.5.1. Local Transactions

A local transaction is executed by a session that is created by setting the transacted parameter value
to true in the Connection.createSession(boolean transacted, int acknowledgeMode) method. It
includes all messaging tasks since the last commit or rollback or the tasks that have been executed
since the creation of the session. This means that all tasks belong to a particular transaction.

Multiple sessions cannot be processed in a single local transaction, but one or more message

2. JEUS MQ Client Programming | 23

producers can be created and sent to multiple destinations. Also, a message can be received from
multiple destinations.

The following figure shows the tasks participating in a local transaction and the scope.

JMS Transaction Scope

A local transaction is completed by the session’s commit() or rollback() API. Since a transacted session
always participates in a transaction, there is no API that can start a transaction by its name.

Unlike in a distributed transaction, the client can commit or roll back a transaction in a local
transaction. Therefore, it is possible to process messages asynchronously in the transaction.

The JMS specification does not allow a client that operates on Jakarta EE web or
EJB container to use local transactions. Thus, such a client cannot create
transacted sessions.

2.5.2. Distributed Transactions

In the JMS specification, XAResource provided by XASession can be registered to participate in an XA
transaction. The actual implementation may vary for each vendor.

The following points must be taken into consideration to use XASession in the JEUS MQ client.

• When invoking Session.getAcknowledgeMode() on an XASession, if the XASession is participating
in a global transaction it returns Session.SESSION_TRANSACTED, and otherwise it returns
Session.AUTO_ACKNOWLEDGE.

• If Session.commit() or Session.rollback() is called on an XASession participating in a global
transaction, the TransactionInProgressException or IllegalStateException is triggered.

Propagation of Distributed Transactions

The JEUS MQ client library registers an XAResource in a global transaction of the thread that uses a
JMS API, regardless of when the XASession was created. To propagate a transaction associated with
the client thread, a specific API invocation is required. JEUS MQ’s participation in a distributed
transaction is made only through a synchronous API invocation, which includes the transmission or
synchronous reception of messages. The messages asynchronously received through a

24 | MQ Guide

MessageListener must not be included in a distributed transaction.

To process an asynchronously received message in a distributed transaction, use
message-driven beans (MDB). For more information, refer to "Message Driven
Bean (MDB)" in JEUS EJB Guide.

Recovery of Distributed Transactions

The JEUS MQ server stores the ongoing session tasks of a transaction in a storage in order to recover
them when the server has to restart due to an unexpected error. The transaction manager can
obtain the IDs of ongoing transactions in JEUS MQ through the XAResource obtained from the
XASession, and use them to commit or roll back the transactions.

To quickly recover from a failure, it is recommended to use the JEUS MQ failover function. For more
information, refer to JEUS MQ Failover.

When restarting, JEUS MQ server automatically rolls back the tasks of transactions that are not in an
in-doubt state.

2. JEUS MQ Client Programming | 25

3. JEUS MQ Server Configuration
This chapter describes how to configure the JMS engines and resources that are used to run a JEUS
MQ server.

3.1. Overview
A JEUS MQ server functions as a JMS engine in JEUS, and a single JEUS MQ server can run on each
JEUS server. For more information about each component of JEUS, refer to "Introduction" in JEUS
Server Guide.

3.1.1. Directory Structure

The following figure shows the location of files that are needed to set and manage JEUS and JEUS MQ
servers. "JEUS_HOME" is the JEUS installation directory path.

{JEUS_HOME}
 |--bin
 | |--[01]jeusadmin
 |--logs

* Legend
- [01]: binary or executable file
- [X] : XML document
- [J] : JAR file
- [T] : Text file
- [C] : Class file
- [V] : java source file
- [DD] : deployment descriptor

jeusadmin

A console tool for managing JEUS Manager. It provides overall management functions for JEUS
including JEUS Manager and server control. For more information about how to use the tool, refer
to "jeusadmin" in JEUS Reference Guide.

3.2. Configuring JMS Resources
JMS Resource consists of the following two elements.

• Destination

JEUS MQ server destination setting section. Like Queues or Topics, JEUS MQ servers register
destinations in JEUS JNDI Service by reading the domain configuration. For more information,
refer to Configuring Destinations�.

26 | MQ Guide

• Durable Subscription

Durable Subscriber setting section for JEUS MQ. For more information, refer to Configuring
Durable Subscription.

3.2.1. Configuring Destinations

Destinations such as Queues and Topics also read domain settings and register with the JEUS JNDI
service when the JEUS MQ server starts.

Default Settings

The following is an example of setting Destinations in domain.xml. The setting values are configured
within the <destination> tag.

domain.xml

<domain>
 ...
 <jms-resource>
 <destination>
 <type>queue</type>
 <name>ExamplesQueue</name>
 <export-name>jms/ExamplesQueue</export-name>
 </destination>

 <destination>
 <type>topic</type>
 <name>ExamplesTopic</name>
 <export-name>jms/ExamplesTopic</export-name>
 </destination>
 </jms-resource>
</domain>

The following describes each configuration tag.

Tag Description

<type> The type of a destination. Can be set to either a queue or a topic.

<export-name> Destinations can be looked up in JNDI with <export-name> just like Connection
Factory. If <export-name> is not specified, the <name> value is used.

Configuring Message Flow Control

If the message listener is registered in a queue or topic, and when messages arrive, the messages
will be immediately sent to the clients. If the client cannot process the messages fast enough, the
messages are accumulated on the client and an OutOfMemory error occurs. To prevent this error,
you need to specify the maximum number of messages that can accumulate on the client after which
the server suspends sending messages for a given time.

3. JEUS MQ Server Configuration | 27

The following is an example of defining message flow control settings by destination in domain.xml.
The settings are configured within the <destination> tag.

domain.xml

<domain>
 ...
 <jms-resource>
 <destination>
 <type>queue</type>
 <name>ExamplesQueue</name>
 <export-name>jms/ExamplesQueue</export-name>
 <max-pending-limit>1000</max-pending-limit>
 <resume-dispatch-factor>0.5</resume-dispatch-factor>
 </destination>
 </jms-resource>
</domain>

The following describes each configuration tag.

Tag Description

<max-pending-limit> The maximum number of messages. (Default: 8192)

<resume-dispatch-factor> Specifies the proportion of the <max-pending-limit> value. When the
JEUS MQ server stops sending messages due to the limitation set in
<max-pending-limit>, message transmission will resume once the
number of accumulated messages in the client decreases to this
proportion. (Default: 0.4)

For example, if set as described above, the server will stop sending
messages when the number of accumulated messages in the client
reaches 1,000, and will resume transmission once the number of
messages drops to 500.

3.2.2. Configuring Durable Subscription

Since durable subscribers are typically created by clients, any messages sent to the topic before the
durable subscriber creation cannot be delivered to the client. To avoid this issue, JEUS MQ registers a
durable subscriber by configuring the durable subscription before the server starts so that it can
send a message when a client is connected. Similar to invoking the
Session.createDurableSubscriber() method, the client ID, subscription name, and topic must be
specified when configuring a durable subscription in the domain.xml file. A message selector can
also be configured.

domain.xml

<domain>
 ...
 <jms-resource>
 <durable-subscription>
 <client-id>client_id1</client-id>

28 | MQ Guide

 <name>subscription1</name>
 <destination-name>ExamplesTopic</destination-name>
 </durable-subscription>
 </jms-resource>
</domain>

3.3. Configuring JMS Quotas

3.3.1. Configuring Quotas

If messages fail to be sent to a client and accumulate at the destination, an OutOfMemoryError may
occur on the JVM and the server may be terminated. To avoid this problem, JEUS MQ provides quota
configuration to apply different memory management for each JMS destination.

JEUS MQ servers hold strong references to message contents when the destination does not use a lot
of memory. JEUS MQ servers operate according to the 'Quota' property settings.

• If the amount of memory used exceeds the 'Quota' value, messages from the clients trigger a
JMSException.

• If the amount of memory used exceeds 75% of the 'Quota' value, the memory can no longer
manage the stored messages.

Even after a message at a destination is deleted from the memory, the message will not be lost. Since
the message is saved in the storage, a JEUS MQ server can read and process the message in the
storage when necessary. The processing speed is slower when using the storage than memory.

The memory of a JEUS MQ server always keeps the messages that are not saved
in the storage. The 'Quota' property is applicable only when a storage is
configured and a message is set to DeliveryMode.PERSISTENT.

After configuring quota, you can configure the destination to use quota functionality. For more
information, refer to Configuring Destinations�.

3.4. Configuring JMS Engines
You can configure the JMS engine by writing the domain.xml file.

3.4.1. Basic Information

JEUS MQ server can be configured within the <jms-engine> tag. The JMS engine provides an
environment for using the JMS server on the server. It runs when the server boots, and only one JMS
engine is supported on one server.

3. JEUS MQ Server Configuration | 29

The JMS engine configuration contains basic options including engine roll, JEUS MQ failover, and
quota, as well as advanced options for the JMS engines. To enable recovery from a server or network
failure, you can configure the failover settings. For more information about the failover settings,
refer to JEUS MQ Failover.

• Engine Memory Management

The quota information for JMS memory management can be configured through 'Max Bytes'
and 'Max Messages' items on the basic JMS engine configuration. JEUS MQ server manages
memory by using the quota settings for the JMS engine, which manages the memory of all
destinations within the server, and the quota settings for each destination. For more information
about memory management policies, refer to Configuring JMS Quotas�.

The following is an example of configuring the engine memory settings on the server.

domain.xml

<domain>
 ...
 <jms-engine>
 <max-byte>128M</max-byte>
 <max-message>0</max-message>
 </jms-engine>
</domain>

The following describes each configuration tag.

Tag Description

<max-byte> Specifies the maximum memory size that can be used by the JMS
Engine. It can be set by adding 'K' (KiloBytes), 'M' (MegaBytes), or
'G' (GigaBytes) after the number. (Default: 128MBytes)

<max-message> Specifies the maximum number of messages that can be used by
the JMS Engine. If not set, there is no limit on the number of
messages.

• Advanced Options

In the Advanced Options section for the JMS engine, you can configure the thread pool
information.

There are two main types of message handling in the JMS engine. First, a generic message is
processed as a single thread by the event manager in order to avoid contention and concurrency.
Other special functions, message transfer between cluster, transaction control, and JMS engine
control are handled by a thread pool according to each type.

The following is an example of thread settings on the server.

domain.xml

<domain>

30 | MQ Guide

 ...
 <jms-engine>
 <thread-pool>
 <min>10</min>
 <max>20</max>
 <keep-alive-time>300</keep-alive-time>
 </thread-pool>
 </jms-engine>
</domain>

The following describes each configuration tag.

Tag Description

<min> Specifies the minimum size of the thread pool.

<max> Specifies the maximum size of the thread pool.

<keep-alive-time> Specifies the duration (in seconds) for which unused threads,
exceeding the <min> value, can remain idle before being
destroyed. (Default: 300)

3.4.2. Configuring Service Channels

A JEUS MQ server communicates with a client through a service channel. Each JEUS MQ server must
have one service channel, and it is possible to set a different network such as a service URL for each
service channel.

The name of a listener used by the service channel is set with <listener-name> under <service-
config>. For detailed information on listener settings, refer to "Listener Configuration" in JEUS Server
Guide.

The following sets a service channel on the server.

domain.xml

<domain>
 ...
 <jms-engine>
 <service-config>
 <name>default</name>
 <listener-name>jms</listener-name>
 <client-limit>1000</client-limit>
 <client-keepalive-timeout>20</client-keepalive-timeout>
 </service-config>
 </jms-engine>
</domain>

The following describes each configuration tag. At least one must be set for the service channel to
provide the messaging service.

3. JEUS MQ Server Configuration | 31

Tag Description

<name> Specifies the name of a service channel. Required to specify channel
information to the Connection Factory.

<listener-name> Specifies a listener for the service channel. Must be selected from the
settings that already exist on the server. If not set, the Base-listener is
used.

<client-limit> Specifies the maximum number of clients allowed by the service
channel.

<client-keepalive-timeout> Specifies the time period (in seconds) to wait for reconnection when
the client connection is abnormally terminated. When the specified
time elapses, all client resources are returned to the server. Since the
clientID value is maintained during this period, this setting should
only be used when network conditions are poor. If set to a value less
than 0, resources are returned immediately without waiting.

3.4.3. Configuring Connection Factories

A connection factory is a JMS management object that contains the connection information needed
to access the JMS server and basic information for the client. It is created when the JEUS MQ server
boots, and registered in the JEUS JNDI service.

The following is an example of configuring a connection factory on the server.

domain.xml

<domain>
 ...
 <jms-engine>
 <connection-factory>
 <type>nonxa</type>
 <name>ConnectionFactory</name>
 <export-name>jms/ConnectionFactory</export-name>
 </connection-factory>
 </jms-engine>
</domain>

The following describes each configuration tag.

Tag Description

<type> Specifies the type of a connection factory.

<name> Specifies the name of a connection factory used for management
purposes within the JMS system.

<export-name> Specifies the name with which the connection factory is bound to the
Naming Server. If not set, the Name property is used as is.

32 | MQ Guide

3.4.4. Configuring Persistence Stores

A persistence store is needed to restore messages, subscriptions, or transactions to the previous
state when the server restarts. If a persistence store is not configured, a message that the client sent
in the DeliveryMode.PERSISTENT mode cannot be properly delivered if the server fails. JEUS MQ
provides two types of persistence stores, journal log and database.

Persistence store can be configured in <persistence-store> under <jms-engine>.

The following is an example of configuring a persistence store on the server.

domain.xml

<domain>
 ...
 <jms-engine>
 <persistence-store>
 <journal>
 <base-dir>/home/example/store/jeusmq</base-dir>
 <!--<initial-log-file-count>5</initial-log-file-count>-->
 <!--<max-log-file-count>10</max-log-file-count>-->
 <!--<log-file-size>128M</log-file-size>-->
 <!--<property>-->
 <!--<key>jeus.store.journal.overflow-factor</key>-->
 <!--<value>0.3</value>-->
 <!--</property>-->
 </journal>
 <!--<jdbc>-->
 <!--<data-source>datatsource1</data-source>-->
 <!--<vendor>oracle</vendor>-->
 <!--<destination-table>TEST_DEST</destination-table>-->
 <!--<durable-subscriber-table>TEST_DSUB</durable-subscriber-table>-->
 <!--<message-table>TEST_MESG</message-table>-->
 <!--<subscription-message-table>TEST_SMSG</subscription-message-table>-->
 <!--<transaction-table>TEST_TRAN</transaction-table>-->
 <!--</jdbc>-->
 </persistence-store>
 </jms-engine>
</domain>

The following is a description of each child tag for the Store setting of <persistence-store>.

• <journal>

Uses journal log mode.

Tag Description

<base-dir> Specifies the name of a directory in which the Store will be created. This
directory name must be unique for each Store.

<initial-log-file-count> Specifies the number of log files that will be initially generated when
creating a Journal Store.

<max-log-file-count> Specifies the maximum number of log files to create.

3. JEUS MQ Server Configuration | 33

Tag Description

<log-file-size> Specifies the size of a log file. It can be set by appending 'K' (KiloBytes),
'M' (MegaBytes), or 'G' (GigaBytes) after an integer type value or
number.

• <jdbc>

Uses database mode. Currently compatible external databases are 'Oracle Database 9i or later
(Enterprise Edition)', 'Tibero 3 SP2 or later', and 'Altibase 4.x (5 or later is not supported)'.

The Data Source property specifies the JNDI name of a data source to be used as a persistence
store. For more information about adding data sources to JEUS, refer to "DB Connection Pool and
JDBC" in JEUS Server Guide.

The JNDI configuration is used to change the names of tables in the database. If the
aforementioned basic configurations are used, the JEUS MQ server that is in operation can be
tested by changing the table names, without having to install additional persistence stores. The
following tables in the database are used by default if table names are not configured. <SERVER-
NAME>_DEST, <SERVER-NAME>_DSUB, <SERVER-NAME>_MESG, <SERVER-NAME>_SMSG, and <SERVER-
NAME>. For detailed information about each column of the tables created when JDBC is
configured, refer to JDBC Persistence Store Columns.

Tag Description

<data-source> Set the data source of the database.

<destination-table> Changes the destination table name. Lowercase is not allowed.

3.4.5. Message Sorting

For more information about message sorting, refer to JEUS MQ Message Sort.

3.5. Management and Monitoring
JEUS MQ servers should be managed with the following functions in order to guarantee seamless
services without message loss.

• Manages and monitors the resources on running JEUS MQ servers.

The following resources are managed and monitored.

◦ JMS management objects including connection factories and destinations

◦ Messages in destinations and durable subscriptions

◦ Connections, sessions, and message producers and consumers

◦ Memory space occupied by JEUS MQ servers

◦ Persistent storage used by JEUS MQ servers

34 | MQ Guide

• Handles failures and recovers JEUS MQ servers from them.

This section introduces how to manage and monitor JEUS MQ servers with jeusadmin, a JEUS console
tool.

3.5.1. Server Management

The following describes how to manage servers using jeusadmin.

Using the console tool

You can manage the server resources by executing various commands in the console tool. The
console tool is found in the following directory.

JEUS_HOME/bin/

The following are the jeusadmin commands.

• Connection Factory

Command Description

add-jms-connection-factory Adds connection factories.

remove-jms-connection-factory Deletes connection factories.

• Destination

Command Description

add-jms-destination Adds destinations.

remove-jms-destination Deletes destinations.

• Durable Subscriber

Command Description

add-jms-durable-subscription Adds durable subscriptions.

remove-jms-durable-subscription Deletes durable subscriptions.

For detailed descriptions of these commands, usage, and usage examples, refer
to "JMS Engine Commands" in JEUS Reference Guide.

3. JEUS MQ Server Configuration | 35

3.5.2. Server Monitoring

This section explains how to monitor servers using jeusadmin.

Using the console tool

You can manage the server resources by executing various commands in the console tool. The
console tool is found in the following directory.

JEUS_HOME/bin/

The following commands are provided for server monitoring.

• Connection Factory

Command Description

list-jms-connection-factories Checks the connection factory list and displays connection
factory information.

• Destination

Command Description

list-jms-destinations Checks the destination list and displays destination
information.

control-jms-destination Controls the state of a specified destination.

• Messages

Command Description

list-jms-messages Searches for messages in a specified destination.

view-jms-message Searches for the detailed information of a specified message.

move-jms-messages Moves the specified messages to another destination in the
cluster or server.

delete-jms-messages Deletes the specified messages from the destination.

export-jms-messages Sends the specified messages in the XML format.

import-jms-messages Retrieves the exported XML messages to the specified
destination.

• Durable Subscription

36 | MQ Guide

Command Description

list-jms-durable-subscriptions Searches the list of Durable Subscriptions or the information
about a specified Durable Subscription.

• Clients

Command Description

list-jms-clients Searches the list of clients and displays the client information.

ban-jms-client Forcibly closes the connection with the client.

• Transactions

Command Description

list-jms-pending-transactions Displays the list of pending transactions.

commit-jms-pending-transaction Forcibly commits the specified pending transaction.

For detailed descriptions of these commands, usage, and usage examples, refer
to "JMS Engine Commands" in JEUS Reference Guide.

3. JEUS MQ Server Configuration | 37

4. JEUS MQ Clustering
This chapter describes the clustering technology that groups multiple servers together to reduce
JEUS MQ server loads and provide seamless services.

4.1. Overview
If you are using a single JEUS MQ server, it has to process too many stored messages or client
connections, which increases the network load or server memory usage. This may cause
performance degradation or server shutdowns. To prevent these problems, you can add and group
JEUS MQ servers to work together like a single server. This process is called JEUS MQ clustering. A
clustered server can be accessed by a client as it were a stand-alone server.

Furthermore, JEUS MQ Clustering incorporates the failover feature as an integral part. For more
information, refer to JEUS MQ Failover.

4.2. Clustering Type
There are two types of clustering, connection factory clustering and destination clustering.

4.2.1. Connection Factory Clustering

When two or more JEUS MQ servers are clustered, client connections to the servers must be
distributed. Because connection factories are used to make the connections between servers and
clients, this distribution function must be provided by connection factories. This process is called
connection factory clustering.

When a connection is created from a connection factory, each connection is assigned to a different
server, and users can set a policy for selecting a different server each time.

A JEUS MQ client is connected to one server in the cluster, and the client does not
need to be concerned about which server it is connected to.

The following figure shows connection factory clustering.

38 | MQ Guide

Connection Factory Clustering

4.2.2. Destination Clustering

Even if all client connections are distributed by connection factory clustering, messages that a server
receives may exceed its capacity and the server may not be able to receive more messages,
depending on the processing speed and network conditions. To prevent this problem, excess
messages are moved to the JEUS MQ servers that are holding fewer messages. This process is called
destination clustering.

The following figure shows destination clustering.

Destination Clustering

4. JEUS MQ Clustering | 39

4.3. How to Use Clustering
This section describes the configurations required for JEUS MQ clustering.

4.3.1. Server Configuration

JEUS MQ clustering is configured based on JEUS server clustering configurations. For more
information about JEUS server clustering, refer to "JEUS Clustering" in JEUS Domain Guide.

JEUS MQ Clustering Configuration Requirements

You can configure Destinations and Durable Subscriptions of JEUS MQ servers that are clustered
under the <cluster> setting in domain.xml. The configurations are applied to the servers in the
cluster. Since each server has a different address, its connection factory is configured under the
<server> tag in domain.xml. Note that all servers must have the same connection factory name in
this case as well.

After configuring the <cluster> in domain.xml, you can set a Destination or a Durable Subscription in
the cluster under <jms-resource> which is a child setting. For information about configuring
individual Destination or Durable Subscription, refer to JMS Resource Configuration.

1. For information on how to add a server to a cluster, refer to "Adding a Server
to the Cluster" in JEUS Domain Guide.

2. If a destination is set, the destination or durable subscription settings will be
ignored. However, duplicate names must be avoided so that the system can
accurately operate.

4.3.2. Client Settings for Clustering

This section describes the client settings required for JEUS MQ clustering. To enable JEUS MQ
clustering, the first thing to configure is a connection factory.

There are two types of connection factory clustering in JEUS MQ based on how a connection factory is
obtained.

• Using Clustered Connection Factory

The clustered connection factory can be used in the same way as described in Connection
Factory, regardless of whether the JEUS MQ server is clustered or not. However, the name of the
connection factory must be the same with the name of clustered server as described in Server
Configuration section. A client creates only the connection by reusing an already obtained
connection factory. The policy for selecting a JEUS MQ server can be set in Connection Factory
Configuration, and the current round-robin and random methods are supported.

• Using JEUS MQ API

40 | MQ Guide

When you are creating a connection factory by using JEUS MQ API, if the JEUS MQ server is
clustered, you need to perform an additional task besides those described in Connection Factory.

That is, you need to add information about all the clustered servers by using the
JeusConnectionFactoryCreator.addBrokerAddress() method as in the following.

jeus.jms.client.util.JeusConnectionFactoryCreator connectionFactoryCreator =
new jeus.jms.client.util.JeusConnectionFactoryCreator();

connectionFactoryCreator.setFactoryName("ConnectionFactory");
connectionFactoryCreator.addServerAddress("192.168.1.2", 9741, <service-name>);
connectionFactoryCreator.addServerAddress("192.168.1.3", 9741, <service-name>);
connectionFactoryCreator.addServerAddress("192.168.1.4", 9741, <service-name>);

ConnectionFactory connectionFactory = connectionFactoryCreator.createConnectionFactory();

4.4. Example
This section describes examples of best and poor JEUS MQ clustering practices.

4.4.1. Example of Best JEUS MQ Clustering Practice

Suppose that there is an online shop that uses the JEUS MQ for processing product orders.

The orders are implemented as messages. The messages are queued in the JEUS MQ and processed
on the business servers, and the JEUS MQ servers are clustered.

The following is an ideal example of a JEUS MQ server cluster. Each business server receives
messages from its corresponding JEUS MQ server, and the request messages are evenly distributed
to the JEUS MQ servers. If a particular business server processes its requests fast, its JEUS MQ server
can clear the queue faster than others. In this case, the JEUS MQ server can receive messages from
other JEUS MQ servers through destination clustering and pass them to its business server for
processing.

4. JEUS MQ Clustering | 41

Example of Best JEUS MQ Clustering Practice

4.4.2. Example of Poor JEUS MQ Clustering Practice

The following JEUS MQ server clustering configuration may reduce processing efficiency.

Example of Poor JEUS MQ Clustering Practice

If a JMS client continually reuses a connection with a particular JEUS MQ server, loads can be
unevenly distributed across multiple connections causing unnecessary transmission of messages,

42 | MQ Guide

which can significantly reduce the processing efficiency.

4. JEUS MQ Clustering | 43

5. JEUS MQ Failover
This chapter describes how a JMS client can recover from a JEUS MQ server or network failure and re-
establish the connection. It also explains the server configuration and server failure recovery that are
required for JMS client recovery.

5.1. Overview
In JEUS MQ, when failure occurs a client automatically reconnects to the client application and
restores the connection to a point before the failure by using the failover functionality.

Reasons for failure can be classified into the following two categories.

• Network Failure

If a network failure occurs, a JEUS MQ server can no longer communicate with a client. It maybe
that the network is down temporarily or completely unavailable, or the server is down.

If a network failure occurs, a JEUS MQ client attempts to reconnect to the failed server or to its
backup server. If the attempt succeeds, the client state is recovered, and services become
available again.

• Server Failure

Server failure includes all types of failures except network failures. In general, server failures
occur due to disk or database failures or a lack of memory. When a server fails, the standby
backup server automatically restores data, and continues to provide the service.

To handle such failures, the network between JEUS MQ servers and required JEUS MQ client settings
must be configured. Failover properties can be configured for each client by calling the client API
provided by JEUS MQ.

5.2. Server Failover
This section describes the network configuration and other required JEUS MQ failover settings.

5.2.1. Network Configuration

To use JEUS MQ failover, one or more active servers must be clustered. A standby server provides a
backup support and sufficient capacity during a failure and it is optional. For more information about
JEUS clustering configuration, refer to "JEUS Clustering" in JEUS Domain Guide.

• Active Server

The main server that processes client requests during normal operation.

44 | MQ Guide

• Standby Server

The backup server that provides the services of the active server when it fails.

JEUS MQ clustering and JEUS MQ failover functions are integrated. Therefore, configuring a JEUS MQ
cluster also enables JEUS MQ failover. Unlike the previous versions, active and standby servers are
not configured as a pair. This allows servers to be configured more flexibly. A general configuration
usually consists of many active servers and some standby servers, or active servers only.

To enable failover, the network between MQ servers is configured as in the following figure.

JEUS MQ Clustering with 3 Active Servers and 2 Standby Servers

When an active server fails, one of the standby servers that are available takes over the operations of
the failed active server. If another failure occurs on any of the active or standby servers, another
standby server available takes over the failed server’s operations. If no standby server is available,
one of the active servers that are available takes over the operation, thereby providing services that
two servers normally provide. This operation continues until only one server is available. When the
last available server fails, the JEUS MQ failover service no longer works.

Active and Standby Server Configuration

The following is an example of setting up failover between the Active server and Standby server.

• Active Server Configuration

Active Server Failover

domain.xml

<domain>
 ...
 <jms-engine>

5. JEUS MQ Failover | 45

 <engine-roll>Active</engine-roll>
 <failover-check-timeout>5</failover-check-timeout>
 <failover-check-count>0</failover-check-count>
 </jms-engine>
</domain>

The following describes each configuration tag.

Tag Description

<engine-roll> Specifies the role of the JMS Engine. (Default: Active)

◦ Active: Handles service during normal operation.

◦ Standby: Takes over service if the Active engine fails.

<failover-check-
timeout>

Specifies the duration (in seconds) to wait before rechecking the
availability of the target JMS Engine after a failure is detected, prior to
initiating failover. This value represents the time taken for a single
attempt. (Default: 5)

<failover-check-count> Specifies the maximum number of times to recheck the availability of
the target JMS Engine after a failure is detected, prior to initiating
failover. (Default: 0)

If the specified number of attempts to check the engine’s availability
fails, the engine is considered unavailable, and failover is initiated. If the
value is set to 0, failover occurs immediately after a failure is detected.

• Standby Server Configuration

To configure the Standby server, specify 'Standby' within the <engine-roll> tag.

5.2.2. Configuring Connection Factories

Failover enables connection factories to redirect connection requests when a JEUS MQ server is
unavailable.

The following is a sample connection factory configuration, defined within the <connection-factory>
tag in the domain.xml file.

Connection Factory Settings: <domain.xml>

<domain>
 ...
 <jms-engine>
 <connection-factory>
 <type>queue</type>
 <name>qcf</name>
 <service>default</service>
 <reconnect-enabled>true</reconnect-enabled>
 <reconnect-period>0</reconnect-period>

46 | MQ Guide

 <reconnect-interval>5000</reconnect-interval>
 </connection-factory>
 </jms-engine>
</domain>

The following describes each configuration tag.

Tag Description

<reconnect-enabled> Specifies whether to reconnect when a failure occurs. (Default: false)

To enable client recovery through reconnection in the event of a failure,
set the value to true. When enabled, the JEUS MQ client will continuously
attempt to reconnect to both the Active and Standby servers.

<reconnect-period> Specifies the time period for attempting reconnections. If set to the default
value, reconnection attempts continue indefinitely. (Default: 0)

<reconnect-interval> Specifies the wait time between reconnection attempts. (Default: 5)

5.2.3. Configuring Persistence Stores

When the DeliveryMode is set to PERSISTENT, messages are saved in a persistence store.

When a server fails, another active or standby server can retrieve the messages of the failed server
from the persistence store to provide seamless services. The persistence store is a key resource of
JEUS MQ failover function.

Before configuring a persistence store for JEUS MQ failover, the persistence store must be in a path
that can be accessed by the active and standby servers.

• Journal Log Persistence Store

To use the journal log as the persistence store, the base journal log directory (Base Dir of the
journal log configuration) has to be under a directory that can be accessed by the active and
standby servers. This requires a setup of a disk sharing hardware like SAN and the creation of a
journal log base directory.

• JDBC Persistence Store

To use JDBC as the persistence store, configure a data source under the <jms-
engine><persistence-store><jdbc> tags in domain.xml. However, to ensure service continuity in
the event of a database failure, you must also set up failover mechanisms using clustering
technologies such as Tibero TAC or Oracle RAC.

If a server cannot access the persistence store, failover will be attempted with
another server that can access the persistence store.

5. JEUS MQ Failover | 47

5.2.4. Automatic Failback

When an active server fails over to another active or standby server, the server administrator must
quickly identify possible reasons for failure and restore the failed server.

When the active server restarts, the data is migrated from the backup server to the active server and
the connected clients are also reconnected to the restarted server. Such process is called failback.
Failback is always performed automatically.

5.3. Client Failover
If a JEUS MQ client is disconnected from the server due to a server or network failure, the client
attempts to reconnect to an active server and a standby server, alternating the attempts between the
two servers. If successfully reconnected, the client attempts to restore the server to the state where it
was before being disconnected. Such client failover process is automatically performed through JEUS
MQ configurations without having to change client application source codes.

This section describes the details and restrictions of client failover process and explains how to
handle a failure without message loss.

5.3.1. Reconnection

The "Reconnect Enabled" option determines whether to try to reconnect if the connection between
a client and server is lost. This applies to all connections that are established through the connection
factory. For more information, refer to Connection Factory Configuration.

To modify the reconnection configuration of a particular connection, use the
"jeus.jms.client.facility.connection.JeusConnection" class, which is the JEUS MQ client API.

. . .
import jeus.jms.client.facility.connection.JeusConnection;
. . .
Context ctx = new InitialContext();
ConnectionFactory factory = ctx.lookup("connection-factory");
JeusConnection connection = (JeusConnection)factory.createConnection("jeus", "jeus");
connection.setReconnectEnabled(true);
connection.setReconnectInterval(1000); // 1 second
connection.setReconnectPeriod(3600000); // 1 hour
. . .

When Reconnect Enabled is set to true, the entire reconnection process is automatically performed
on the client application without modifying the client source code.

5.3.2. Reusing the Connection Factory

In JEUS MQ, active and standby servers use the same connection factory. Once a connection factory is

48 | MQ Guide

obtained through a JNDI lookup, it can be reused without having to look it up again when a server or
network failure occurs.

5.3.3. Reusing Destinations

Like connection factories, active and standby servers share the same destination name. Once a
destination is obtained through JNDI lookup, it can be reused without having to look it up again
when a server or network failure occurs.

When a server fails, all the messages stored at the destination are restored, and the client can
continue to process the messages by using the destination.

5.3.4. Request Blocking Time

All requests sent from JEUS MQ clients wait for a response from the server for a specific amount of
time. (Default Value: 200000, Unit: ms). This wait time is configured in the <request-blocking-time>
tag under the Connection Factory section in domain.xml.

To configure settings for each connection, you can use the JEUS MQ Client API
"jeus.jms.client.facility.connection.JeusConnection" class.

. . .
import jeus.jms.client.facility.connection.JeusConnection;
. . .
Context ctx = new InitialContext();
ConnectionFactory factory = ctx.lookup("connection-factory");
JeusConnection connection = (JeusConnection)factory.createConnection("jeus", "jeus");
connection.setRequestBlockingTime(300000); // 5 minutes
. . .

RequestBlockingTime is also used as the default transaction timeout value for session or CA
transaction.

5.3.5. Connection Recovery

When connection recovery is not configured, JEUS MQ connection share a physical connection (a
socket) by default. But if the <reconnect-enabled> element of the connection factory configuration in
domain.xml is set to true, each client gets a one-to-one connection with the socket for fail over.

When physical and logical connections establish a one-to-one relationship, a new
physical connection has to be created whenever a new connection is created.
Since this may result in performance degradation, the client application must be
implemented to reuse connections without having to create a new one each time.

5. JEUS MQ Failover | 49

On a connection recovery, the connection state is also recovered.

• Start state

If Connection.start() has been called to receive messages, then it continues to receive messages
after the connection recovers.

• Stop state

If Connection.start() has been called to stop receiving messages, then it does not receive
messages after the connection recovers.

Other objects created by using the connection object including sessions and connection consumers
are all restored.

• Session Recovery

Sessions that were created through a connection are restored when the connection recovers,
unless Session.close() was called before the failure. For more information, refer to Session
Recovery.

• Connection Consumer Recovery

Connection consumers that were created through a connection are restored when the
connection recovers, unless Session.close() was called before the failure. If the connection was in
the start state before the connection recovers, then the consumer will start receiving messages
again after the recovery. Since the messages that were received before the failure are all
returned to the server and retrieved again, the Message.getJMSRedelivered() method call for
these messages may return "true".

After recovering from the failure, the methods that create sessions or connection message receivers
will re-send its requests and wait for a response. If Connection.close is invoked, recovery is not
performed regardless of whether or not a response is issued.

5.3.6. Session Recovery

Sessions are automatically restored during the connection recovery process unless Session.close() is
called. In addition, other objects derived from the connection object including MessageConsumers or
MessageProducers are all restored.

A session implements methods for creating various objects. The following shows how each method is
used after recovery.

• Message Creation Method

Message creation methods are immediately called regardless of the failure.

createBytesMessage()
createMapMessage()
createMessage()

50 | MQ Guide

createObjectMessage()
createObjectMessage(Serializable object)
createStreamMessage()
createTextMessage()
createTextMessage(String text)

• Queue Browser Creation Method

Queue browser creation methods complete the request after the recovery. If a failure is not
handled during the RequestBlockingTime, a JMSException is raised.

createBrowser(Queue queue)
createBrowser(Queue queue,String messageSelector)

• Destination Creation Method

Destination creation methods complete the request after the recovery. If a failure is not handled
during the RequestBlockingTime, a JMSException is raised.

createQueue(String queueName)
createTopic(String topicName)

• Temporary Destination Creation Method

Temporary destination creation methods complete the request regardless of failure.

createTemporaryQueue()
createTemporaryTopic()

• Message Consumer Creation Method

Message consumer creation methods complete a request after the recovery. If a failure is not
handled during RequestBlockingTime, a JMSException is raised.

createConsumer(Destination destination)
createConsumer(Destination destination, java.lang.String messageSelector)
createConsumer(Destination destination, java.lang.String messageSelector,boolean NoLocal)

• Durable Message Subscriber Creation Method

Durable message subscriber creation methods complete the request after the recovery. If a
failure is not handled during RequestBlockingTime, a JMSException is raised.

createDurableSubscriber(Topic topic, String name)
createDurableSubscriber(Topic topic,String name, String messageSelector,boolean noLocal)

5. JEUS MQ Failover | 51

• Message Producer Creation Method

Message producer creation methods complete the request after the recovery. If a failure is not
handled during RequestBlockingTime, a JMSException is raised.

createProducer(Destination destination)

If an error occurs in the session, the session transaction is affected in the following cases.

Operation Description

commit() If an error occurs while sending and receiving a message through the message
producer and consumer that are created by the transaction session, then the
"jakarta.jms.TransactionRolledBackException" is generated at the first commit point
and the transaction is rolled back. If there are no messages to commit at the
commit point, the exception is not thrown. Even after the failure of a commit
operation, the subsequent commit operations for the transaction are executed
normally.

If a failure that occurred during the commit operation is not recovered during the
RequestBlockingTime, a JMSException is raised. In this case, the commit operation
must be checked by using the administration tool.

rollback() Rollback() completes a rollback request after the failure is recovered.

If a failure that occurred during the rollback operation is not recovered during the
RequestBlockingTime, a JMSException is raised. Even after a JMSException, the
rollback operation is performed normally.

The Session recover() method completes the recovery request even after the failure has been
recovered. When an error occurs after a Session recover() is issued and the failure is not recovered
when the RequestBlockingTime expires, a JMSException is raised.

When the acknowledge mode of the session is configured to Session.CLIENT_ACKNOWLEDGE,
Message.acknowledge() will be issued for the unacknowledged messages that exist in the session. If
an error occurs during the acknowledgement, the ExceptionListener issues a
jeus.jms.common.message.MessageAcknowledgeException for each message. The exception notifies
that an error has occurred during the message acknowledgement, and the message may be re-
delivered.

The MessageID of the failed message can be obtained by calling
MessageAcknowledgeException.getErrorCode().

5.3.7. Transmission Error Message Recovery

This section describes how to handle the errors that occur while sending messages through message
producers.

52 | MQ Guide

The send() method of the message producer is blocked until the message is sent to the server and a
response is returned. The following describes possible error scenarios for this process.

• The send() method is called, but the message has not yet been sent.

After recovery, the message is sent to the server and processed successfully. If the failure is not
recovered after the RequestBlockingTime expires, a JMSException is raised.

• The send() method is called, and the message was processed on the server. However, a
network error occurs.

If the server is reconnected after recovery, a response message is successfully issued. If the
failure is not recovered after the RequestBlockingTime expires, a JMSException is raised.

• The send method is called, and the message was processed on the server. However, a
server error occurs, and then the server recovers.

Even if the server is reconnected after recovery, it is hard to know whether the message has been
successfully transmitted. Thus, a "jeus.jms.common.message.MessageSendException" is issued
through the ExceptionListener after the RequestBlockingTime expires.

• The send method is called, and the message has not yet been processed on the server.
However, a network or server error occurs.

Even if the server is reconnected after recovery, it is hard to know whether the message has been
successfully transmitted. Thus, a "jeus.jms.common.message.MessageSendException" is issued
through the ExceptionListener after the RequestBlockingTime expires.

The MessageID of the failed message can be obtained by calling
MessageSendException.getErrorCode().

5.3.8. Reception Error Message Recovery

JEUS supports synchronous and asynchronous message reception methods, which perform recovery
in different ways. Synchronous message reception methods are described first, followed by
asynchronous message reception methods.

Recovery of Synchronously Received Messages

A message consumer can be invoked with three methods for synchronously receiving messages,
MessageConsumer.receive(), MessageConsumer.receive(long timeout), and
MessageConsumer.receiveNoWait().

The following describes what happens when an error occurs during each method call.

5. JEUS MQ Failover | 53

Operation Description

receive() This method blocks until a message arrives. But when a failure occurs, it
may take a long time for a message to arrive. To avoid an indefinite wait
time, change the wait time to the RequestBlockingTime. If the failure is
recovered before the wait time expires, send the request message again.
Otherwise, a JMSException is raised.

If the Session.AUTO_ACKNOWLEDGE option is set, an acknowledgement is
sent to the server before the message is passed to the client. If an error
occurs, the ExceptionListener issues a
jeus.jms.common.message.MessageAcknowledgeException for the
messages that have not been acknowledged. The exception indicates that
an error has occurred during the message acknowledgement, and the
message may be redelivered.

receive(long timeout) This method blocks until a message arrives. But when a failure occurs, it
may take a long time for a message to arrive. To avoid an indefinite time
out, change the timeout value that is greater than the
RequestBlockingTime to the RequestBlockingTime value. If the failure is
recovered before the timeout expires, send the request message again.
Otherwise, a JMSException is raised.

If the Session.AUTO_ACKNOWLEDGE option is set, an acknowledgement is
sent to the server before the message is passed to the client. If an error
occurs, the ExceptionListener issues a
jeus.jms.common.message.MessageAcknowledgeException for the
messages that have not been acknowledged. The exception indicates that
an error has occurred during the message acknowledgement, and the
message may be redelivered.

receiveNoWait() This method does not block even if a message does not arrive. It
immediately receives the next message that has arrived.

Recovery of Asynchronously Received Messages

Asynchronously received messages are categorized into those being processed by
MessageListener.onMessage, those being acknowledged after being processed by
MessageListener.onMessage, or those prefetched and waiting in the client queue.

Each category of messages goes through a different fail over process.

• If a failure occurs while the on message method is processed, the failure is recovered first and
then an acknowledgement is sent. After this, the message is normally processed.

• If a failure occurs while an acknowledgement is being delivered, the ExceptionListener will issue a
jeus.jms.common.message.MessageAcknowledgeException for the message that has not been
acknowledged. The exception indicates that a failure occurred during message
acknowledgement, and the message may be redelivered.

• If a failure occurs while prefetched messages are waiting in the client queue, the failure is

54 | MQ Guide

recovered and then the messages are sent to the server and then later to the client. The
Message.getJMSRedelivered() method call for these messages may return "true".

The MessageID of the failed message can be obtained by calling
MessageAcknowledgeException.getErrorCode().

5.3.9. Message Loss Prevention and Transactions

A JEUS MW fail over is automatically and transparently processed in a client application. But when
messages become lost during the message transmission process, they must be processed separately
by the ExceptionListener.

Message loss in an enterprise messaging application can be critical. The only way to perfectly recover
from a failure while preventing message loss is to use transactions.

It is strongly recommended to use the following method to create an application.

• In the Jakarta EE environment, messages have to be sent and received within a transaction.

• For servlet, the UserTransaction must be looked up in the JNDI object, and messages must be
sent and received within the UserTransaction.

• For EJBs, the TransactionAttribute of the EJB method must be set to "Required" or "RequireNew"
so that the messages can be sent and received within a transaction.

General Java clients call the Connection.createSession(true, Session.SESSION_TRANSACTED) method
to create a session. Such sessions can send and receive messages within a transaction by calling
commit() or rollback().

5. JEUS MQ Failover | 55

6. JEUS MQ Special Functions
This chapter describes the special functions of JEUS MQ, including message bridges, message sort,
Global Order, message groups, message management, and topic multicast.

6.1. JEUS MQ Message Bridge
Message bridge is a function that connects two different MQs. The two different MQs can be
classified into the following cases.

• Different versions of the same MQ service (two different versions of JEUS MQs that are not
compatible with each other)

• Different MQ services (JEUS MQ and another vendor’s MQ such as WebLogic)

It is not recommended to configure a message bridge between the same
versions of JEUS MQ services.

If you are using the same versions, it is safer and more efficient to connect a
client to a remote destination. If a bridge between the same JEUS MQ service
versions must be configured, to distinguish the bridge from general message
services between the MQs, add the following option to the server’s execution
script:

-Djeus.jms.client.use-single-server-entry=false

6.1.1. Server Configuration

The following two configurations are required to use a message bridge.

• Configure two bridge connections for each end of a message bridge.

• Configure the actual bridge entry that connects the two bridge connections.

Since Message Bridge operates separately from JEUS MQ, it is set under <resources> in domain.xml.
The following is an example of setting up a bridge from JEUS 6’s MQ to Weblogic 10.3’s MQ.

domain.xml

<domain>
 ...
 <resource>
 <message-bridge>
 <bridge-connections>
 <connection>
 <name>jeus6</name>
 <classpath>file:///home/seunghoon/workspace/jeus6/lib/client/

56 | MQ Guide

 clientcontainer.jar</classpath>
 <jndi-provider-url>127.0.0.1:19736</jndi-provider-url>
 <jndi-initial-context-factory>jeus.jndi.JNSContextFactory
 </jndi-initial-context-factory>
 <connection-factory>XAQueueConnectionFactory</connection-factory>
 <xa-support>false</xa-support>
 </connection>
 <connection>
 <name>weblogic103</name>
 <classpath>
 file:///home/seunghoon/bea/wlserver_10.3/server/lib/wljmsclient.jar
 </classpath>
 <jndi-provider-url>t3://localhost:7001 </jndi-provider-url>
 <jndi-initial-context-factory>
 weblogic.jndi.WLInitialContextFactory</jndi-initial-context-factory>
 <connection-factory>QueueConnectionFactory</connection-factory>
 <xa-support>false</xa-support>
 </connection>
 </bridge-connections>
 <bridges>
 <bridge>
 <name>bridge1</name>
 <source>
 <connection-name>jeus6</connection-name>
 <destination>ExamplesQueue</destination>
 <type>queue</type>
 </source>
 <target>
 <connection-name>weblogic103</connection-name>
 <destination>ExamplesQueue</destination>
 <type>queue</type>
 </target>
 </bridge>
 </bridges>
 </message-bridge>
 </resource>
</domain>

The following describes each configuration tag. All settings can be made under <message-bridge>.

• <bridge-connection>

Specifies a specific MQ to connect to.

Tag Description

<name> Specifies the name to represent the MQ.

<classpath> Specifies the path to the JMS client library provided by the MQ.

<jndi-provider-url> Specifies the Provider URL required when accessing the Naming
Service where the Destination or ConnectionFactory of the
corresponding MQ is registered.

6. JEUS MQ Special Functions | 57

Tag Description

<jndi-initial-context-factory> Specifies the fully qualified name of the Initial Context Factory
required when accessing the Naming Service where the
Destination or Connection Factory of the corresponding MQ is
registered.

<connection-factory> Specifies the name of the Connection Factory to use when
accessing the MQ.

<xa-support> Specifies whether the MQ supports XA. Even if set to true, XA
cannot be used if the Connection Factory itself does not support it.

• <bridges><bridge>

Specifies the connection (Bridge) between MQs set in <bridge-connection>. The child <bridge>
tag indicates an individual bridge.

Tag Description

<name> Specifies the name of the bridge.

<source> Indicates the MQ from which the Bridge will receive messages and
the specific Destination of that MQ.

◦ <connection-name>: Choose one of the names specified in
<bridge-connection>.

◦ <destination>: Set a specific destination for the MQ.

◦ <type>: Set the type of the destination. Choose either queue or
topic.

<target> Specifies the MQ to which the Bridge will forward the received
message and the specific Destination of that MQ. It is configured in
the same way as the <source> setting.

6.2. JEUS MQ Message Sort
If there is a message producer but no consumer in a queue, or if there is a message consumer but
the message reception is relatively slow, messages accumulate in the queue. When this happens, you
can use a message sort function sort the queued messages according to key values that you define.

Messages can also be accumulated in a durable subscriber that is similar to a queue, and when this
happens, you can use the message sort function. The key values include the basic JMS property
values or property values that you define (User Property).

Message sorting is configured differently for servers and clients. To enable message sorting, servers
are configured with domain.xml, while clients are configured with the message properties.

58 | MQ Guide

6.2.1. Server Configuration

To enable message sorting, a server has to be configured first. This message sorting configuration
can be applied for a destination or durable subscription. For more information, refer to Destination
Configuration and Durable Subscription Configuration.

The following is an example of setting the message sorting feature on the server.

domain.xml

<domain>
 ...
 <jms-engine>
 <message-sort>
 <name>example</name>
 <key>TEST</key>
 <type>Integer</type>
 <direction>ascending</direction>
 </message-sort>
 </jms-engine>

 <jms-resource>
 <destination>
 <type>queue</type>
 <name>ExamplesQueue</name>
 <message-sort>example</message-sort>
 </destination>
 </jms-resource>
</domain>

The <message-sort> tag specifies the property that will be the key value for sorting, the type of the
property, and the sorting direction. And if you add the name of this <message-sort> to the
destination or durable subscriber, the settings will be applied.

The following describes each child tag of <message-sort>.

Tag Description

<name> Defines a name to represent the <message-sort> setting. Add this
name to the <message-sort> setting of a queue or durable subscriber
will to apply the setting.

<key> Defines the name of the key that will be the basis for sorting.

<type> Specifies the type of the key value. Choose one of Boolean, Byte,
Float, Integer, Double, or String. (Default: String)

<direction> Specifies the direction of sorting. Choose either ascending or
descending.

The messages that do not correspond to the configured key value are not sorted, and the original
order is maintained. This means that if there is a mixture of messages that correspond to and do not
correspond to a key value in the queue, the former will be sorted in the configured order, and the
latter will be kept in their original order.

6. JEUS MQ Special Functions | 59

6.2.2. Client Configuration

You can configure a key value that defines the Message Sorting property.

In the following example, the message sort key property is set to "TEST_KEY" that is used to sort
messages.

Message msg = session.createTextMessage("Test");
msg.setIntProperty("TEST_KEY", 1);

6.3. JEUS MQ Global Order
Global Order ensures that the messages queued at the destination are delivered to a client exactly
one at a time. In general, messages are processed simultaneously by multiple clients and there is no
way to control the processing order of the messages. If multiple messages are sent in parallel, they
are processed regardless of the order in which they are sent. Although this does not impact system
performance, the global order function can be used to ensure the message processing order.

6.3.1. Client Settings

The client can use the Global Order API without additional configurations.

For a single message consumer, Global Order does not change the existing order.
Hence, to use Global Order, multiple message consumers have to be configured
for the destination.

In the following example, a message sender creates a Producer and casts the message to
JeusMessageProducer, and then calls the Global Order API.

JeusMessageProducer producer = (JeusMessageProducer) session.createProducer(queue);
// Set global order and name
producer.startGlobalOrder("GLOBAL-ORDER-NAME");
// If name is not set
//producer.startGlobalOrder();

The GLOBAL-ORDER-NAME identifies the Global Order. If it is not configured, a random name is
assigned. The Global Order name can be shared by multiple clients. If this function is used with
clustering, the processing order is applied to the entire cluster.

6.4. JEUS MQ Message Group
Message group is a function that sends a group of messages that have the same purpose and are all

60 | MQ Guide

queued at a destination to a single message consumer. For example, if 10 messages are set in a
group, the messages are not delivered to the consumer until all 10 messages are in the queue.

This is similar to the transaction mechanism and can be used for similar purposes, and it can also be
used with clustering.

6.4.1. Server Configuration

The following is an example of setting the message group feature on the server.

domain.xml

<domain>
 ...
 <jms-resource>
 <destination>
 <type>queue</type>
 <name>ExamplesQueue</name>
 <message-group>
 <message-handling>Pass</message-handling>
 <expiration-time>-1</expiration-time>
 </message-group>
 </destination>
 </jms-resource>
</domain>

The <message-group> tag defines the message group settings for a destination.

The following describes each child tag of <message-group>.

Tag Description

<message-handling> Defines how the destination processes message groups. Choose
either 'Pass' or 'Gather'. 'Pass' processes message groups the same
way as individual messages. 'Gather' combines multiple messages in
a group and delivers them as a single message.

<expiration-time> Specifies the duration (in seconds) for which an incomplete message
group can exist in the destination. The default value is -1, meaning it
will not be destroyed until it is completed.

Make sure that you specify a value for 'Expiration Time'. Otherwise, an
incomplete message group is created that is kept permanently in the server. This
can cause unnecessary memory usage.

6.4.2. Client Configuration

In the client configuration, you must configure the message producer and message consumer

6. JEUS MQ Special Functions | 61

settings.

• Configuring the Message Producer

To configure the message producer, use the message’s User Property.

Message msg = session.createMessage();
// Message group name that represents the group.
msg.setStringProperty("JMS_JEUS_MSG_GROUP_NAME", "MESSAGE-GROUP-NAME");

// The order within the group, as well as the the priority number that determines the sequence
for delivery to the client.
msg.setIntProperty("JMS_JEUS_MSG_GROUP_NUMBERING", 1);
producer.send(msg);

msg = session.createMessage();
msg.setStringProperty("JMS_JEUS_MSG_GROUP_NAME", "MESSAGE-GROUP-NAME");
msg.setIntProperty("JMS_JEUS_MSG_GROUP_NUMBERING", 2);
producer.send(msg);
. . .
msg = session.createMessage();
msg.setStringProperty("JMS_JEUS_MSG_GROUP_NAME", "MESSAGE-GROUP-NAME");
msg.setIntProperty("JMS_JEUS_MSG_GROUP_NUMBERING", 10);

// Last message of the group.
msg.setBooleanProperty("JMS_JEUS_MSG_GROUP_END", true);
producer.send(msg);

• Configuring the Message Consumer

The message consumer receives the message group as an ObjectMessage that contains the
messages.

// Messages within a message group is a single ObjectMessage, which is a list of the messages.
ObjectMessage result = (ObjectMessage) receiver.receive(TIME_OUT);
List list = (List) result.getObject();

int cnt = 1;
// Get one by one from the list as follows.
for(Object obj : list) {
 // Process messages by the order set in the message transmitter.
 TextMessage msg = (TextMessage) obj;
 . . .
}

6.5. JEUS MQ Message Management Functions
Message management functions are used to check, move, and delete messages that arrive at a
destination while JEUS MQ messaging services are enabled.

The message management functions can be grouped into the following three categories.

62 | MQ Guide

• Message Monitoring Function

Monitors messages in a destination.

• Message Control Function

Controls messages by moving, deleting, exporting, and importing them.

• Destination Monitoring

Monitors the detailed information of a destination.

• Destination Control Functions

Controls destinations for flexible message monitoring and control.

Message monitoring and control are supported for the messages in a queue or durable subscription.
Destination control is provided for the messages in the queues and topics.

6.5.1. Message Monitoring

With message monitoring functions, you can monitor messages in a queue or durable subscription
and retrieve detailed message information.

Searching the Message List

You can monitor messages in a queue or durable subscription by selecting the ID, type, creation
time, and other information. To search, delete, move, export, and perform other tasks, select a
message from the list.

JMS messages are created and consumed quickly. If a message is searched for
without enabling the Consumption Suspended setting in the Destination page,
the search result may contain a message that has already been consumed.

Following are the steps for searching the message list.

1. Different jeusadmin commands can be used depending on the location of the message to be
searched.

◦ Messages in a Queue

For information about commands for querying the destination list, refer to "list-jms-
destinations" in JEUS Reference Guide.

◦ Messages in a Durable Subscription

For information about commands for querying the durable subscription list, refer to "list-jms-
durable-subscriptions" in JEUS Reference Guide.

6. JEUS MQ Special Functions | 63

2. The message list in a Queue or Durable Subscription can be queried as well.

You can look for a specific message in the message list by specifying the message ID, type, or
creation time, or by using the message selector. To retrieve all messages in a Queue or Durable
Subscription, enter the command with no parameter.

3. From the list of messages, you can delete, move, or export a message. You can also see detailed
information about the message.

Retrieving Detailed Message Information

The detailed information about messages in the Queues or Durable Subscriptions can be retrieved. It
is possible to check the header information defined in JMS specification, message information, and
configured properties.

JMS messages are created and consumed quickly. If a message is queried without
enabling the Consumption Suspended setting for the Destination, the search
result may contain a message that has already been consumed and thus no
longer exists.

For information about commands for viewing message details, refer to "view-jms-message" in JEUS
Reference Guide.

6.5.2. Message Control

jeusadmin provides control functions for managing incoming messages on the server, including
moving, deleting, exporting, and importing messages.

Moving Messages

You can move messages to another destination on a server or cluster. This function is useful for
handling errors such as sending messages to a wrong destination.

1. JMS messages are created and consumed quickly. If the messages are moved
without enabling the Consumption Suspended setting in the Destination
page, the search result may contain a message that has already been
consumed.

2. You can move messages to another destination. If a message at the target
destination has the same ID as the one you moved, the new message
overwrites the existing one. But if the existing message is already sent to a
client while being overwritten, the message may not be synchronized
between the client and the server. To avoid this problem, enable the
Consumption Suspended setting before moving a message.

64 | MQ Guide

For information about commands for moving messages, refer to "move-jms-messages" in JEUS
Reference Guide.

'All' option moves all messages in the current Queue or Durable subscriber to the specified
Destination.

Deleting Messages

You can delete messages that are no longer needed.

JMS messages are created and consumed quickly. If the messages are deleted
without enabling the Consumption Suspended setting in the Destination page,
the search result may contain a message that has already been consumed. It is
recommended to enable the Consumption Suspended setting before deleting a
message.

For information about commands for deleting messages, refer to "delete-jms-messages" in JEUS
Reference Guide.

To delete all messages in the current destination, use the All option.

Exporting Messages

The messages in a Queue or Durable Subscription can be exported to another server or cluster.

JMS messages are created and consumed quickly. If the messages are exported
without enabling the Consumption Suspended setting in the Destination page,
the search result may contain a message that has already been consumed. It is
recommended to enable the Consumption Suspended setting before exporting a
message.

For information about commands for exporting messages, refer to "export-jms-messages" in JEUS
Reference Guide.

To export all messages in a destination or a durable subscription, use the 'All' option. As the result,
messages are exported and then an xml file named 'messages.xml' will be downloaded through the
browser.

Importing Messages

Messages can be imported to a destination as XML formatted data. An imported message is treated
as a new message. Therefore, a new message ID is assigned to the message when it is imported to a
destination.

6. JEUS MQ Special Functions | 65

If the 'Overwrite' checkbox is checked when importing messages, some messages
that are overwritten may already have been delivered to the clients. In this case,
messages are imported successfully but incorrectly overwritten. Hence, it is
recommended to enable the Consumption Suspended setting before importing a
message.

For information about commands for importing messages, refer to "import-jms-messages" in JEUS
Reference Guide.

To overwrite an existing message at the destination that has the same message ID as the imported
one, use the 'Overwrite' option. The message with the same message ID as the imported message
will be overwritten.

6.5.3. Destination Monitoring

Using jeusadmin, you can monitor detailed information and statistics by destination as follows:

Item Description

Processed Messages Messages processed by the destination.

Remaining Messages
(current)

Messages currently remaining in the destination.

Remaining Messages (high
mark)

The maximum number of messages remaining in the destination.

Pending Messages Messages that have arrived at the destination successfully but have not
yet been delivered to the receiver. You can search only when the
Destination is a Queue.

Dispatched Messages Messages that have been delivered from the destination to the receiver
but have not received a response yet. You can search only when the
Destination is a Queue.

Delivered Messages Messages that have entered the destination and have been successfully
delivered to the receiver.

Expired Messages Messages that have entered the destination and have expired.

Moved Messages Messages that have entered the destination and have been transferred
to another destination. You can search only when the Destination is a
Queue.

Removed Messages Messages that have entered the destination and have been removed.
You can search only when the Destination is a Queue.

Poisoned Messages Messages that have entered the destination but were processed
incorrectly.

Memory Usage (current) The amount of memory currently used by the destination.

66 | MQ Guide

Item Description

Memory Usage (high mark) The maximum amount of memory that has been used by the
destination.

6.5.4. Destination Control

Using jeusadmin, you can suspend or resume production and consumption services by destination.

Suspending or Resuming Message Production at a Destination

You can suspend or resume message production and consumption at a destination. When message
production is suspended at a destination, you cannot create a message.

For information about commands for suspending and resuming production of the destination, refer
to "Destination Status Control" in JEUS Reference Guide.

When a message is sent to a destination where message production has been
suspended, the server waits for a specified time and throw a
jeus.jms.common.destination.InvalidDestinationStateException through the
ExceptionListener.

Suspending or Resuming Message Consumption at a Destination

You can suspend or resume message consumption at a destination. If you suspend message
consumption is suspended at a destination, messages cannot be consumed at the destination.

For information about commands for suspending and resuming consumption of destinations, refer
to "Destination Status Control" in JEUS Reference Guide.

When an attempt is made to consume a suspended message, the server operates
as if there were no messages at the destination.

6.6. JEUS MQ Topic Multicast
Topic Multicast is a feature of transmitting messages from a topic to subscriber based on an IP
multicast using User Datagram Protocol (UDP).

This provides significant performance advantages when using a pub/sub topic, but there may be a
decrease in the reliability due to UDP for transmission.

This feature is available only in environments where IP multicast can be used. For testing whether
the environment supports IP Multicast, refer to "Creating a Domain that Uses Virtual Multicast" in

6. JEUS MQ Special Functions | 67

JEUS Domain Guide.

6.6.1. Server Configuration

Exchanging topic messages via IP Multicast requires two configurations. Firstly, the server and client
must be configured to connect to the same multicase address. Secondly, the clients connected to the
server must be configured to receive messages through Topic Multicast.

The multicast address is configured in the destination settings. By including the multicast address in
the destination settings for topics, the client using that destination can receive messages through
the same multicast address as the server without separate client configuration.

You can specify the way clients receive messages as Topic Multicast in the ConnectionFactory. To use
the Topic Multicast feature, use the ConnectionFactory in which the Topic Multicast has been
configured. If the Topic Multicast is not configured in the destination, messages can be received
through the Transmission Control Protocol (TCP), which is the traditional method. Even if the Topic
Multicast is set in a destination, messages are received through the TCP method if the Topic Multicast
is not configured in the ConnectionFactory. When using durable subscriptions, a higher level of
reliability is required compared to regular topic messages. Since one subscription delivers messages
to only one client at a time, it does not support the Topic Multicast.

6.7. Reliable Message Transmission
In JEUS MQ, reliable message transmission is ensured by using a persistent store even in the case of
a failure. A persistent store guarantees reliable message delivery between a JEUS MQ server and the
message recipient. But it does not guarantee reliable message delivery when a message is sent to
the server and when the server or the client fails.

To compensate for this limit, JEUS MQ provides a function to increase the reliability between the
sender and the JEUS MQ server using a local persistent queue (hereafter LPQ) that is similar to the
persistence store. LPQ saves data in the local storage and ensures that the stored data is processed
normally. JEUS MQ saves messages using LPQ before they are sent and makes continuous attempts
to send them until they are successfully sent to the server. Thus, LPQ increases reliability of the
message transmission between the sender and the server.

Reliable message transmission using LPQ has the following characteristics.

• Retransmitting messages until it succeeds regardless of the server status

• Recovery of messages that failed to be sent due to abnormal client status

• Asynchronous messaging

When the JMS client is sending a message, if the client is a Jakarta EE application
that is deployed on the JMS server, which is the message recipient, the message
is not sent over the network to improve performance. In this case, the LPQ
configuration is ignored.

68 | MQ Guide

6.7.1. LPQ Activation

To use reliable messaging through LPQ, you must activate LPQ first. You need to create a storage to
store messages, a queue for processing, and an object for managing the messages.

To execute a standalone client that uses LPQ, LPQ and storage libraries are
additionally needed. The libraries are jeus-lpq-spi.jar, jeus-lpq.jar, jms-
extentsion.jar, and jeus-store.jar, which are in the JEUS_HOME/lib/system
directory.

To activate LPQ, choose one of the following ways:

• Using the JVM option

When a JEUS MQ client is executed, the JVM option is applied to activate LPQ as in the following.
This option activates LPQ when JMS creates a connection in the client.

-Djeus.jms.client.send-by-lpq-only=true

• Using the LPQ configuration file

When a JEUS MQ client is executed, LPQ is activated as it is configured by reading the file if the
LPQ configuration file can be found in the designated path. For detailed information about the
LPQ configuration file path and how to configure it, refer to LPQ Configuration.

• Using the API for JEUS

LPQ can be activated in the client source code by using the following API of JeusSession, a JEUS
session object.

public void startLPQ();

1. The LPQ operation can be configured through the configuration file or system
property when the JVM option or JEUS API is used. The default value is applied
for unconfigured items. For detailed information about LPQ configuration,
refer to LPQ Configuration.

2. If JEUS API is not used, when LPQ will be activated is not specified. In this case,
LPQ is activated when the JVM creates the first connection. LPQ terminates
when the last connection is closed. However, if LPQ still has messages, it does
not terminate until they have been processed.

6. JEUS MQ Special Functions | 69

6.7.2. Enabling LPQ

Once LPQ is activated, a message can be sent more reliably by using LPQ. There are four
configuration units for sending messages through LPQ.

• JVM Unit Configuration

Used when LPQ is activated by using the JVM option. All messages from the JVM are sent through
LPQ.

• ConnectionFactory Unit Configuration

When the Connection Factory names to use LPQ are added to the JVM option, all the messages
that are sent from the connections created by the Connection Factory are sent through LPQ.
Connection factory names are separately by a comma (,).

jeus.jms.client.connection-factory-for-lpq=<ConnectionFactoryName1,ConnectionFactoryName2,..>

JMS specifications do not have naming limits for connection factories.
However, if a commas is used, the above option cannot be normally applied
and the LPQ function cannot be used.

• Session Unit Configuration

Used to specify whether to send messages to each session by using LPQ. The following API of the
JEUS message sender object can be used to send all messages that will be sent to the session by
using LPQ.

public void setLPQOnly(boolean lpqOnly);

• Message Unit Configuration

Used to specify whether to send each message through LPQ. Either use the following APIs of the
JEUS message sender object, or configure the User Property of the message.

// JEUS-dedicated API
public void sendWithLPQ(Message message);
public void sendWithLPQ(Message message, int deliveryMode, int priority, timeToLive);
public void sendWithLPQ(Destination destination, Message message);
public void sendWithLPQ(Destination destination, Message message, int deliveryMode, int priority,
timeToLive);

// JMS message user property
Message msg = session.createMessage();
msg.setBooleanProperty("JMS_JEUS_USE_LPQ", true);

70 | MQ Guide

LPQ activation by using JEUS API only enables LPQ to be used in the
corresponding session. LPQ configuration for messages that are sent using
other sessions is ignored.

6.7.3. LPQ Listener Configuration

When LPQ is used to send messages, the messages are processed asynchronously. Therefore, the
client does not know whether a message has been sent or not. LPQ provides a listener to be able to
get the message transmission time and result.

The following jeus.jms.LPQMessageListener interface is provided to get the message transmission
result through the listener.

package jeus.jms;

public interface LPQForwardListener {
 /**
 * Event initiated when the message transfer is complete
 * @param message Transferred message
 */
 public void onComplete(Message message);

 /**
 * Event initiated when an exception occurs during message transfer
 * @param message Message being transferred
 * @param e Exception that occurred
 */
 public void onException(Message message, Exception e);

 /**
 * Event initiated when message transfer fails
 *
 * @param message Message that failed to be transferred
 * @param cause Cause of the failure
 */
 public void onFailure(Message message, Throwable cause);
}

You can retrieve the message transmission result by setting the implemented LPQMessageListener
to the JeusSession object by using the following API.

public void setLPQMessageListener(jeus.jms.LPQMessageListener lpqMessageListener);

When using a JEUS object to activate LPQ, you can use the following API to both activate LPQ and set
the listener.

public void startLPQ(jeus.jms.LPQMessageListener lpqMessageListener);

6. JEUS MQ Special Functions | 71

6.7.4. LPQ Configuration

LPQ Configurations include items for processing failed transmissions, operation during
disconnection, and the storage size or location.

LPQ Configuration Items

The following describes LPQ configuration items.

• Common Items

Item Type Description

jeus.lpq.name String LPQ name. (Default: JEUS_LPQ)

jeus.lpq.max-message-count int Maximum number of messages that LPQ can
process at a time. (Default: 819200)

jeus.lpq.time-to-live long How long a message can remain in LPQ. (Default:
43200000ms (12 hours))

• Transmission-Related Items

Item Type Description

jeus.lpq.retry-limit int Number of attempts to resend a failed message.
If set to 0 or less, retries are attempted
indefinitely.

(Default: -1)

jeus.lpq.retry-interval long Transmission interval for resending a message.
(Default: 1000 ms)

jeus.lpq.retry-interval-increment long Increment to increase the retry interval every
time a message is resent. (Default: 0 ms)

• Reconnection-related Items

Item Type Description

jeus.lpq.reconnect-retry-interval long Interval for reconnecting when the connection is
lost.

(Default: 5000 ms)

• Storage-related Items

Item Type Description

jeus.lpq.store.store-mode int Storage type. Set to 1 to use the journal store and
2 to use the memory storage. (Default: 1)

72 | MQ Guide

Item Type Description

jeus.lpq.store.journal. store-base-
dir

String Name of the directory to create the Store in. The
name must be unique per LPQ configuration and
two or more concurrent connections are not
allowed.

If set to a relative path, it is set to a path under
the directory where the configuration file exists
or JVM is running.

(Default: JEUS_LPQ_STORE)

jeus.lpq.store.journal. initial-log-
file-count

int Number of log files to create initially when
creating the Journal Store. (Default: 2)

jeus.lpq.store.journal. max-log-
file-count

int Maximum number of log files to create.

(Default: 10)

jeus.lpq.store.journal. log-file-size String Log file size. (Default: 64 M)

Append one of the following text after an integer
value or number.

• 'K'(KiloBytes)

• 'M'(MegaBytes)

• 'G'(GigaBytes)

How to Configure LPQ

The following describes how to configure LPQ. The order of configuration is runtime property
configuration, the configuration file, and then the JVM option.

• Configuration File

When LPQ configuration file exists in the specified location, the configurations in the file are
applied when LPQ is activated. Find the configuration file in order of
DEPLOYED_HOME/myApp/WEB-INF/, DEPLOYED_HOME/myApp/META-INF/, and
DEPLOYED_HOME/myApp/. The default value of the detailed configuration file path is 'jeus-
lpq.properties' and can be changed using the following option.

-Djeus.jms.client.lpq-configuration-path=jeus-lpq.properties

The following is an example of the LPQ configuration file. The name of this example file is 'jeus-
lpq.properties', and the file exists in 'JEUS_HOME/templates/lpq/'.

#JEUS Local-Persistent-Queue Configuration
#[commons]
jeus.lpq.name=JEUS_LPQ

6. JEUS MQ Special Functions | 73

jeus.lpq.max-message-count=819200
jeus.lpq.time-to-live=43200000

#[forward]
jeus.lpq.retry-limit=-1
jeus.lpq.retry-interval=1000
jeus.lpq.retry-interval-increment=0

#[reconnect]
jeus.lpq.reconnect-retry-interval=5000

#[store]
jeus.lpq.store.store-mode=1

#[journal-store]
jeus.lpq.store.journal.store-base-dir=JEUS_LPQ
jeus.lpq.store.journal.max-log-file-count=10
jeus.lpq.store.journal.initial-log-file-count=2
jeus.lpq.store.journal.log-file-size=64M

• System Property

The previous configuration items can be set as system properties by using each item name as the
key. For instance, if the LPQ name is configured, the JVM option can be configured when a JEUS
MQ client is executed as in the following.

-Djeus.lpq.name=<jeus lpq name>

Runtime Configurations can be modified by changing the client source code.

System.setProperty("jeus.lpq.name", <jeus lpq name>);

74 | MQ Guide

Appendix A: Additional Journal Store
Properties
This appendix describes additional journal store properties. These advanced properties can be used
to resolve performance issues or functional differences between platforms.

• jeus.store.journal.control-file-name

Description Save a control file under a different name. This attribute is only used under
special circumstances.

Default control.dat

• jeus.store.journal.log-file-mode

Description File mode used to open a log file. Set one of "rw", "rws", and "rwd". If set to
"rw", file force is forcibly executed.

Default rwd

• jeus.store.journal.max-move-count

Description If a log file becomes full, an overflow processing executes to secure the
required space. During the overflow processing, the records that have not
been used for a long time will be moved to a secondary storage to prevent
performance degradation. This property is used to set the allowed maximum
number of times the surplus records can be moved.

Default 1

• jeus.store.journal.overflow-factor

Description If the current log file’s unused space ratio is the same or less than the
specified rate, overflow is checked.

Default 0.5

• jeus.store.journal.min-buffer-size

Description Minimum buffer size for writing records in batch.

Default 4 KB

• jeus.store.journal.max-buffer-size

Description Largest buffer size for writing records in batch.

Default 4 MB

Appendix A: Additional Journal Store Properties | 75

• jeus.store.journal.use-direct-buffer

Description Option to use DirectByteBuffer when writing through the FileChannel.

Default false

• jeus.store.journal.max-waiting-thread-count

Description Maximum number of threads that are waiting to use the buffer.

Default 32

76 | MQ Guide

Appendix B: JDBC Persistence Store Columns
This appendix describes the columns of the tables created when the Persistence store is set to JDBC
in JEUS MQ.

B.1. Destination Table
The following table contains information about destinations.

Item Type Description

DT_ID BIGINT Destination ID

DT_NAME VARCHAR(255) Destination name

DT_QUEUE BIT Indicates whether the destination is a Queue or
Topic.

◦ Queue : true

◦ Topic : false

DT_VALID BIT Indicates whether the destination is valid.

DT_LVID BIGINT Current version of the destination

DT_DYNAMIC BIT Indicates whether the destination is created
dynamically or not

DT_OBJECT BLOB Binary data of the destination

B.2. Durable Subscription Table
The following table contains information about durable subscription.

Item Type Description

DS_ID BIGINT Durable subscription ID

DS_CLIENT_ID VARCHAR(255) Client ID assigned to the durable subscription

DS_NAME VARCHAR(255) Durable subscription name

DS_SELECTOR VARCHAR(255) Message selector assigned to the durable
subscription

DS_VALID BIT Indicates whether the durable subscription is valid

DS_LVID BIGINT Current version of the durable subscription

DT_ID BIGINT ID of the topic linked to the durable subscription

DT_LVID BIGINT Version of the topic linked to the durable subscription

Appendix B: JDBC Persistence Store Columns | 77

B.3. Message Table
The following table contains information about messages.

Item Type Description

MG_ID BIGINT Message ID

MG_TYPE TINYINT Message type

MG_LENGTH INTEGER Message length

MG_OBJECT TINYINT[] Binary data of the message

MG_STATUS SMALLINT Message status

MG_GLOBAL_ORDER_CLOCK SMALLINT Time when the message’s Global Order was set

MG_PERSISTENT TINYINT[] Indicates whether a message is set as persistent or
not.

DT_ID BIGINT ID of the message’s destination

DT_LVID BIT Version of the message’s destination

MG_HEADER_LENGTH INTEGER Message header length

MG_HEADER_OBJECT TINYINT[] Binary data of the message header

B.4. MetaInfo Table
The following table contains information about JEUS MQ’s persistence store.

Item Type Description

SERVER_NAME VARCHAR(255) JEUS MQ server name

VERSION BIGINT JEUS MQ version

B.5. Subscription Message Table
The following table contains information about durable subscription messages.

Item Type Description

DM_ID BIGINT Durable subscription message ID

DM_STATUS SMALLINT Status of the durable subscription message

DM_LVID BIGINT Current version of the durable subscription message

MG_ID BIGINT ID of the actual message

DS_ID BIGINT ID of a Durable subscription containing durable
subscription messages

78 | MQ Guide

B.6. Transaction Table
The following table contains information about transactions.

Item Type Description

TR_ID BIGINT Transaction ID

TR_STATUS TINYINT Transaction status

TR_OBJECT TINYINT[] Binary data of the transaction

Appendix B: JDBC Persistence Store Columns | 79

	MQ Guide
	Contents
	1. Introduction
	1.1. Jakarta Messaging(JMS)
	1.2. JEUS MQ Features

	2. JEUS MQ Client Programming
	2.1. Overview
	2.2. JMS Administered Objects
	2.2.1. Defining JNDI Services
	2.2.2. Connection Factory
	2.2.3. Destination

	2.3. Connections and Sessions
	2.3.1. Creating Connections
	2.3.2. Sharing Physical Connections
	2.3.3. Creating Sessions
	2.3.4. Client Facility Pooling
	2.3.5. NONE_ACKNOWLEDGE Mode
	2.3.6. JMSContext

	2.4. Messages
	2.4.1. Message Header Field
	2.4.2. Message Properties
	2.4.3. Message Body
	2.4.4. FileMessage

	2.5. Transactions
	2.5.1. Local Transactions
	2.5.2. Distributed Transactions

	3. JEUS MQ Server Configuration
	3.1. Overview
	3.1.1. Directory Structure

	3.2. Configuring JMS Resources
	3.2.1. Configuring Destinations
	3.2.2. Configuring Durable Subscription

	3.3. Configuring JMS Quotas
	3.3.1. Configuring Quotas

	3.4. Configuring JMS Engines
	3.4.1. Basic Information
	3.4.2. Configuring Service Channels
	3.4.3. Configuring Connection Factories
	3.4.4. Configuring Persistence Stores
	3.4.5. Message Sorting

	3.5. Management and Monitoring
	3.5.1. Server Management
	3.5.2. Server Monitoring

	4. JEUS MQ Clustering
	4.1. Overview
	4.2. Clustering Type
	4.2.1. Connection Factory Clustering
	4.2.2. Destination Clustering

	4.3. How to Use Clustering
	4.3.1. Server Configuration
	4.3.2. Client Settings for Clustering

	4.4. Example
	4.4.1. Example of Best JEUS MQ Clustering Practice
	4.4.2. Example of Poor JEUS MQ Clustering Practice

	5. JEUS MQ Failover
	5.1. Overview
	5.2. Server Failover
	5.2.1. Network Configuration
	5.2.2. Configuring Connection Factories
	5.2.3. Configuring Persistence Stores
	5.2.4. Automatic Failback

	5.3. Client Failover
	5.3.1. Reconnection
	5.3.2. Reusing the Connection Factory
	5.3.3. Reusing Destinations
	5.3.4. Request Blocking Time
	5.3.5. Connection Recovery
	5.3.6. Session Recovery
	5.3.7. Transmission Error Message Recovery
	5.3.8. Reception Error Message Recovery
	5.3.9. Message Loss Prevention and Transactions

	6. JEUS MQ Special Functions
	6.1. JEUS MQ Message Bridge
	6.1.1. Server Configuration

	6.2. JEUS MQ Message Sort
	6.2.1. Server Configuration
	6.2.2. Client Configuration

	6.3. JEUS MQ Global Order
	6.3.1. Client Settings

	6.4. JEUS MQ Message Group
	6.4.1. Server Configuration
	6.4.2. Client Configuration

	6.5. JEUS MQ Message Management Functions
	6.5.1. Message Monitoring
	6.5.2. Message Control
	6.5.3. Destination Monitoring
	6.5.4. Destination Control

	6.6. JEUS MQ Topic Multicast
	6.6.1. Server Configuration

	6.7. Reliable Message Transmission
	6.7.1. LPQ Activation
	6.7.2. Enabling LPQ
	6.7.3. LPQ Listener Configuration
	6.7.4. LPQ Configuration

	Appendix A: Additional Journal Store Properties
	Appendix B: JDBC Persistence Store Columns
	B.1. Destination Table
	B.2. Durable Subscription Table
	B.3. Message Table
	B.4. MetaInfo Table
	B.5. Subscription Message Table
	B.6. Transaction Table

