Application Client Guide

JEUS 9

TMAYSOF T

Copyright

Copyright 2025. TmaxSoft Co., Ltd. All Rights Reserved.

Company Information
TmaxSoft Co., Ltd.
TmaxSoft Tower 10F, 45, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea

Website: https://www.tmaxsoft.com/en/

Restricted Rights Legend

All TmaxSoft Software (JEUS®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

JEUS® is registered trademark of TmaxSoft Co., Ltd.

Java, Solaris are registered trademarks of Oracle Corporation and its subsidiaries and affiliates.
Microsoft, Windows, Windows NT are registered trademarks or trademarks of Microsoft Corporation.
HP-UX is a registered trademark of Hewlett Packard Enterprise Company.

AIX is a registered trademark of International Business Machines Corporation.

UNIX is a registered trademark of X/Open Company, Ltd.

Linux is a registered trademark of Linus Torvalds.

Noto is a trademark of Google Inc. Noto fonts are open source. All Noto fonts are published under
the SIL Open Font License, Version 1.1. (https://www.google.com/get/noto/)

Other products and company names are trademarks or registered trademarks of their respective

https://www.tmaxsoft.com/en/
https://www.google.com/get/noto/

owners.

The names of companies, systems, and products mentioned in this manual may not necessarily be
indicated with a trademark symbol (", ®).

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: APACHE2.0,
CDDL1.0, EDL1.0, OPEN SYMPHONY SOFTWARE1.1, TRILEAD-SSH2, Bouncy Castle, BSD, MIT, SIL OPEN
FONT1.1

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks

JEUS 9 3.1.2 2025-03-24 -
JEUS 9 3.1.1 2024-12-24 -

Contents

1. Application Clients
1.1. Overview
1.2. Programming
1.2.1. Program Architecture
1.2.2. Example
1.3. Deployment Descriptor(DD)
1.3.1. Writing a DD
1.3.2. Creating a DD
1.4. Packaging
1.5. Deployment
1.6. Execution
1.6.1. JEUS Libraries
1.6.2. Executing in Console
2. Advanced Application Clients
2.1. Overview
2.2. Dependency Injection
2.2.1. EJB Injection
2.2.2. Resource Injection
2.2.3. Other Injections

2.3. Clients Not Using Dependency Injection

2.4. Security Setting
2.5. Transaction
3. Client Applets

3.1. Overview

3.2. Programming
3.2.1. Example
3.2.2. HTML Example

3.3. Deployment

3.4. Execution
3.4.1. Executing in Web Browser
3.4.2. Executing in AppletViewer

00 N N N ot AN s

10
11
12
13
13
13
13
14
15
15
15
15

1. Application Clients

This chapter discusses application clients that are executed on a separate JVM from the JEUS server
(engine container).

1.1. Overview

In general, an application client module running in a JEUS client container is used to call a Jakarta EE
application or be provided with Jakarta EE service.

An application client is a stand-alone client that runs in a Jakarta EE environment. It operates within
the application client container, which is defined in Jakarta EE Specification. An application client
module, a type of JEUS clients, is useful for client/server systems, testing, or debugging.

JEUS application client can use JEUS services, including naming service, scheduler, and security, by
using a client container. Without using a client container, JNDI and security services can be used
through the JEUS client library. However, dependency injection and JEUS scheduler cannot be used.

1. For more details about Jakarta EE based application client, refer to Jakarta EE
Specifications.

ﬂ 2. For details about JEUS XML schema, refer to "jeus-client-dd.xml" in JEUS XML
Reference.

1.2. Programming

This section describes JEUS client and server architectures, and describes some examples using
sample codes.

1.2.1. Program Architecture

An application client is a client program that runs on a JVM that is different from the server.

An application client calls and executes the main() method and runs until the JVM terminates. Like
other Jakarta EE application components, an application client also runs in a client container that
provides system services, but the container uses less system resources than other Jakarta EE
containers. It provides the environment in which Jakarta EE services offered by JEUS can be provided
for a general client application.

The services include scheduler, security, JNDI, and other services with which users can use the
application components (EJB) and system resources (JDBC data source, JMS connection factory, etc.)
that are bound to JEUS via JNDI.

1. Application Clients | 1

JEUS Clients

Web Browser

MNM NI
v
. Application Client Application Client
Applet Application pplication .
.) JEUS Client Runtime JEUS Client Runtime
JEUS Client Runtime

i

JEUS Managed Server

JNDI EIB

Transaction

Security Manager

Application Client Architecture

1.2.2. Example

Like other Java programs, an application client must have the main method that is declared in the
public class.

The following example calls EJB via injection. (refer to the example of
JEUSHOME/samples/client/hello/hello-client directory).

Application Client: <HelloClient.java>
package helloejb;

import java.io.*;
import jakarta.ejb.EJ]B;

public class HelloClient {
@EJB(mappedName="helloejb.Hello")
private static Hello hello;
public static void main(String[] args) {

System.out.println("EJB output : " + hello.sayHello());
}

1.3. Deployment Descriptor(DD)

This section describes how to create a deployment descriptor (DD).

2 | Application Client Guide

1.3.1. Writing a DD

A DD can be written in the following two ways:
 Jakarta EE DD

Jakarta EE Specification defines DD for client modules, and uses standard settings regardless of
WAS.

Jakarta EE 5 and above do not require a standard DD file, and necessary settings can be done
through annotations. Therefore, the previous example, Application Client: <HelloClient.java> can
be run without any separate application-client.xml file.

For more information about standard XML descriptor, refer to Jakarta EE Specifications.
+ JEUSDD

Information about the client module is required for a server to communicate with an application
client. DD is an XML document that contains such information.

DD filename for a client is META-INF\jeus-client-dd.xml. Using a deployment descriptor, a user
can decide which services should be provided when deploying each application client to the client
container. DD can be modified without changes to the program.

In general, a deployment descriptor is used to configure a resource used by the client. However,
the previous example Application Client: <HelloClient.java> does not require the DD file, thus it is
omitted.

6 For more information about jeus-client-dd.xml, refer to JEUS XML Reference.

1.3.2. Creating a DD

If it is necessary to create the jeus-client-dd.xml file, you need to create it before JEUS deploys the
client module.

The following example shows an XML file that creates a DD.

The XML file contains environment variables used by the client, a name to which the EJB application is
bound, a name of the bound JDBC datasource, and a JNDI binding name for the JMS queue. Except
for the environment variables, specify <export-name> as the JNDI name which is actually bound to
<ref-name> in the application-client.xml file.

Creating a DD: <jeus-client-dd.xml>

<jeus-client-dd>
<env>
<name>year</name>
<type>java.lang.Integer</type>
<value>2002</value>
</env>

1. Application Clients | 3

<ejb-ref>
<jndi-info>
<ref-name>count</ref-name>
<export-name>count_bean</export-name>
</jndi-info>
</ejb-ref>
<res-ref>
<jndi-info>
<ref-name>datasource</ref-name>
<export-name>0Oracle_DataSource</export-name>
</jndi-info>
</res-ref>
<res-env-ref>
<jndi-info>
<ref-name>jms/SalaryInfo</ref-name>
<export-name>jms/salary_info_queuel</export-name>
</jndi-info>
</res-env-ref>
</jeus-client-dd>

For a description of each element in the jeus-client-dd.xml file, refer to JEUS XML

ﬂ Reference.

1.4. Packaging
Client module packaging can be done by manual packaging or by packaging with IDE.
+ Manual Packaging

If an XML file is necessary for a DD, you can create a DD XML file by using the XML editor or text
editor that is installed on the user's computer. Then gather all the necessary files and create a JAR
file for the client module by using the JAR tool provided by Java.

To package an application client, the application class files, and, in some cases, the application-
client.xml and jeus-client-dd.xml files are required.

Use the jar command to create a JAR file for the client module in the console. By standard usage,
it is possible to specify the main class, which is to be used when executing the JAR file, by using
the main-class attribute in the MANIFEST.MF of the JAR file. In such cases, the JEUS client
container automatically executes the class.

The following example shows how to create a JAR file using the jar command.

jar cvf hello-client.jar *

+ Packaging with IDE

You can create using the IDE tool that supports Jakarta EE environment such as Eclipse,

4 | Application Client Guide

NetBeans, or Intelli) IDEA. Refer to each IDE's help for details.

1.5. Deployment
An application client module can be deployed "manually".

In the module, depending on the need, there are the Jakarta EE standard descriptor files, namely the
application-client.xml file, and the jeus-client-dd.xml file, which is provided by JEUS. First, create a
module file for the application client, and then move the file to a preferred location.

If there is a function that is controlled by the web service client, perform additional deployment via a
console tool named jeusadmin, or use appcompiler to create a web service stub.

For more information about deployment, refer to "JEUS Applications &
a Deployment Guide".

1.6. Execution

This section outlines JEUS libraries that are additionally required by each service and describes how
to execute modules in the console.

1.6.1. JEUS Libraries

To use a web service by using an application client, additional libraries besides
JEUS_HOME/lib/client/clientcontainer.jar (the default library) are required. Most of the libraries are
located in JEUS_HOME/lib/system (SYSTEM_LIB_DIR).

The following is the list of JEUS libraries required for each service.

Service JEUS Library
JMS(Java Message Service) o SYSTEM_LIB_DIR/jms.jar

Web Service o SYSTEM_LIB_DIR/jakarta.mail-2.0.1.jar
o JEUS_HOME/lib/shared/wsit-3.0/jeus-ws.jar
o JEUS_HOME/lib/shared/wsit-3.0/webservices-rt-3.0.1.jar
o SYSTEM_LIB_DIR/resolver.jar

JMX(Java Management o SYSTEM_LIB_DIR/jmxremote.jar
extensions)

6 For more information about the web service, refer to "JEUS Web Service Guide".

1. Application Clients | 5

1.6.2. Executing in Console

To execute an application client module in the console, you can use the appclient command. The
appclient script is located under the JEUS_HOME\bin directory, and executes an application client
module through a client container.

The following are the command lines for JEUS client container.

* Usage

appclient -client client_jar_path
[-main main_class]
[-cp classpath]
application_arguments. . .

The following describes the command options.

Option Description

-client client_jar_path Specifies the path of the application client to be executed.

[-main main_class] Specifies the main class of the application client. This option is not required

when main-class is already specified in the META-INF\MANIFEST.MF,
located in the client’s class path.

[-cp classpath] Specifies a class path for executing the client, if needed.

* Example

If the sample command lines are executed, the following is displayed. For the application client to

be successfully executed, the Hello EJB should be deployed first.

JEUS_HOME/samples/client/hello/hello-client/dist$ appclient -client hello-client.jar
[2016.08.03 14:44:46][0] [t-1] [CLIENT-0050] Starting the Application Client Container - JEUS 9

Fix#0
EJB output : Hello EJB!

If you want to turn off logging, use the following command:

-Djeus.log.level=0FF

For details about log setting, refer to "Logging" in JEUS Server Guide.

6 | Application Client Guide

2. Advanced Application Clients

This chapter introduces advanced modules of an application client.

2.1. Overview

A JEUS client can be executed as simply as a Java class is executed without using a client container
described in the Jakarta EE specifications. This chapter discusses the types and JNDI default binding
names of resources, for which a client container performs dependency injection. It also describes
security and transaction services that can be used by application clients and clients that run without a
client container.

If you execute a JEUS client without using a client container, the client cannot use the dependency
injection service of the client container. With security settings, you can execute JEUS's various
services. With transaction functions, you can manage the resources and applications as global
transactions.

2.2. Dependency Injection

This section describes injection details common to application clients, web applications, and EJB
applications.

Injection can be performed for resources such as an environment variable, which can be mapped to
an EJB object. In general, a resource’s name can be found in java:comp/env context, a JNDI context of
the application component. Because the actual resource is bound to the JNDI global context, you
need to know the global binding name.

Resources have their own JNDI global binding names. The JNDI global binding name of an EJB
application should be specified by one of the following methods:

*+ <export-name> of jeus-ejb-dd.xml

* <mapped-name> of ejb-jar.xml in the standard

* mappedName of an annotation specified in the EJB application

EJB is bound to the default JNDI name of JEUS specified in "JEUS EJB Guide"

To obtain an EJB through JNDI without a client container, it is necessary to understand the rules for
setting the default JNDI name. Because it is hard for a developer to know to which name the EJB will
be bound to, it is recommended to specify a JNDI binding name using either of the suggested ways.

To inject a resource, specify a JNDI global binding name in jeus-ejb-dd.xml, jeus-web-dd.xml, and
jeus-client-dd.xml, which are JEUS DD files. You can also map the resource to the value specified by
mapped-name in ejb-jar.xml, web.xml or application-client.xml, or to the mappedName in the
annotation. If nothing is specified, use a name according to the basic rules of JEUS.

In the actual development, it is recommended to use XML in specifying the JNDI global binding

2. Advanced Application Clients | 7

name, rather than using the mappedName of the annotation. If the application will be executed in
many places, XML should be used since it needs to use a global name according to the environment.
Injection is normally done for annotated setter methods and variables. However, it is possible to
perform injection for non-annotated setter methods and variables, if they are specified by XML
descriptor.

1. For more information about injection, refer to Jakarta EE 9 Platform, and see
. "5. Resources, Naming and Injection" section of this guide about resources
ﬂ that can be injected.

2. For EJBContext injection for EJB applications, refer to "JEUS EJB Guide".

The following example shows how a client injects an EJB application using a mappedName of the
annotation. Since statelessEJB1 application uses '"MyEJB1" as its JNDI global binding name, the client
specifies the same name for mappedName of the @EJB annotation. If the client uses JNDI Lookup
instead of Injection, it is possible to directly use the JNDI global binding name for lookup. If the client
runs in a client container, it is possible to use the name, java:comp/env/ejb/sless1, from the
application context using the application-client.xml file.

If the client uses JNDI Lookup instead of Injection, it is possible to directly use the JNDI global binding
name for lookup. If the client runs in a client container, it is possible to use the name,
java:comp/env/ejb/sless1, from the application context using the application-client.xml file.

EJB Reference Injection
import ejb1.RemoteSession;
@Stateless(name="StatelessEJB1", mappedName="MyEJB1")

public class StatelessEJB1 implements RemoteSession, LocalSession {...

}

@EJB(name="sless1", beanName="StatelessEJB1", mappedName="MyEJB1")
private RemoteSession slessi;

RemoteSession session = context.lookup("MyEIB1");

// with client container and application-client.xml descriptor
RemoteSession session = context.lookup("java:comp/env/ejb/sless1");

2.2.1. EJB Injection
For EJB reference injection, the following binding names are used.
« If the variable is a business interface:

If a mappedName is specified, the global name used for lookup should be the following format:

mappedName + "#" + Business_Interface_Name

8 | Application Client Guide

https://jakarta.ee/specifications/platform/9/jakarta-platform-spec-9.html

In the previous example, the name will be set to MyEJB1 or MyEJB1#RemoteSession. If deployed
as EAR or EJB JAR file and if ejb-link is given to the ejb-jar.xml file or if there is a beanName in the
annotation, find an EJB in the same application and use its mappedName as the global name for

lookup. Otherwise, find an EJB in the application with a business interface name, and use the
EJB's mappedName as the global name.

Finally, perform JNDI Lookup with the business interface name. In the previous example, the
name, 'java:global/<module-name>/MyE]B1' or 'java:global/<module-

name>/MyE]B1#ejb1.RemoteSession,' is used for Lookup. In this way, use a default binding name

when there is no mappedName for EJB deployment.
« If the variable is a sub interface of EJBHome/EJBObject interface:

If there is a mappedName, use it as the global name. If deployed as EAR or EJB JAR file and if ejb-
link is given to the ejb-jar.xml file or if there is a beanName in the annotation, find an EJB in the

same application and use its mappedName as the global name for lookup. Otherwise, find an EJB

in the application with a variable type interface name, and use the EJB's mappedName as the
global name.

Finally, perform JNDI Lookup with the variable type interface name.

2.2.2. Resource Injection
It is possible to use the @Resource annotation for resources.

+ If a mappedName is specified, use it as the resource’s JNDI global binding name for lookup.

* If not specified, use the name value of @Resource as the JNDI global binding name.

If no name value is specified, the following format is used according to the specifications.

Application class name + / + Variable or setter method's property name

In the following example, the name 'jdbc/DB2'" is used for JNDI Lookup. If no name is specified, the
name 'test.Client/myDataSource3' is used for lookup.

Resource injection
package test;
class Client {

@Resource(name="jdbc/DB2") // default mapping if no mapped-name private
javax.sql.DataSource myDataSource3;

When there is a name specified or a default value is specified for a name attribute
ﬂ that is not set, the value is mapped to the application context. However, for the

2. Advanced Application Clients | 9

actual JNDI global binding name different rules apply for each vendor. Thus for
compatibility reasons, the mappedName should be used.

2.2.3. Other Injections

In addition, it is possible to obtain a web service object, an EntityManager object, and an
EntityManagerFactory object through Injection, by using annotations like @WebServiceRef,
@PersistenceUnit and @PersistenceContext.

o For further details, refer to Jakarta EE Platform Specification.

2.3. Clients Not Using Dependency Injection

You can use JEUS resources and applications through JEUS JNDI, without using an application
container. To do so, execute a client program whose class path is set to the jclient.jar file in the
JEUS_HOME\lib\client directory.

Because it is impossible to use dependency injection in this case, you need to modify the sources as
shown in the following example. In the example, a binding name of the EJB application should follow
JEUS's default name binding rule. The client can run on a client container. This means that all clients
which do not use a client container can run on a client container.

Clients Not Using Dependency Injection: <HelloClient.java>
package helloejb;

import java.io.*;

import jakarta.ejb.EJB;

import javax.naming.Context;

import javax.naming.InitialContext;
import java.util.Hashtable;

/**

* HelloEJB application client

*/

public class HelloClient {
private static Hello hello;

public static void main(String[] args) {
try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"jeus.jndi.INSContextFactory");
Context context = new InitialContext(env);
hello = (Hello) context.lookup("helloejb.Hello");

System.out.println("EJB output : " + hello.sayHello());
} catch (Exception ex) {
ex.printStackTrace();

}

10 | Application Client Guide

https://jakarta.ee/specifications/platform/9/jakarta-platform-spec-9.html

Client packaging is not performed in a client container that processes XML files. Thus, you need to
create a JAR file without the standard or JEUS XML file. For deployment, copy the JAR file to any
location. For execution, execute the previous client class just like executing a general Java class.

The result is as follows:

$ java -cp /jeus/lib/client/jclient.jar;./hello-client.jar helloejb.HelloClient

[2012.05.23 22:45:51][2] [t-1] [Network-0405] [Endpoint] exporting Endpoint (0:192.168.0.16:9756:-
1:0x79F24F28)

[2012.05.23 22:45:51]1[2] [t-1] [Network-0002] [Acceptor] start to listen NonBlockingChannelAcceptor:
/192.168.0.16:9756

EJB output : Hello EJB!

2.4. Security Setting

To use JEUS's Jakarta EE services, a client has to provide its username and password to the client
runtime in order to verify authorization for using the services. The services include EJB applications
and JMS resources. The following are three ways to specify a username and password:

* Using jeus-client-dd.xml

If <security-info> in the jeus-client-dd.xml file is specified, a user has to sign in with the specified
username and password before starting an application in the client container. After this, the
application attempts authentication using this username when using JEUS services. For more
information about the jeus-client-dd.xml settings, refer to JEUS XML Reference.

Security Setting: <jeus-client-dd.xml>
<jeus-client-dd>
<security-info>
<provider-node-name>jeusNode</provider-node-name>
<user>useri</user>
<passwd>password1</passwd>

</security-info>

</jeus-client-dd>

* Using the JNDI context

When a client creates the JNDI context for an application, the client can use the JNDI properties to
sign in with a username and password, which are used for authentication. This method of
providing account information is available even without a client container. For the detailed
information about the JNDI settings, refer to "JNDI Naming Server" in JEUS Server Guide.

2. Advanced Application Clients | 11

Security Setting: <Client.java>

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "jeus.jndi.INSContextFactory");
env.put(Context.PROVIDER_URL, "192.168.0.16:9736");
env.put(Context.SECURITY_PRINCIPAL, "user1");
env.put(Context.SECURITY_CREDENTIALS, "password1");

Context context = new InitialContext(env);

* Using JEUS Security API

You can log in using JEUS's Security APIL. For more information about the Security API, refer to
"JEUS Security Guide".

2.5. Transaction

UserTransaction is used to utilize EJB client applications, JDBC DataSource, JMS connection factory
and destination, and more as one global transaction or an XA transaction.

The transaction manager used by a client is either a server transaction manager or client transaction
manager depending on whether it has direct control over resources.

1. For detailed description of UserTransaction, refer to Jakarta Transaction 2.0
Specification.

0 2. For detailed explanation of the transaction manager, refer to "Transaction
Manager" in JEUS Server Guide.

12 | Application Client Guide

https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/transactions/2.0/

3. Client Applets

This chapter describes how to create, configure, and execute a JEUS applet program.

3.1. Overview

An applet is a Java application that is executed in a web browser.

To use a Jakarta EE service in an applet, an applet container should be used. Because lightweight
client containers are not provided yet, an applet that cannot directly access JEUS libraries is allowed
to use a Jakarta EE service without a container.

With an applet, a user can execute Java applications in the web browser. An applet can be run as a
JEUS client as well.

3.2. Programming

Files required to run an applet exist within a web application. Since the HTML JAVA_CODEBASE is the
URL directory containing the code file, JAR files should exist in the same directory where the HTML
document of the web application will be deployed to.

This section shows sample examples.

3.2.1. Example
An applet should inherit the Applet or JApplet class and implement the start() method.

The following example shows a client without a client container. In this case, the client does not use
dependency injection but JNDI API to look up an EJB.

In the example, the same EJB as the client container in the previous chapter is used, with the
interface name, 'helloejb.Hello," as its binding name.

Applet Application: <HelloClient.java>
package helloejb;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.applet.Applet;
import java.util.Hashtable;
import java.awt.Borderlayout;
import java.awt.Font;

import java.awt.event.¥;

import javax.swing.*;

3. Client Applets | 13

public class HelloClient extends JApplet {
public void start() {
try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"jeus.jndi.INSContextFactory");
Context context = new InitialContext(env);
Hello hello = (Hello) context.lookup("helloejb.Hello");
System.out.println("EJB output : " + hello.sayHello());

JLabel label = new JLabel(hello.sayHello());
label.setFont(new Font("Helevetica", Font.BOLD, 15));
getContentPane().setLayout(new BorderLayout());
getContentPane().add(label, BorderLayout.CENTER);
setSize(500, 250);
setVisible(true);

} catch (Exception ex) {
ex.printStackTrace();

}

6 For more information about EJB JNDI binding name, see "JEUS EJB Guide".

3.2.2. HTML Example
In an HTML document, users can call a certain applet and specify the location of the applet’s classes.

In the following example, the application class and helloejb.Hello EJB interface in the previous
example are included in the hello-client.jar file. The jclient.jar is a JEUS client library, and it exists in
the JEUS_HOME\lib\client directory.

HTML Example: <index.htm!|>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>Hello JakartaEE</title>

</head>

<body>

<center>

<h1>Hello JakartaEE Sample Applet!</h1>

<APPLET CODE = "helloejb.HelloClient" JAVA_CODEBASE = "."
ARCHIVE = "hello-client.jar,jclient.jar"
WIDTH = 300 HEIGHT = 300/>

</APPLET>
</center>
</body>
</html>
If an HTML document is used in any browser while JDK is not installed at the
0 location where the browser is to be executed, you can prompt the user to install

14 | Application Client Guide

JDK. To convert to an HTML document, use JDK's htmlconverter. For more
information, refer to Java Plug-in HTML Converter.

3.3. Deployment

Because an applet generally runs from HTML, running an applet in a browser requires a web
application that passes an HTML document containing the applet to the browser. Therefore, it is
necessary to complete the deployment of the web application and EJB before executing an applet.

* Web Application Deployment

Create a web application and add the HTML document and the JAR files specified in '"ARCHIVE'. For
more information about creating and deploying a web application, see "JEUS Application &
Deployment Guide".

* EJB Deploy

After deploying the web application, deploy the EJB application.

3.4. Execution

Open the web browser, enter the URL of the HTML document, and run the applet. Following the Java
Security model, an applet performs access control as specified in the java.policy file. Therefore, in the
file, the classes that the applet uses must be given permission.

For information about the configuration settings in java.policy, refer to Security
ﬂ Developer’s Guide.

3.4.1. Executing in Web Browser

Access the web browser by using the <applet> tag in the HTML page. The applet in the example uses
Swing, and so the following address is used to access the applet.

http://host1:8088/hello/index.html

3.4.2. Executing in AppletViewer

For testing, you can execute an applet by using the AppletViewer included in the JDK, rather than the
browser. Executing an applet by using the AppletViewer is more convenient for testing during
development because users can immediately check for exceptions.

3. Client Applets | 15

http://docs.oracle.com/javase/1.5.0/docs/guide/plugin/developer_guide/html_converter.html
https://docs.oracle.com/en/java/javase/22/security/index.html
https://docs.oracle.com/en/java/javase/22/security/index.html

appletviewer index.html

16 | Application Client Guide

	Application Client Guide
	Contents
	1. Application Clients
	1.1. Overview
	1.2. Programming
	1.2.1. Program Architecture
	1.2.2. Example

	1.3. Deployment Descriptor(DD)
	1.3.1. Writing a DD
	1.3.2. Creating a DD

	1.4. Packaging
	1.5. Deployment
	1.6. Execution
	1.6.1. JEUS Libraries
	1.6.2. Executing in Console

	2. Advanced Application Clients
	2.1. Overview
	2.2. Dependency Injection
	2.2.1. EJB Injection
	2.2.2. Resource Injection
	2.2.3. Other Injections

	2.3. Clients Not Using Dependency Injection
	2.4. Security Setting
	2.5. Transaction

	3. Client Applets
	3.1. Overview
	3.2. Programming
	3.2.1. Example
	3.2.2. HTML Example

	3.3. Deployment
	3.4. Execution
	3.4.1. Executing in Web Browser
	3.4.2. Executing in AppletViewer

