
Security Guide
JEUS 9

Copyright

Copyright 2025. TmaxSoft Co., Ltd. All Rights Reserved.

Company Information

TmaxSoft Co., Ltd.

TmaxSoft Tower 10F, 45, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea

Website: https://www.tmaxsoft.com/en/

Restricted Rights Legend

All TmaxSoft Software (JEUS®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

JEUS® is registered trademark of TmaxSoft Co., Ltd.

Java, Solaris are registered trademarks of Oracle Corporation and its subsidiaries and affiliates.

Microsoft, Windows, Windows NT are registered trademarks or trademarks of Microsoft Corporation.

HP-UX is a registered trademark of Hewlett Packard Enterprise Company.

AIX is a registered trademark of International Business Machines Corporation.

UNIX is a registered trademark of X/Open Company, Ltd.

Linux is a registered trademark of Linus Torvalds.

Noto is a trademark of Google Inc. Noto fonts are open source. All Noto fonts are published under
the SIL Open Font License, Version 1.1. (https://www.google.com/get/noto/)

Other products and company names are trademarks or registered trademarks of their respective

https://www.tmaxsoft.com/en/
https://www.google.com/get/noto/

owners.

The names of companies, systems, and products mentioned in this manual may not necessarily be
indicated with a trademark symbol (TM, ®).

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: APACHE2.0,
CDDL1.0, EDL1.0, OPEN SYMPHONY SOFTWARE1.1, TRILEAD-SSH2, Bouncy Castle, BSD, MIT, SIL OPEN
FONT1.1

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks

JEUS 9 3.1.2 2025-03-24 -

JEUS 9 3.1.1 2024-12-24 -

Contents
1. Introduction to the Security System . 1

1.1. Overview . 1

1.2. Key Features . 2

1.3. Architecture. 2

1.4. Core Concepts. 4

1.4.1. Login . 4

1.4.2. Authentication. 5

1.4.3. Authorization. 6

1.4.4. Auditing . 12

1.4.5. Services and SPI . 12

1.4.6. Domain. 14

1.5. Improving Performance and Security Level. 16

1.5.1. Improving Performance . 16

1.5.2. Improving Security Level . 16

2. Configuring the Security System. 19

2.1. Overview . 19

2.2. Configuring the Security System Domain . 20

2.2.1. Configuring XML . 20

2.2.2. Configuring User Accounts and Security Policies . 22

2.3. Configuring Security Domain Components . 23

2.3.1. Configuring XML . 23

2.4. Configuring Security Services. 25

2.4.1. Configuring XML . 25

2.5. Configuring the Security System User Information . 30

2.5.1. Configuring XML . 30

2.5.2. Using Database. 32

2.5.3. Configuring Password Security . 33

2.5.4. Cached Login Information . 38

2.6. Configuring Security System Policies . 38

2.6.1. Configuring XML . 39

2.6.2. Using Database. 44

2.7. Configuring Additional Settings. 45

2.7.1. Configuring Java SE SecurityManager . 46

2.7.2. Configuring JACC Provider. 47

2.7.3. Configuring information to Grant Identity . 47

2.7.4. Configuring Identity Certificate Information . 48

3. Configuring Security in Applications and Modules . 50

3.1. Overview . 50

3.1.1. Module Deployment vs. Application Deployment . 50

3.1.2. Role-to-Resource Mapping . 50

3.1.3. Principal-to-Role Mapping. 52

3.1.4. User Configurations . 54

3.2. Configuring EJB Module Security. 55

3.2.1. Configuring ejb-jar.xml . 55

3.2.2. Configuring jeus-ejb-dd.xml . 58

3.3. Configuring Web Module Security. 61

3.3.1. Configuring web.xml . 61

3.3.2. Configuring jeus-web-dd.xml . 64

3.4. Configuring Jakarta EE Application Security. 67

3.4.1. Configuring application.xml . 67

3.4.2. Configuring jeus-application-dd.xml . 68

3.5. Example . 70

4. Programming with the Security System API . 72

4.1. Overview . 72

4.2. Configuring Java SE Permissions . 72

4.3. Basic API . 72

4.4. Resource API . 73

4.5. SPI Class. 74

4.6. Example . 75

5. Developing Customized Security Services . 77

5.1. Overview . 77

5.2. Service Class . 77

5.3. The Basic Pattern of Implementing Custom Security Services . 79

5.4. SPI Class. 80

5.4.1. SubjectValidationService SPI . 81

5.4.2. SubjectFactoryService SPI . 82

5.4.3. AuthenticationService SPI . 82

5.4.4. AuthenticationRepositoryService SPI . 82

5.4.5. IdentityAssertionService SPI . 83

5.4.6. CredentialMappingService SPI . 83

5.4.7. CredentialVerificationService SPI . 84

5.4.8. AuthorizationService SPI . 84

5.4.9. AuthorizationRepositoryService SPI . 85

5.4.10. EventHandlingService SPI . 85

5.4.11. Dependencies between SPI Implementations. 86

5.5. Security Services Configurations . 86

6. Using JACC Provider. 87

6.1. Overview . 87

6.2. Introducing JACC Protocol. 87

6.2.1. Provider Configuration Protocol. 87

6.2.2. Policy Configuration Protocol . 88

6.2.3. Policy Decision and Execution Protocol. 89

6.3. Developing JACC Provider . 89

6.3.1. Implementing JACC Provider. 90

6.3.2. Packaging JACC Provider . 91

6.3.3. Default JACC Provider. 91

6.4. Integrating JACC Providers with the JEUS Security System . 92

7. Using JAAS. 96

7.1. Overview . 96

7.2. Implementing LoginModule to Integrate JEUS with LDAP . 97

7.3. Configuring LDAP JAAS LoginModule Service . 101

7.4. Implementing LoginModule to Integrate with Database . 103

7.5. Configuring LoginModule Service . 109

Appendix A: Security Event Service . 112

A.1. Overview . 112

A.2. Events . 112

Appendix B: JEUS Server Permissions. 116

B.1. Overview . 116

B.2. JEUS System Resource Name . 116

B.3. jeusadmin Command Permission Configurations . 117

References . 119

1. Introduction to the Security System
This chapter describes the concepts, structure, and key features of the security system.

1.1. Overview
In general, the concept of security refers to a set of measures used for preventing and detecting
potential and actual infringements on a system that might cause internal and external damage.

This concept is relevant to an enterprise or computing environment that manages user information
and provides users with services. In this environment, security measures are provided to protect the
users' names, passwords, and addresses as well as resources that provide a service or operate the
system. To protect the critical data and system resources, each enterprise or computing system uses
software or hardware designed to provide security.

JEUS provides various security services as well. The JEUS security services implement Service Provider
Interface (SPI), which provides various security service types that protect user information and
resources defined in JEUS.

This guide outlines the basic structure of the JEUS security system and general security management.

The JEUS security system is designed to achieve the following:

• Have a flexible and pluggable framework.

The framework should be able to integrate the security system with any existing third-party
security mechanism and/or persistent storage mechanism.

• Ensure security.

The security system should prevent any unauthorized access to the system, even by a highly
sophisticated intruder who can decompile the security system sources.

• Provide high performance.

The security system should have minimal impact on the overall performance while ensuring
security for the entire system and application codes. While there is a general tradeoff between
security level and system performance, the JEUS security system is designed to offer both
maximum security and high performance.

• Provide a simple, unambiguous API and SPI for facilitating maintenance and the creation of 3rd
party security services.

• Maintain data integrity.

• Comply with the standards.

The JEUS security system meets all the mentioned objectives.

1. Introduction to the Security System | 1

1.2. Key Features
The following are the key features of the JEUS security system:

• The system has an open architecture and framework with a complete set of security integration
SPI for customers and 3rd parties to use as needed.

• The system fully supports dynamic principal-to-role and role-to-resource authorization mappings.

This means that the authorization mappings (principal-to-role and role-to-resource) are applied at
runtime.

This enables the following security policies:

◦ User U is granted the R role only during the 9 to 5 business hours, Monday to Friday

◦ Everyone is granted the R role

◦ No-one is granted the R role

• The system supports the concept of a security domain (hereafter domain). This allows different
Jakarta EE applications access different security services.

Note that domain and security domain refer to different concepts in the JEUS system. In the
system, a domain refers to a server management unit and a security domain refers to a security
management unit.

• The system provides default implementations of all critical security operations such as
authentication, authorization, repositories, auditing, and clustering.

• The system supports security auditing mechanisms through a flexible event handling model.

• The system enables the user to add simple security functions, such as Subjects and policies, to
the servlet, EJB, and application source codes.

• The system fully supports Java SE 8 and JACC 2.0 specifications.

• The system provides full documentation support through this document and additional Javadoc.

• The system runs independently from other JEUS modules, which makes it easy to use in a
different context.

1.3. Architecture
The following figure shows the basic architecture of the security system.

2 | Security Guide

Architecture of the Security System

The following are the main components (package) of the security system:

• jeus.security.spi

The security SPI classes (represented by the large box in the middle of the figure) is the core of
the JEUS security system. These abstract classes contain methods that are called by user code
(JEUS containers etc.), as well as abstract methods that will be implemented by third party sub-
classes.

There are currently eleven SPI classes available, each related to a specific aspect of security such
as authentication and authorization.

• jeus.security.base

The security base package (represented by the small box in the left) includes basic, concrete
implementations and interfaces that are referenced by the security SPI classes. This package
includes two important classes, Subject and Policy.

• jeus.security.impl.*

The default security implementation package (represented by the box at the left bottom corner)
currently supports XML file repositories and JACC providers.

• jeus.security.admin, jeus.security.container

1. Introduction to the Security System | 3

The management package and the EJB/Web container package (represented by boxes right
above the center) contain codes that use the SPI classes.

• Repository and external security mechanism

Repositories and external security mechanisms.

They (represented by the boxes at the bottom) include databases, LDAP servers, or XML files. The
repositories are used to persistently store security attributes, such as Subject and Policy
information.

External security mechanisms refer to mechanisms that perform authentication or authorization.
An example of an external security mechanism is the JACC provider. However, the boundaries for
plain repositories and security mechanisms are not clearly defined. As shown, it is the
responsibility of the SPI implementation classes (in this case, the class included in
jeus.security.impl.* package) to decide which repository and security mechanism to apply.

1.4. Core Concepts
This chapter covers the core concepts necessary to understand the overall security system.

• Login

• Authentication

• Authorization

• Auditing

• Service and SPI

• Domain

1.4.1. Login

In the JEUS security system, a login is a process that associates a Subject with a Java execution
thread. This process is different from authentication, which takes place before the Subject is
associated with an execution thread. Therefore, if the authentication is successful, a login will
proceed. But if the authentication fails, a login also fails.

After a Subject has logged in successfully, the Subject goes through authorization. The login concept
may thus be seen as an umbrella that spans both authentication and authorization. The opposite of a
login process is a logout process, which disassociates a Subject from its execution thread.

Note that the implementation of a login process requires a stack-based operation. Several Subjects
can be logged in at any time with each new Subject being pushed onto the top of a stack. Only the
Subject on top of the stack is used for authorization. When the Subject logs out, the top Subject is
removed from the stack, and the next Subject at the top of the stack is activated.

The following illustrates this mechanism.

4 | Security Guide

Stack-based Login Mechanism

In the JEUS security system, only one login stack is allowed for each Java thread. As shown in the
Security System Architecture figure, the login mechanism is implemented by the
jeus.security.impl.login.CommonLoginService interface.

1.4.2. Authentication

Authentication is a process of obtaining the identity of a caller for the purpose of using it for
authorization at a later time.

In the JEUS security system, an identity is represented as a Principal that is defined by the
java.security.Principal interface. A Principal is stored as an attribute value of a Subject, which, as
described in the previous section, is implemented by the jeus.security.base.Subject class and
associated with an execution thread. A Subject includes Principals and credentials as its security
attributes.

The Subject implementation used in the JEUS security system is not equivalent to
the JAAS Subject defined by the class javax.security.auth.Subject. However, these
two implementations are similar in many aspects. Also, it is possible to convert
from one to the other so that even if some information is lost, that lost
information can be referred to by an alias.

The following is a UML diagram for a JEUS Subject.

1. Introduction to the Security System | 5

Subject UML Diagram

As shown, the Subject has a main Principal as its unique ID. The Subject may also carry any number
of additional optional Principals. These are non-unique Principals that may be shared by several
Subjects, and these non-unique Principals are referred to as group group Principals.

Subject can also have public or private credentials. Credentials are usually used as a proof to
authenticate the Subject or to deliver specific information. An example of a private credential is a
password. An example of a public credential is a digital certificate.

The credentials of a given Subject may be created by using its sub-class, credentialFactory class. The
actual credentials are obtained from the credential factories using the refresh() method, and they are
added to the public or private credential sets.

Each Subject always belongs to exactly one domain. A Subject with the main
Principal "user1" in domain A is thus different from another Subject with the main
principal "user1" in domain B.

1.4.3. Authorization

In the JEUS security system, authorization is a process of determining whether a previously
authenticated Subject should be allowed to perform a particular operation.

6 | Security Guide

Authorization happens at the system level. For example, authorization is required to determine
whether a certain Subject, usually an administrator, is authorized to boot or shut down the JEUS
server. Authorization is also required at the application level, for example, when a JEUS engine checks
whether a remote caller should be allowed to access a particular application component, such as a
specific EJB method or a servlet.

As in Jakarta EE, authorization in the JEUS security system is a role-based mechanism. The developer
or assembler of a Jakarta EE application sets up security restrictions that are assigned to roles, to
which Principals are mapped during the deployment of an application.

The role-based approach is also used for JEUS system authorization as well as for
Jakarta EE applications.

In the JEUS security system, authorization mappings are referred to as permissions (sub-classes of
java.security.Permission). For example, the Principal "user1" is said to have the permission to access
a role called R. That is, user1 belongs to the role group R.

Let’s suppose that the role R includes the permission to access the resource JNDI and execute the
lookup action.

The following illustrates role-based authorization.

Role-based Permission Authorization

As seen in the previous figure, only Principals and roles are represented as physical entities. The
resource circle in the figure has a dashed outline to denote that resources are implied and not
physically modeled in the authorization process.

In the previous figure, the two boxes marked RolePermission and ResourcePermission represent
instances of the two classes jeus.security.resource.RolePermission and
jeus.security.resource.ResourcePermission, respectively. Both of these classes extend the basic
java.security.Permission abstract class, and there are various other sub-classes of the Permission
class.

1. Introduction to the Security System | 7

Briefly summarized, a Principal owns a set of permissions and those permissions grant the Principal
a set of logical roles. These roles in turn own another set of permissions that grant those roles access
to a set of actions on the resources. By following these indirect mappings, one can determine
whether a principal should be allowed to perform a specific action on a resource.

The figure above shows that the Principal user1 owns a RolePermission. The arrows marked "owns"
in the figure intuitively denote a direct, static binding. However, the term "implies" used to show that
the RolePermission implies role R is different. This implication indicates that binding is not static.
Rather, the relationship between the RolePermission and the role R is determined dynamically at
runtime by invoking the method implies(Permission p) on then RolePermission instance.

If the implies() method returns true, the RolePermission is said to imply role R, otherwise it is not.
Thus, in the former case, principal user1 is granted the role R, and in the latter case it is not. The
same logic applies for the implication between the role R and the Resource JNDI.

For more information about Permission, refer to the java.security.Permission
section in Java SE JavaDoc.

Given the previous information, it is not difficult to implement dynamic mappings. If we just change
the implementation of the implies() method, we can make a permission imply a role or resource
under certain conditions. For example, we might want to create a dynamic mapping between
principal user1 and role R, so that user1 is granted with role R during the business hours (9 AM to 5
PM). To do this, we could simply create a new RolePermission sub-class, called
TimeConstrainedRolePermisson, and override the implementation of the implies() method. In this
method, you can add a check for the additional time-constraint.

For more examples of implementing dynamic mappings, refer to Role at 01:30 AM and Role at 10:30
AM.

Role at 01:30 AM

As shown in Role at 10:30 AM, principal user1 is not granted role R.

8 | Security Guide

Role at 10:30 AM

As shown in the previous figures, the TimeConstrainedRolePermission class contains two variables,
Name and Actions. Name is set to the name of the implied role, which is R in the example, and the
Actions are set to the time when the implication is valid, which is between 9 AM and 5 PM in the
example. Both Name and Actions are standard variables that are declared in most
java.security.Permission class implementations.

Moreover, apart from the basic Permission-based mappings, every permission in the authorization
system belongs to one of the following three types.

Classification Description

Excluded
Permission

No one can have authority for this permission.

For example, an excluded permission, that grants access to the resource RSC, will
not allow anyone to access RSC.

Excluded Permissions have higher priority than unchecked Permissions, in case
there is an overlap.

Unchecked
Permission

Permission owned by all users.

For example, an unchecked permission that grants access to a resource “RSC will
allow anyone to access RSC, regardless of his or her role(s).

Unchecked Permissions have lower priority than excluded Permissions but higher
priority than checked Permissions, in case there is an overlap.

Checked
Permission

Permission owned by a Principal or a role. Examples of these Permissions are
illustrated in the previous 2 figures.

Several examples for this will be further discussed later.

In the JEUS security system, all permission mappings are the classes that implement the
jeus.security.base.PermissionMap class. These PermissionMap classes are included in the

1. Introduction to the Security System | 9

jeus.security.base.Policy class.

Policy class has two kinds of PermissionMaps.

• Principal-to-Role Map (Role Policy0)

• Role-to-Resource Map (Resource Policy)

Each PermissionMap contains the three aforementioned permission types—excluded, unchecked
and checked permissions. In the case of checked permissions, a permission and role PermissionMap
are combined through a Principal or role. A Policy and resource PermissionMap are combined
through a context ID, which indicates the authorization scope.

The following is a UML diagram of Policy and PermissionMap classes.

UML Diagram of Policy and PermissionMap

The following figure summarizes information about mappings.

10 | Security Guide

Example of Policy with One Principal-to-Role mapping and Two Role-to-Resource mappings

In the previous figure, we have a Policy instance that contains one principal-to-role mapping, which is
required, and also two role-to-resource mappings with context IDs A and B, respectively. All three
PermissionMaps contain three sets of permissions as follows.

• Excluded Permissions

• Unchecked Permissions

• Checked Permissions

The oval figures inside the boxes represent the actual permission instances (Name: Action) with
Name and Action variables.

Let’s suppose that a Subject, with context ID "A" and the Principal "user1", wants to access JNDI to
modify it.

This authorization query would be processed by the authorization system as follows:

1. A new ResourcePermission (hereafter RSP), is created with the name "JNDI" and action "modify."

2. The RSP is passed along with the context ID "A" and Principal "user1" to the Policy.

3. Policy selects the Role-to-ResourcePermissionMap for context ID "A."

4. Policy checks whether excluded permissions of PermissionMap A contain the RSP, and receives
the result that it is not included in excluded permissions.

5. Policy checks whether unchecked permissions of PermissionMap A contains the RSP, and receives
the result that it is not included in unchecked permissions.

6. Policy checks whether checked permission of PermissionMap A contains the RSP, and receives the
result that it is included in Checked Permission.

7. Policy retrieves a list of permission owners that implied the RSP, and finds that there is only one

1. Introduction to the Security System | 11

such owner, the role called Administrator.

8. Policy constructs a RolePermission (hereafter RLP) object with the name Administrator.

9. Policy retrieves the Principal-to-RolePermissionMap.

10. Policy checks whether excluded permission of Principal-to-RolePermission contains RLP, and
receives the result that RLP is included in Excluded Permission.

11. The fact RLP is included in excluded permission indicates that the role Administrator has excluded
permission. Therefore, nobody can access Policy. As a result, the entire authorization process will
be terminated, and the value DENIED will be returned.

In this process, although user1 is mapped to the role Administrator, since Administrator is also in the
excluded set, user1 is not granted the role Administrator. This is because excluded permissions have
higher precedence over both unchecked and checked permissions.

If you follow the instructions explained above, you will be able to see how the following authority
check query is solved.

Principal Operation Context Outcome

user1 JNDI:lookup A GRANTED

user1 JNDI:modify A DENIED

user1 JEUS:boot A DENIED

user1 JEUS:boot B GRANTED

Anonymous JNDI:lookup A GRANTED

Anonymous JNDI:lookup B DENIED

Anonymous JEUS:boot A DENIED

Anonymous JEUS:boot B DENIED

1.4.4. Auditing

Security auditing generally involves capturing security-related events such as failed authentication
and runtime exceptions and evaluating these events for better system security.

The JEUS security system features a simple yet flexible auditing mechanism using security events.
Whenever something significant happens in the system, such as failed authentication or failed
authorization, an event will be posted to a set of registered event handlers.

The handler implementations, which can be fully customized, responds with an appropriate action,
such as locking a Subject’s credential when authentication has failed too many times in a row.

1.4.5. Services and SPI

Each class in the security system that implements security functionalities constitutes as a Service. A
Service is simply an implementation of an Service Provider Interface (SPI) that provides some security

12 | Security Guide

functionality, whether it is authentication, authorization, or networking.

SPI is an abstract class of the Java package jeus.security.spi. These SPI class should be extended and
implemented in order to implement customized security functionality. The extended sub-classes of
an SPI class are called Services.

All instances of Services in the security system are treated individually as independent entities whose
services are called as needed. However, it is common for a Service implementation to make calls to
another SPI, and some dependency may exist among different Services. In order to initialize Services.
All Services receives a key–value pair property value used to initialize the Service. The configuration
data of a Service can also be saved in a configuration file.

All Services may also optionally define a JMX bean that will be exported to the JEUS management
system. The JMX MBean is normally created based on a MBeanInfo instance returned by the
Service.getMBeanInfo() method.

All Services have two states, a created state and a destroyed state. The create() and destroy()
methods are called to transition between the two states. Calling these methods will invoke doCreate()
and doDestroy() abstract methods. These abstract methods should be implemented by Service sub-
classes for service initialization and management.

Two Types of Service

The following shows a diagram with a variety of service classes and SPI classes included in the
jeus.security.spi package.

1. Introduction to the Security System | 13

Service Classes and SPI Sub-classes

At runtime, service instances are created by the singleton class called SecurityInstaller. A simple
SecurityInstaller class can be implemented just by writing the necessary code. A more sophisticated
implementation would save the service name and property values to a specific configuration file and
use the information to instantiate and initialize the Service. The default SecurityInstaller
implementation operates according to the latter approach, providing a very simple and flexible way
to add new Service implementations to the security system.

Users do not need to understand the Service and SPI architecture when only
using the JEUS security system.

1.4.6. Domain

Security domain is a collection of security Service instances. Several domains may exist concurrently
within the security system. The purpose of a domain is to allow deployed applications and JEUS sub-
systems to use individual security Services. A domain separates the security Services for each
application.

For example, the JEUS server could be set up to use a special domain. In this case, it is call the
SYSTEM_DOMAIN. This domain contains Subjects and Policies that are used to manage the JEUS
server. For example, the SYSTEM_DOMAIN contains the user information for a main Subject called

14 | Security Guide

administrator, which can be used to boot or shut down the server.

Another domain, let’s call it APP_DOMAIN, could be used by a deployed Jakarta EE application. That
domain might also contain a user information for a Subject called administrator, which is different
from the JEUS server administrator. You could also configure a different repository mechanism for
each domain. While the SYSTEM_DOMAIN can be configured to use a simple XML file to store Subject
information, the APP_DOMAIN can be configured to use a remote database to read and write Subject
information.

The domain concept is illustrated in the following figure.

Two Domains using Different Application and Subject Repository

Use of the domain feature is optional. If no domain is specified, a special SYSTEM_DOMAIN is used.

It is our convention to name domains using capital letters and to append
"_DOMAIN" to the name. This is not a requirement, just a convention. Also note
that whenever the term domain is used within this document, it refers to the
Security domain. These Security domains have nothing in common with Jakarta
EE server domains.

By default, JEUS uses two domains, SYSTEM_DOMAIN and SHARED_DOMAIN, as follows:

• SYSTEM_DOMAIN

The domain name that is used when managing the JEUS server through its standard
management tools. This domain contains JEUS administrator accounts and permissions to
manage the JEUS server, such as booting and shutting down. By default, this domain is also used
for Jakarta EE applications, and it can be changed through configuration.

• SHARED_DOMAIN

1. Introduction to the Security System | 15

The name of a special domain whose security services will be shared by all other configured
domains. Thus, the SHARED_DOMAIN contains security services that will be applied to all other
domains.

To apply different security services to applications, create a separate domain and configure the
domain.xml file. For more information about creating and configuring security domains, refer to
Configuring Security System.

1.5. Improving Performance and Security Level
To a certain degree, the information given in this chapter conflicts with the attributes a security
system must have. Basically, there is always a tradeoff between performance and security. Thus, you
need to control the level of performance and security to an appropriate level according to the task
requirements.

1.5.1. Improving Performance

This chapter explains how to minimize the performance impact that the security system has on the
overall performance of the JEUS server.

The following are measures for improving performance of the overall security system.

• Do Not Use Secured Connection in JEUS Domain.

Secure connection uses a socket to send an encoded packet, which means that larger amount of
data will be transmitted than with a general socket communication.

To improve performance, it is recommended not to use secured connections in JEUS domain.

• Do Not Use JEUS SecurityManager

You can avoid executing unnecessary operations by not using the SecurityManager. This means
that authorization is not used, but instead authentication is required.

• Use Non-blocking I/O

Network blocking occurrences can be reduced by using Non-Blocking I/O. Non-blocking I/O
removes blocking while waiting for the next I/O request to occur.

Therefore, CPU usage and the number of FD are reduced because a separate thread for I/O is not
needed for each connection. non-blocking I/O is used in JEUS by default. It guarantees higher
performance than blocking I/O.

1.5.2. Improving Security Level

This section explains how to improve the security system level despite a performance hit.

16 | Security Guide

The following are the ways to improve the overall security level of JEUS:

• Set the global system password.

• Use secured connection in JEUS security domain

Configure the network security service to use secured connection, which is usually protected with
SSL/TLS. For more information about how to set a secured connection when the default network
service is used, refer to References. This prevents anyone from network eavesdropping and
picking up sensitive information.

• Protect Subject and Policy from Unauthorized Access

It is essential to protect user information of a Subject and the Policy repository location from
unauthorized access. The method for this depends on the repository type. The following are
some example cases.

◦ If a database is in use, the table that stores user information of a Subject and the table where
Policy is stored must be protected through authentication and authorization configured on
the database side. You must also protect connections between the JEUS security repository
and the database by using SSL, etc. Refer to the database documents to learn how to
configure this setting.

◦ If security information is stored in an XML file such as accounts.xml and policies.xml, you
must create proper file access permissions to ensure that only the JEUS security system and
administrators have access to this file. Use encryption, if encryption is supported regardless
of the repository. Refer to the repository document to learn how to apply security to files.
Refer to the operating system manual to learn how to set read/write access to the files.

• Use Security Auditing

Create a security event log for events that occur in the system and periodically audit the log. JEUS
security auditing mechanism is usually implemented by using the service SPI class,
jeus.security.spi.EventHandling. Note that a log file must be protected from unauthorized access.
For information about various security auditing mechanisms, refer to References.

• Use JavaSE SecurityManager

Configure JavaSE SecurityManager as explained in Configuring Java SE SecurityManager to
improve the robustness of the JEUS system and to protect JEUS from potentially malicious EJB and
Servlet code injections.

• Use Third-Party Security Mechanism

In an environment that deals with sensitive information such as in a banking application, it is
strongly recommended to use additional security mechanisms such as firewalls or virtual private
networks (VPNs) along with the JEUS security system.

• Configure Security for Operating System

Regardless of the operating system in which JEUS operates, do as follows to protect the operating
system.

1. Introduction to the Security System | 17

◦ Restrict physical access to the servers where JEUS is installed. For example, keep the servers
in a locked place.

◦ Set process and file privileges so that only trusted administrator can access the JEUS files and
processes. Refer to the operating system manual.

◦ Update the operating system with the latest security related patches.

◦ Periodically execute an antivirus software.

◦ Keep all written security related documents safe. For example, keep written passwords in a
locked cabinet.

18 | Security Guide

2. Configuring the Security System
This chapter describes how to install and configure the security system in JEUS. For information on
configuring services in a domain other than what is mentioned here, refer to References.

2.1. Overview
This section will briefly summarize some basic aspects related to security system configurations.

The JEUS security system starts when the server is executed by the Security Installer. To protect JEUS,
the Security Installer creates a security domain based on the information in the domain.xml file
before starting the security service. The user accounts and security policies defined in the
account.xml and policies.xml files are applied in the default security system.

The following two items can be configured in a security domain.

• Definitions of security domain and security services.

• Accounts and policies for the domain.

The following are steps for configuring the default security system.

1. Configure security domains.

2. Configure security Services for each security Domain.

3. Configure Subjects (authentication data) for each Domain.

4. Configure Policies (authorization data) for each Domain.

5. Configure additional items.

6. Configure a JavaSE SecurityManager (optional).

7. Configure a JACC provider (optional).

Default Security System Directory

The following is the directory structure of the default security system. Each directory lists the
configuration files used by the default security system.

JEUS_HOME/domains/<domain name>
 |--config
 |--security
 |--security.key
 |--policy
 |--security-domains.xml
 |--SYSTEM_DOMAIN
 |--accounts.xml
 |--policies.xml

2. Configuring the Security System | 19

security

The following describes each directory and file.

Classification Description

security.key The file that stores the key for synchronous encryption algorithm. The
file will be created when the encryption is executed for the first time.

policy The Java Permission configuration file. It is used in Java SE Security
Manager, separate from the JEUS security system.

security-domains.xml The file that stores the configuration for JEUS security domains.

SYSTEM_DOMAIN A domain used by the JEUS server to check for user authentication and
authorization. This domain contains Permissions to start and terminate
JEUS, and JEUS system administrator accounts.

◦ accounts.xml: Stores user information.

◦ policies.xml: Stores security policy information (permission grating
data).

To apply different security policies to applications, a separate security domain
directory must be created and configured.

2.2. Configuring the Security System Domain
Domains can be configured by manually modifying the domain.xml or security-domains.xml file.
Other configurations than the user account and security policy settings cannot be changed
dynamically. Therefore, when a security domain is added or security service configurations are
changed, the server must be restarted to apply the changes.

All configurations related to security apply to all servers in the JEUS domain. All
servers must be restarted in order to apply the security configurations, except for
user account and security policy configurations.

This section describes how to define a security domain by editing the xml files.

2.2.1. Configuring XML

To directly modify the XML file, use the following tags from JEUS_HOME/domains/<domain
name>/config/domain.xml and JEUS_HOME/domains/<domain name>/config/security/security-
domains.xml files.

XML configuration methods for a domain are defined in jeus-domain.xsd, jeus-security.xsd, and
security-domains.xsd in the JEUS_HOME/lib/schemas/jeus/supportLocale/ko directory. The parent tag

20 | Security Guide

is <security-manager>, and it has the following child tags for domain configurations. Zero or more
child tags can be used.

Configuring a Security System Domain: <domain.xml>

<security-manager>
 <default-application-domain>SYSTEM_DOMAIN</default-application-domain>
 <security-domain-names>
 <security-domain-name>SYSTEM_DOMAIN</security-domain-name>
 ...
 </security-domain-names>
</security-manager>

The following describes configuration tags.

• <security-manager>

Sets the security domains that will be registered with JEUS. For more examples of <security-
manager>, refer to Configuring Security Domain Components�.

Tag Description

<connect-retries> Sets the connection retry count in JEUS Security NetworkService.

(Default value: 10)

<password-validator> When specifying a password for a JEUS account, password validity check
is configured to enhance password security.

<default-application-
domain>

Sets the default domain name that will be used in Jakarta EE
applications.

(Default value: SYSTEM_DOMAIN)

• <security-domain-names>

Specifies the name of security domains to be used in JEUS.

Tag Description

<security-domain-
name>

Sets the security domain name. It is a value referencing the 'name' field
in the security domain configuration.

Configuring a Security System Domain: <security-domains.xml>

<security-domains>
 <security-domain>
 <name>SYSTEM_DOMAIN</name>
 <authentication />
 <authorization />
 ...
 </security-domain>
</security-domains>

2. Configuring the Security System | 21

The following describes configuration tags.

• <security-domain>

Configure the security domains that will be registered with JEUS. For more examples of <security-
domain>, refer to Configuring Security Domain Components�.

Tag Description

<name> Sets the security domain name.

<authentication> Defines the authentication service.

<authorization> Defines the authorization service.

<identity-assertion> Defines the identity assertion.

<credential-mapping> Defines the credential mapping service.

<credential-
verification>

Defines the credential verification service.

<audit> Defines the audit service.

<subject-validation> Defines the subject validation service.

2.2.2. Configuring User Accounts and Security Policies

This section describes how to configure user accounts and security policies using the default XML file.

It is possible to store the user account and security policy information in the database as well as in
the XML file. For more information, refer to Using Database for user accounts and Using Database
for security policies.

The following are steps to configure accounts and policies.

1. To configure a new security domain, a new directory must be created under the
JEUS_HOME/domains/<domain name>/config/security directory. The name of the new directory
should match the name of the domain that you wish to create. By convention, domain names use
all capital letters and are appended with the string "_DOMAIN". For example, the name
"DEFAULT_APPLICATION_DOMAIN" can be used as a domain name.

To create a domain with the name DEFAULT_APPLICATION_DOMAIN, execute the following
command.

$ mkdir ${JEUS_HOME}/domains/domain1/config/security/DEFAULT_APPLICATION_DOMAIN

domain1 should be replaced with the actual JEUS domain name.

2. After creating the new domain directory, you must create a number of configuration files in the

22 | Security Guide

directory.

The best way is to copy existing configuration files from the existing domain directory and modify
these files according to your need. Enter the following commands in a single line. The following
sections will explain how to modify these copied configuration files.

$ cp ${JEUS_HOME}/domains/domain1/config/security/SYSTEM_DOMAIN/*.*
 ${JEUS_HOME}/domains/domain1/config/security/DEFAULT_APPLICATION_DOMAIN

By default, SYSTEM_DOMAIN already exists under the JEUS_HOME/domains/<domain
name>/security directory. SYSTEM_DOMAIN is the domain used by the JEUS server to perform
authentication and authorization. Among other things, this domain contains the JEUS system
"administrator" account and permissions for starting and terminating the JEUS server.

3. Add the new security domain name to JEUS_HOME/domains/<domain name>/config/domain.xml
and JEUS_HOME/domains/<domain name>/config/security/security-domains.xml, respectively. In
the case of domain.xml, it must be added to <security-manager><security-domain-names>, and
in the case of security-domains.xml, it must be added to <security-domains><security-domain>.

4. The newly created domain will be applied when JEUS is restarted.

The security domain, SYSTEM_DOMAIN, will always be included regardless of the configurations
in the domain.xml file. In general, you can create a directory with the same name as the domain
under the JEUS_HOME/domains/<domain name>/config/security directory. In this directory, you
can define the security policy information (policies.xsd) and account information (accounts.xsd) of
the Repository, which needs to be defined for each domain. You can also use the domain.xml file
to register the Security Service for each domain.

2.3. Configuring Security Domain Components
This section describes how to configure security domain components, excluding security services.

2.3.1. Configuring XML

The security services that are loaded to each security domain are defined in domain.xml and
security-domains.xml.

The security configurations are defined by an XML schema in jeus-security.xsd and security-
domains.xsd which are under the JEUS_HOME/lib/schemas/jeus/supportLocale/ko directory.

Inside the <security-domains> tag, add <security-domain> child tags related to security settings. One
or more <security-domain> tags can be used, and each tag defines a security domain used in JEUS.

Configuring a Security System Domain: <domain.xml>

<?xml version="1.0" encoding="UTF-8"?>
<domain version="9.0" xmlns="http://www.tmaxsoft.com/xml/ns/jeus">

2. Configuring the Security System | 23

 . . .
 <security-manager>
 <default-application-domain>DEFAULT_APPLICATION_DOMAIN</default-application-domain>
 <security-domain-names>
 <security-domain-name>SYSTEM_DOMAIN</security-domain-name>
 <security-domain-name>DEFAULT_APPLICATION_DOMAIN</security-domain-name>
 ...
 </security-domain-names>
 </security-manager>
 . . .
</domain>

Security System Service Configurations: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus" version="9.0">
 <security-domain>
 <name>SYSTEM_DOMAIN</name>
 ...
 </security-domain>
 <security-domain>
 <name>DEFAULT_APPLICATION_DOMAIN</name>
 </security-domain>
</security-domains>

Inside the <security-domain> tag, if you only configure the <name> tag and do
not configure other Service Provider information, the default security services will
be used for the corresponding domain.

Descriptions of child tags of <security-domain> are as follows.

• <name> (required)

The security domain name.

• <cache-config> (0 or more, optional)

Defines the cache policy value that is to be applied to the security repository service in the
domain.

Tag Description

<min> The minimum cache entry size that will be applied to the repository service.

<max> The maximum cache entry size that will be applied to the repository service.

<timeout> The cache entry timeout value that will be applied to the repository service.

• <keystore-config>(0 or more, optional)

Defines the keystore file information that will be applied to the security service in the domain.

24 | Security Guide

If child configuration values do not exist and '–Djeus.ssl.*' or '–Djavax.net.ssl.*' is not configured,
the default value will be applied.

Tag Description

<keystore-path> The path to the keystore file to be applied to the current domain.

(Ex: JEUS_HOME/domains/<domain name>/config/security/keystore)

<keystore-alias> The keystore alias. When there are multiple keyEntry certificates in the
keystore file, the keystore entries are accessed via unique aliases.

<keystore-
password>

The keystore file password for the current domain. (Default value: changeit).

<keystore-
keypassword>

The password for the keystore file for the current domain.

(Default value: Same with the value of <keystore-password>)

<truststore-
path>

The path to the truststore file of the current domain.

(Ex: JEUS_HOME/domains/<domain name>/config/security/truststore)

<truststore-
password>

The truststore file password for the current domain (Default value: changeit).

2.4. Configuring Security Services
JEUS security system supports plugin type of authentication and authorization services. This section
describes how to configure security domain components, including security services, by modifying
the XML file.

2.4.1. Configuring XML

The security services that will be loaded for each security domain are set in the security-
domains.xml file as follows.

The following is an example of a security configuration file.

Security System Service Configurations: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus" version="9.0">
 <security-domain>
 <name>SYSTEM_DOMAIN</name>
 <authentication>
 <repository-service>
 <xml-file-repository>
 <config-file>
 <filename>accounts.xml</filename>
 <filepath>
 ${JEUS_HOME}/domains/domain1/config/security/
 </filepath>

2. Configuring the Security System | 25

 </config-file>
 </xml-file-repository>
 </repository-service>
 </authentication>
 </security-domain>
 <security-domain>
 <name>DEFAULT_APPLICATION_DOMAIN</name>
 </security-domain>
</security-domains>

Descriptions of child tags of <security-domain> are as follows.

• <name> (required)

The security domain name.

• <authentication> (0 or more, optional)

Defines the Credential Verification service that applies to the domain.

◦ <repository-service>

Defines the services according to the user information storage type for authentication.

Tag Description

<xml-file-repository> When the user information is saved in XML file.

<database-
repository>

When the user information is saved in database.

<custom-repository> When the user information loading method is applied by
implementing the extended repository service that inherits the
jeus.security.spi.AuthenticationRepositoryService SPI.

◦ <jaas-login-config>

Registers the JAAS service that applies to the domain.

▪ <callback-handler-class> : JAAS Callback Handler Factory class name.

▪ <login-module> : Configuration related to the LoginModule.

Tag Description

<login-module-
classname>

Class name that contains the package that implements the
LoginModule.

26 | Security Guide

Tag Description

<control-flag> Property definition for controlling the authentication stack by defining
one of the following four properties:

◦ required

◦ requisite

◦ sufficient

◦ optional

<option> (0 or
more)

Definitions of property values that will be applied when initializing the
LoginModule.

◦ <custom-authentication-service>

Defined when applying the default authentication service that is extended by inheriting the
jeus.security.spi.AuthenticationService SPI. Follow the Custom Security Services configuration
methods.

• <authorization> (0 or more, optional)

Defines the authorization service that applies to the domain.

◦ <repository-service>

Defines service according to the policy information repository type used for authorization.

Tag Description

<xml-file-repository> When the policy information is saved in XML file.

<database-
repository>

When the policy information is saved in a database.

<custom-repository> When the policy information loading method is applied by
implementing the extended repository service that inherits the
jeus.security.spi.AuthorizationRepositoryService SPI.

◦ <custom-authorization-service>

Defined when applying the default authorization service that is extended by inheriting the
jeus.security.spi.AuthorizationService SPI. Follow the Custom Security Services configuration
methods.

◦ <jacc-service>

Defined when applying the JACC 2.0-based authorization service.

• <identity-assertion>(0 or more, optional)

Defines the IdentityAssertion service that applies to the domain.

2. Configuring the Security System | 27

◦ <default-identity-assertion-service>

Defines the basic Identity Assertion Service that is provided by the JEUS Security Framework.

▪ <x509-identity-assertion>: Supports Identity Assertion Service for the X509Certificate
token.

Tag Description

<config-file> Specifies the location of the file that defines the information
needed to perform user mapping of the X509Certificate token.

(Default value: user-cert-map.xml under the DOMAIN directory)

<default-user-
mapper>

Defines a delimiter for the attribute value (attribute-value-
delimiter), attribute Type(attribute-type), or attribute type(cert-
attr-type) value for the X509Certificate Token value.

◦ <custom-identity-assertion-service>

Defined by implementing the Identity Assertion Service that inherits
jeus.security.spi.IdentityAssertionService SPI. Follow the Custom Security Services
configuration methods.

• <credential-mapping> (0 or more, optional)

Defines the CredentialMapping service that applies to the domain.

◦ <default-credential-mapping-service>

Supports the basic Credential Mapping Service that is provided by the JEUS Security
Framework.

▪ <x509-credential-mapping> : Supports the Credential Mapping Service for the
x509Certificate.

Tag Description

<truststore-
path>

Defines the path for truststore file that is to be applied to the current
domain.

<truststore-
password>

Defines the password for truststore file that is to be applied to the
current domain.

◦ <custom-credential-mapping-service>

Defined by implementing the Credential Mapping Service that inherits
jeus.security.spi.CredentialMappingService SPI. Follow the Custom Security Services
configuration methods.

• <credential-verification> (0 or more, optional)

Defines the Credential Verification service that applies to the domain.

28 | Security Guide

◦ <default-credential-verification-service>

Supports the basic Credential Verification Service that is provided by the JEUS Security
Framework.

Tag Description

<password-
verification>

Defines the verification service for the PasswordFactory class.

<jeus-certificate-
verification>

Defines the verification service for the X509Certificate.

◦ <custom-credential-verification-service>

Defined by implementing the Credential Verification Service that inherits
jeus.security.spi.CredentialVerificationService SPI. Follow the Custom Security Services
configuration methods.

• <audit> (0 or more, optional)

Defines the EventHandlingService that is to be applied to the corresponding domain. This is used
to collect information about events that occurred in JEUS Security Framework.

Tag Description

<default-audit-service> Defines the event log level and the file path where event information is
saved.

• config-file: Log file path.

• audit-level: Log level.

<custom-audit-service> Defined by implementing the Audit Service that inherits
jeus.security.spi.EventHandlingServiceService SPI. Follow Custom
Security Services configuration methods.

Custom Security Services

The following describes how to configure custom security services. For more information about the
security service types provided by JEUS and custom security service development, refer to Developing
Custom Security Service.

• <classname> (Required)

Name of the Java class that implements the Custom Security Service. This class should contain a
default public no-argument constructor, and should inherit the jeus.security.spi package’s SPI or
directly inherit the jeus.security.base.Service class.

• <property> (0 or more)

The jeus.security.base.PropertyHolder interface (that is implemented by the

2. Configuring the Security System | 29

jeus.security.base.Service class) can be used to configure property as a name-value pair for
security services. This property is used to initialize each of the security services.

It contains the following two child tags.

Tag Description

<name> Property name.

<value> (optional) String property value for the property name.

2.5. Configuring the Security System User Information
In the default security configurations, user data is read from the accounts.xml file.

The following is the file path.

JEUS_HOME/domains/<domain name>/config/security/<security domain name>/accounts.xml

Here, <domain name> is the name of the domain and <security domain name> is the name of the
security domain for which the users are managed.

2.5.1. Configuring XML

The XML schema of accounts.xml is accounts.xsd, which is in the
JEUS_HOME/lib/schemas/jeus/supportLocale/ko directory. In the accounts.xml file, there are 0 or
more <user> and <group> tags inside the <accounts> tag. They represent a user and a group,
respectively.

Security System User Information Configuration: <accounts.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<accounts xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <users>
 <user>
 <name>user1</name>
 <password>{AES}mnG6ItxFO/WQlE2YzIZ7sA==</password>
 <group>group1</group>
 </user>
 <user>
 <name>user2</name>
 <password>{DES}7dJ0KDTGQNpSnQAPYBNnmA==</password>
 </user>
 <user>
 <name>user3</name>
 <password>{DES}7dJ0KDTGQNpSnQAPYBNnmA==</password>
 <group>nested_group</group>
 </user>
 <user>
 <name>user4</name>

30 | Security Guide

 <password>{SEED}dl2EePMAcnxPYbIyknuZkA==</password>
 <group>nested_group</group>
 </user>
 </users>
 <groups>
 <group>
 <description>Group1</description>
 <name>group1</name>
 <subgroup>nested_group</subgroup>
 </group>
 <group>
 <description>For NestedGroup</description>
 <name>nested_group</name>
 </group>
 </groups>
</accounts>

The following describes configuration tags.

• <user>

Each <user> tag has the following child tags.

Tag Description

<description>
(optional)

Description of the <user> (string).

<name> (required) Name of the <user>. (ex : user name, user id)

<password> (0 or
more, optional)

Password of the <user>.

The value that is encoded by using a particular algorithm. The algorithm or
encoding method applied to <password> will be specified in ’{}’. Refer to
Configuring Password Security.

<group> (0 or more,
optional)

The name of the group that the <user> belongs to. A user can be included
in multiple groups. Also, the group must designate one of the groups
defined in the <group> tag, described next.

• <group>

Each <group> tag defines a group and contains the following child tags.

Tag Description

<description>
(optional)

Description of the <group> (string).

<name> (required) Name of the <group>.

<subgroup> (0 or
more, optional)

Defines the nested group names so that the corresponding group role can
be applied uniformly.

2. Configuring the Security System | 31

2.5.2. Using Database

This section explains how to configure authentication using the database table defined by JEUS.

The following example illustrates how to use the data source defined in JEUS.

Configuring Users Using Database: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus" version="9.0">
 . . .
 <security-domain>
 <name>MY_DOMAIN</name>
 <authentication>
 <repository-service>
 <database-repository>
 <datasource-id>auth</datasource-id>
 </database-repository>
 </repository-service>
 </authentication>
 . . .
 </security-domain>
 . . .
</security-domains>

In the previous example, the data source ID must be configured using the <datasource-id> element.
The data source ID is registered in the security-domains.xml file that will be used for authentication.
Authentication can also be performed by directly communicating with the database through the
DriverManager without using the JDBC that is provided by JEUS. To do this, change the <datasource-
id> element block of the previous example as follows.

The following example illustrates how to configure the database repository when not using the JEUS
JDBC.

Without Using JEUS JDBC: <security-domains.xml>

 <security-domain>
 ...
 <repository-service>
 <dbdriver-config>
 <vendor>oracle</vendor>
 <driver>oracle.jdbc.OracleDriver</driver>
 <url>jdbc:oracle:thin:@127.0.0.1:1521:ORA9I</url>
 <username>scott</username>
 <password>{base64}dGlnZXI=</password>
 </dbdriver-config>
 </repository-service>
 ...
 </security-domain>

As applications frequently establish database connections and close them in this
way, there may be some drop in performance. So, it is recommended to use JEUS

32 | Security Guide

JDBC (<datasource-id>) to enhance performance.

The tables that are used in the database are organized as follows:

Database Table Structure that Stores the User Information for Subjects

If the tables do not exist in the database, create a DB table by using the
JEUS_HOME/templates/security/dbrealm.sql.template file. This will initially create the user with the
name 'jeus' and the password 'jeus'.

2.5.3. Configuring Password Security

This section describes how to check password validity, encryption algorithms, and how to manage
the SecretKey file for the password security configurations.

Password Validity Check

When a user enters a password to create a new account or make changes to an existing password,
the validity of the password can be checked using various restrictions (such as options to use
uppercase/lowercase characters, digits, and special characters and a rule that a password name
must not be identical to its ID name). This improves the security of the password.

The domain administrator can select and use either the Default Password Validator or a Custom
Password Validator, which implemented by the user, by using jeusadmin commands for adding,
modifying, and deleting the settings. These settings are stored in domain.xml.

• Configuring Default Password Validator

You can set the functionality by using the modify-default-password-validator and show-
default-password-validator commands in jeusadmin. For information on the commands, refer
to "Part II. Console Commands and Tools" in JEUS Reference Guide.

[MASTER]domain1.adminServer>modify-default-password-validator -min 4 -max 10
Default password validator is updated successfully.
Check the results using "show-default-password-validator or modify-default-password-validator".
[MASTER]domain1.adminServer>show-default-password-validator
==
+--+-------+

2. Configuring the Security System | 33

| property | value |
+--+-------+
min length	4
max length	10
include special characters	false
include digit characters	false
include capital characters	false
include small characters	false
exclude user id	false
+--+-------+
==

The following describes each configuration item when the 'Validator Type' is set to 'Default
Password Validator':

Item Description

min Minimum length of a password. (range: 1 ~ 255, default value: 1)

max Maximum length of a password. (range: 1 ~ 255, default value: 255)

special Indicates that at least one special character must be included.

digit Indicates that at least one numeric value must be included.

capital Indicates that at least one uppercase letter must be included.

small Indicates that at least one lowercase letter must be included.

excludeId Indicates that the user ID should not be included.

Once the items are configured, the configurations are saved in domain.xml as in the following:

Configurations for Default Password Validator: <domain.xml>

<domain>
 . . .
 <security-manager>
 . . .
 <password-validator>
 <default-password-validator>
 <minLength>4</minLength>
 <maxLength>10</maxLength>
 <force-special-character>true</force-special-character>
 <force-digit>true</force-digit>
 <force-capital-letter>true</force-capital-letter>
 <force-small-letter>true</force-small-letter>
 <deny-username>true</deny-username>
 </default-password-validator>
 </password-validator>
 . . .
 </security-manager>
 . . .
</domain>

After all the configurations are saved, they are dynamically applied as password rules. These
rules must be met when a user creates a new password or updates an existing one.

34 | Security Guide

• Configuring Custom Password Validator

A user can create a Custom Password Validator by implementing the jeus.util.PasswordValidator
interface. The user must directly implement this interface to create a class with the desired
functionality, package it into a JAR file, and place it in the 'DOMAIN_HOME/lib/application'
directory.

The jeus.util.PasswordValidator interface is as follows:

public interface PasswordValidator {
 boolean validatePassword(String id, String password);
}

For a class that implements the PasswordValidator interface, the validatePassword(String id,
String password) method takes as parameters the ID and password of the user who creates an
account or changes the password. The method then checks the validity of the password and
returns either true or false depending on the validation result.

Once the JAR file containing the class is placed in the DOMAIN_HOME/lib/application directory,
use jeusadmin commands to configure a Custom Password Validator.

This item can be configured using the jeusadmin commands related to Custom Password
Validator, which are add-custom-password-validator, remove-custom-password-validator,
and show-custom-password-validator. For information about the commands, refer to "Part II.
Console Commands and Tools" in JEUS Reference Guide.

[MASTER]domain1.adminServer>add-custom-password-validator -class MyValidator
Custom password validator [MyValidator] is added successfully.
Check the results using "show-custom-password-validator".
[MASTER]domain1.adminServer>show-custom-password-validator
==
+--+
| custom password validator class names |
+--+
| MyValidator |
+--+
==

Once the item is configured, the configuration is saved in domain.xml as in the following:

Configurations for Custom Password Validator: <domain.xml>

<domain>
 . . .
 <security-manager>
 . . .
 <password-validator>
 <custom-password-validator>
 <class-name>MyValidator</class-name>
 <class-name>MyValidator2</class-name>
 </custom-password-validator>
 </password-validator>

2. Configuring the Security System | 35

 . . .
 </security-manager>
 . . .
</domain>

The server must be restarted for the Custom Password Validator configuration to take effect.
After the server restart, the password rules must be met when a user creates a new password or
updates an existing one. If more than one class has been defined to Custom Password Validator,
all password rules contained in all the classes must be met for password validation.

The server will not restart if there is no JAR file of the user-defined class in the
DOMAIN_HOME/lib/application directory. In this case, the user must set the
relevant items in domain.xml correctly for the server to restart.

Encryption Algorithms

When configuring a user, the user password must be set. The password can be stored in plain-text,
but for security reasons, it is better to encrypt the password using an encryption algorithm.

It is recommended to use a one-way encryption algorithm in accordance with the
national encryption guidelines of Korea.

Passwords can be encrypted by using the set-password command in jeusadmin, or directly by using
JEUS_HOME/bin/encryption.

To manually encrypt the password, use the following format.

{algorithm}encrypted password

The key value of the symmetric-key algorithm is stored in JEUS_HOME/domains/<domain
name>/config/security/security.key.

The following are descriptions of algorithms that can be used for password encryption.

Item Description

AES/DES/DESede/SEED/Blowf
ish

cryptographic symmetric-key algorithm.

base64 Encoding algorithm. Since the information encrypted in Base64 can
be easily decoded by any one, it is not secure.

SHA Hash algorithm. This one-way encryption algorithm cannot be
decrypted.

36 | Security Guide

Item Description

SSHA Salted Hash Algorithm. This one-way encryption algorithm cannot be
decrypted. It enhances the conventional hash algorithm by adding
salting, which significantly increases resistance to reversal through
rainbow tables.

The user can specify the key size for an encryption algorithm. The key size is managed as a global
system property by an administrator.

The default key size is 256 bits and can be changed using the jeus.security.keylength system
property. For example, the "-Djeus.security.keylength=256" option allows an encryption algorithm
with a 256-bit key.

If the key size set with the system property is larger than the maximum size supported by an
encryption algorithm, the supported maximum size will be used. For example, since AES supports
only 128-bit, 192-bit, and 256-bit keys, AES512 will become AES256.

If a specified key size is smaller than the maximum size supported by an encryption algorithm, but is
not a valid size, EncryptionException occurs. For example, since AES supports only 128-bit, 192-bit,
and 256-bit keys, the AES200 setting causes EncryptionException.

After the system property is modified, passwords must be initialized.

SecretKey File Management Using the Master Password

When encrypting a password using the encryption tool (located in JEUS_HOME/bin), the SecretKey
information that is applied to an encryption file can be stored in security.key file grouped by
algorithm types. A master password can be used to encrypt the security.key file.

The security.key file is placed in the following path. When configuring a domain environment, the
security.key file must be moved to another node.

JEUS_HOME/domains/<domain name>/config/security/security.key

When you encrypt the DB password, which needs to be registered in JEUS, a client needs a key to
decrypt it. At this point, you can configure the secret key file path by using the system property.

When the master password is specified in the secret key file, this master password can also be
configured using the system property. The property name for the key path is jeus.security.keypath.
To specify the master password, use the jeus.security.master property. These properties can also be
used when starting JEUS. However, for security reasons, it is recommended to use the prompt
(standard input) to enter the master password.

2. Configuring the Security System | 37

2.5.4. Cached Login Information

The user information must be entered when starting a server using the JEUS script or by accessing
the server using jeusadmin. In such case, the user information can be cached so that the user
information does not need to be entered every time.

The information is stored encrypted in AES in
USER_HOME/.jeusadmin/.jeuspasswd. The JEUS_HOME/bin/security.key file is
used for encoding and decoding. Since the AES encoding is used to store
sensitive user information, ID/password, it is not recommended for use.

Only the login information, that was authenticated, is stored in the cache.

When executing the connect command in jeusadmin or JEUS script at server startup, if the option
-cachelogin is added with the user information, the login information will be stored in the file. When
JEUS script is used, the login information is stored using the key, <domain name>:<server name>.

When JEUS script is executed, if login information with the same domain and server name exists, the
user information will be automatically filled without having to re-enter the user information. If the
user manually enters the information, even if there is already cached login information, the cached
information will be ignored.

The following example shows the stored login information.

#Warning: We don't recommend to use this on Production Environment.
domain1:user1
gEPaqBz6BaAxWxdSXf8wZNPLsWkysgcov/KJnHvDeduKRvTAOb7F6zRaPHc2zLBUIUi46FQFWnl4mQiEIUbG9UEe4yZrsRri7yS9q
i+7EwA=

The stored login information can be deleted using the remove-login-cache command, an off-line
jeusadmin command.

2.6. Configuring Security System Policies
When configuring default securities, the policy data (authorization data) is read from the file,
policies.xml.

The file is in the following path.

JEUS_HOME/domains/<domain name>/config/security/<security domain name>/policies.xml

<domain name> is the domain name, and <security domain name> is the domain name where the
policy will be applied.

38 | Security Guide

2.6.1. Configuring XML

The XML schema of the policies.xml file is policies.xsd, and it is in the
JEUS_HOME/lib/schemas/jeus/supportLocale/ko directory. policies.xml can contain 0 or more
<policy> tags. Each <policy> tag represents an individual policy (authorization data).

Security System Policy Configuration: <policies.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<policies xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <policy>
 <role-permissions>
 <role-permission>
 <principal>user1</principal>
 <role>administrator</role>
 </role-permission>
 <role-permission>
 <principal>user1</principal>
 <role>teller</role>
 <actions>9:00-17:00</actions>
 <classname>
 jeus.security.resource.TimeConstrainedRolePermission
 </classname>
 </role-permission>
 </role-permissions>
 <resource-permissions>
 <context-id>default</context-id>
 <resource-permission>
 <role>teller</role>
 <resource>bankdb</resource>
 <actions>select, update</actions>
 </resource-permission>
 <resource-permission>
 <role>administrator</role>
 <resource>jndi</resource>
 <actions>modify, delete</actions>
 </resource-permission>
 <resource-permission>
 <resource>jndi</resource>
 <actions>lookup</actions>
 <unchecked/>
 </resource-permission>
 <resource-permission>
 <role>administrator</role>
 <resource>jeus.*</resource>
 <actions>*</actions>
 </resource-permission>
 </resource-permissions>
 </policy>
</policies>

The following describes configuration tags.

• <role-permissions> (0 or 1)

Provides information about principal-to-role mappings. Multiple <role-permission> tags are

2. Configuring the Security System | 39

nested inside this tag.

The <role-permission> tag consists of the following child tags.

Tag Description

<principal> (0 or
more)

Principal name that owns the current role-permission.

<role> (1ea,
required)

Role name.

<actions>
(optional)

Actions for the Role.

<classname>
(optional)

The Java class name that implements java.security.Permission, which will be
used for role permission. If omitted, by default,
jeus.security.resource.RolePermission is used. For more information about
configuring Custom Permission, refer to "Custom Permission Implementation
and Configurations".

<excluded>
(optional)

Empty tag (<xxx/>)with no value. If specified, the role permission is excluded
(this means that the role implied by the permission will be granted to no one).

<unchecked>
(optional)

Empty tag. If specified, the role permission is unchecked (this means that the
role implied by the permission will be granted to everyone).

• <resource-permissions> (0 or more)

These tags contain information about role-to-resource mapping as follows:

◦ <context-id> (optional)

Context ID (string). Context is the scope for authorization checks. The default Context ID for
JEUS resources used by JEUS system is "default".

◦ <resource-permission> (0 or more)

The <resource-permission> tag consists of the following tags.

Tag Description

<role> (0 or
more)

Role name that owns the current resource-permission.

<resource> (1ea,
required)

Resource name.

<actions>
(optional)

Actions for the resource.

40 | Security Guide

Tag Description

<classname>
(optional)

The Java class name that implements java.security.Permission which will be
used for Resource Permission. If omitted,
jeus.security.resource.ResourcePermission is used by default. For more
information about configuring Custom Permission, refer to "Custom
Permission Implementation and Configurations".

<excluded>
(optional)

Empty tag with no value. If specified, the resource permission is excluded.
(this means that the resource implied by the permission will be granted to
no one).

<unchecked>
(optional)

Empty tag with no value. If specified, the resource permission is
unchecked. (this means that the resource implied by the permission will be
granted to everyone).

Normally the policies.xml file is exclusively used to configure permissions for JEUS Server Resource
(like JNDI, JMS, Security Server, etc.), and not for Jakarta EE applications and modules. To configure
Jakarta EE application and module permissions, you should use various DD (deployment descriptor)
files. For more information, refer to Configuring Security in Applications and Modules.

Custom Permission Implementation and Configurations

Whenever a permission (role permissions or resource permissions) is added to the policies.xml file,
the Java class name of the permission must be specified. This is the name of a Java class that extends
the java.security.Permission abstract class. Create a customized implementation subclass that
extends the java.security.Permission Permission class, and specify the implementation class name in
the <classname> tag of policies.xml.

This sub-section describes how to develop a new customized role permission that meets the
following requirements. The new role permission should imply another role permission only if the
following two conditions are met.

• The other role has the same role name as this permission.

• The current time is between the specified time limits (example: 9 am and 5 pm).

The following shows an example of a banking application where a role permission grants the
principal user2 the teller role only during the 9 to 5 business hours.

1. Create the Custom Permission. Then, compile the class with javac and set the class path within
the JEUS server class path. Configure the Permission in the policies.xml file. The following
implements the Custom Permission class that meets the aforementioned requirements. Code
details have been omitted.

Custom Permission Class: <TimeConstrainedRolePermission.java>

package jeus.security.resource;

import java.security.Permission;
import java.util.Calendar;
import java.util.StringTokenizer;

2. Configuring the Security System | 41

/**
 * A time-constrained Role permission.
 * <p>
 * With this permission implementation you can express
 * things such as "X can only be in the role Y between
 * 09:00 AM to 05:00 PM".
 */
public class TimeConstrainedRolePermission extends RolePermission {
 private String timeConstraint = "*";
 private int startTime = Integer.MIN_VALUE;
 private int endTime = Integer.MAX_VALUE;

 public TimeConstrainedRolePermission(String roleName) {
 this(roleName, "*");
 }

 public TimeConstrainedRolePermission(String roleName, String timeConstraint)
 {
 super(roleName);
 if (timeConstraint != null) {
 this.timeConstraint = timeConstraint;
 parseTimeConstraint();
 }
 }

 private void parseTimeConstraint() {
 . . .
 }

 public boolean equals(Object anotherObject) {
 . . .
 }

 public int hashCode() {
 . . .
 }

 public String getActions() {
 return timeConstraint;
 }

 public boolean implies(Permission anotherPermission) {
 if (this.timeConstraint.equals("*")) {
 return super.implies(anotherPermission);
 } else {
 Calendar cal = Calendar.getInstance();
 int curHour = cal.get(Calendar.HOUR_OF_DAY);
 int curMinute = cal.get(Calendar.MINUTE);
 int now = curHour * 60 + curMinute;
 if (now >= this.startTime && now <= this.endTime) {
 return super.implies(anotherPermission);
 } else {
 return false;
 }
 }
 }
}

42 | Security Guide

The previous class inherits the jeus.security.resource.RolePermission class, which in turn inherits
the java.security.Permission class. This structure promotes code reusability.

It is also possible to create another java.security.Permission class by inheriting the
TimeConstrainedRolePermission class.

In the previous example, there are two types of constructors.

◦ The first has one parameter (role name).

◦ The second has two parameters (role name, time constraint)

In java.security.Permission class, the first parameter is name, and the second parameter is
actions. Some permission implementation classes omit the second constructor that receives
the actions parameter.

◦ The actions parameter contains the valid time period for the permission, and it has the
value “09:00-17:00”.

◦ The name parameter represents the role name, such as administrator or teller.

The heart of the implementation is in the "implies(Permission anotherPermission)" method,
which first checks whether the current system time is within the given time constraints. And,
if so, it delegates the call to the super class by calling the super.implies() method, and if not, it
returns "false". All implies(..) method should return a boolean value, and whether the relevant
Permission implies the Permission object passed to it.

1. For more information about the implies() method and the abstract
class java.security.Permission, refer to Java SE Javadoc documents.

2. For more information about jeus.security.resource.RolePermission,
jeus.security.resource.TimeConstrainedRolePermission, and
jeus.security.resource.ResourcePermission classes, refer to References
and jeus.security.resource package in JEUS Security Javadoc.

2. Configure the policies.xml file to use permissions.

Custom Permission Class: <policies.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<policies xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <policy>
 <role-permissions>
 <role-permission>
 <principal>user2</principal>
 <role>administrator</role>
 <actions>9:00-17:00</actions>
 <classname>
 jeus.security.resource.TimeConstrainedRolePermission
 </classname>
 </role-permission>
 </role-permissions>
 <resource-permissions>

2. Configuring the Security System | 43

 <context-id>default</context-id>
 <resource-permission>
 <role>administrator</role>
 <resource>jeus.*</resource>
 <actions>*</actions>
 </resource-permission>
 </resource-permissions>
 </policy>
 . . .
</policies>

The user, user2, is in the administrator role during the business hours of 9 am to 5 pm. The
administrator role has the right to perform any actions (‘*’) on all JEUS resources (‘jeus.*’).
Therefore, user2 can perform any operations on all JEUS resources during the business hours.

The previous rule also applies when configuring JEUS DD file in Jakarta EE application and
module. Naturally, the rule also applies to role-to-resource permission and to principal-to-role
permission as shown in the previous example. For more information about using customized
permissions in JEUS DD, refer to Configuring Security in Applications and Modules.

2.6.2. Using Database

In order to configure the policy using a database, domain service must be configured in the security-
domains.xml file as in the following. In order to directly use the driver manager, add the <dbdriver-
config> tag, instead of the <datasource-id> tag, as for the authentication setting. However, it is
recommended to use JEUS JDBC data source for performance benefits.

Configuring Policies Using Database: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus" version="9.0">
 ...
 <security-domain>
 <name>MY_DOMAIN</name>
 <authorization>
 <repository-service>
 <database-repository>
 <datasource-id>auth</datasource-id>
 </database-repository>
 </repository-service>
 </authorization>
 . . .
 </security-domain>
 . . .
</security-domains>

A URL, username, and password to access the JDBC driver, which accesses the database, are required
to use the AuthenticationRepositoryService that uses a database.

In the following example, a password that is encoded in Base 64 must be entered to access the
Oracle DB. When entering a password applied with a certain encryption algorithm or encoding

44 | Security Guide

method, use the same method as for user password of accounts.xml.

The tables that are used in the database are organized as follows:

Database Table Structure to Save Policies

If the tables do not exist in the database, create a DB table by using the
JEUS_HOME/templates/security/dbrealm.sql.template file. The basic policy is granted the
administrator role in “SYSTEM_DOMAIN”, thereby possessing Resource authority for “jeus.*”. The
default principal included in the administrator role is jeus as mentioned in Using Database .

2.7. Configuring Additional Settings
This section describes how to add additional configurations other than subject and policy.

2. Configuring the Security System | 45

2.7.1. Configuring Java SE SecurityManager

The use of a JavaSE SecurityManager in JEUS can increase the platform reliability, but might
undermine the performance. Usually, all core JEUS codes as well as the Jakarta EE application and
module code deployed to JEUS may be treated as completely “trusted” code, and thereby avoid the
overhead incurred by the SecurityManager. This mode of operation, with no SecurityManager, is the
default mode in JEUS.

However, there may be cases where the increased reliability and code-level security provided by a
JavaSE SecurityManager is considered more important than the performance enhancement.

For example, the administrator may have to deploy some untested or otherwise suspicious Jakarta EE
applications or modules to JEUS. In such case, it may be desirable to protect your machines and
environment by boosting the code level protection at the expense of performance by using JavaSE
SecurityManager.

In order to use a JavaSE SecurityManager with JEUS, define jvm-option in the domain.xml file for a
particular server as follows.

-Djava.security.manager
-Djava.security.policy=${JEUS_HOME}/domains/domain1/config/security/policy(for UNIX)

The policy file is JEUS_HOME/domains/<domain name>/config/security/policy and the its content is as
follows:

Java SE SecurityManager Configurations: <policy>

grant codeBase "file:${jeus.home}/lib/system/*" {
 permission java.security.AllPermission;
};

grant {
 permission java.net.SocketPermission "127.0.0.1:1024-",
 "connect, accept, connect, listen, resolve";
 permission java.security.SecurityPermission "runTrustedLogin", "read";
 permission java.security.SecurityPermission "loginCodeSubject", "read";
 permission java.security.SecurityPermission "putProviderProperty.*";
 permission java.security.SecurityPermission "insertProvider.*";
 permission javax.management.MBeanPermission "*", "*";
};

The JavaSE SecurityManager is completely independent from JEUS security system. The JEUS security
system does not provide protection at the code level (permission configuration that can execute
code), but instead it provides security at the user level (the identity of the process that is running and
what it is allowed to do).

The only overlap between the two is that, under special conditions, the JEUS security system can
check with the JavaSE SecurityManager for some code level permission (see above) in order to
protect JEUS from malicious or bug-filled Servlet and EJB code.

46 | Security Guide

2.7.2. Configuring JACC Provider

For details of configuring the JACC 2.0, refer to Using JACC Provider.

2.7.3. Configuring information to Grant Identity

If IdentityAssertionService is supported, it is read from the cert-user-map.xml file that contains the
mapping information between a certificate and user. The file is in the following location.

JEUS_HOME/domains/<domain name>/config/security/<security domain name>/

Here, <domain name> is the name of the domain and <security domain name> is the name of the
security domain for which the users are managed.

The XML schema of user-cert-map.xml is user-cert-map.xsd, and its path is
JEUS_HOME/lib/schmas/jeus/supportLocale/ko.

In the file, the parent tag, <cert-user>, can have <user>, <cert>, and multiple <cert-user> child tags.
Each contains the property information for user to certificate mapping.

Configuring Information to Grant Identity: <cert-user-map.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<cert-user-map xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <cert-user>
 <username>user1</username>
 <cert>
 <subjectDN>user1DN</subjectDN>
 </cert>
 </cert-user>
</cert-user-map>

Each <cert-user> tag has the following child tags.

• <username> (required)

The user name that is mapped to an attribute value of the certificate. (Ex: User name, User ID)

• <cert>

Each <cert> tag has the following child tags, which define the certificate mapping information for
the user. It defines the value that maps to user name using child attribute value that ensure a
unique ID for granting the identity of the certificate, which is included in the truststore file.

Tag Description

<alias> (optional) Defines the alias for certificate within the keystore. (string)

<subjectDN> (optional) Defines the subejctDN for certificate the within keystore. (string)

2. Configuring the Security System | 47

Tag Description

<SKI> (optional) Defines the SKI for certificate within the keystore. (string)

<issuer> (optional) Defines the certificate issuer within the keystore. (string)

<serialNo> (optional) Defines the certificate serial number within the keystore. (string)

2.7.4. Configuring Identity Certificate Information

The JEUS security system provides an API, through the UserCertMappingService, that can be used to
obtain certificate information of the authenticated user’s identity. If UserCertMappingService class is
supported, the user data is read from the user-cert-map.xml file, where additional mapping
information exists for the certificate grouped by users. The file is in the following path.

JEUS_HOME/domains/<domain name>/config/security/<security domain name>/

Here, <domain name> is the name of the domain and <security domain name> is the name of the
security domain for which the users are managed.

The XML schema of user-cert-map.xml is user-cert-map.xsd, and its path is
JEUS_HOME/lib/schmas/jeus/supportLocale/ko.

In the file, the parent tag, <user-cert-map>, can have 0 or more <user-cert> tags. Each contains the
property information to obtain a user certificate from the Keystore file.

Configuring the Certificate Information for Identity: <user-cert-map.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user-cert-map xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <user-cert>
 <username>user1</username>
 <alias>alias1</alias>
 <keypassword>changeit</keypassword>
 <secretkey>
 <keyname>testkeypass</keyname>
 <keyalgorithm>AES</keyalgorithm>
 <keyvalue>bjhTUjJvSXRTOGlkVEdlNHJnM2N3VnljSDZXV0JkYz0=</keyvalue>
 </secretkey>
 </user-cert>
</user-cert-map>

Each <user-cert> tag has the following child tags.

• <username> (required)

Defines the user name for the certificate within the keystore. Since this is the primary identity, it
must be unique.

(ex : user name, user id)

48 | Security Guide

• <alias> (required)

Defines the alias for certificate within the keystore.

• <keypassword> (optional)

Defines the keypassword to obtain the private key of the certificate within the keystore. (ex:
changeit)

• <secretkey> (optional)

Defines the private key.

Each <secretkey> tag has the following child tags.

Tag Description

<keyname> (required) Defines the name of the private key. The keyname inside <user-cert-
map> tag must be unique. (string)

<keyalgorithm>
(required)

Indicates the key algorithm for the private key. (string)

<keyvalue> (required) Shows the private key value in the Base64 format.

2. Configuring the Security System | 49

3. Configuring Security in Applications and
Modules
This chapter explains how to configure security in Jakarta EE applications, EJB, and Web modules.

3.1. Overview
This section explains basic information related to security configuration for Jakarta EE applications
and modules.

The basic procedure for configuring security settings of Jakarta EE application, EJB module, and web
module is as follows.

1. Configure Role-to-Resource mapping for each module.

2. Configure principal-to-role mapping for each application.

3.1.1. Module Deployment vs. Application Deployment

There are two ways of deploying an application in JEUS:

• Deploy each EJB module (EJB.jar file) and Web module (.war file) independently.

• Deploy a Jakarta EE application (.ear) by compressing several EJB, Web, and connector modules
(.rar files) into an EAR file.

3.1.2. Role-to-Resource Mapping

Before deploying an EJB or Web module, the assembler must first configure the role-to-resource
mapping for the module. The role-to-resource mapping is also called the security constraint, which
refers to mapping a resource of a module to a logical Role.

• In EJB modules, resources refer to EJB methods, and they are configured in META-INF/ejb-jar.xml

• In web modules, resources refer to the servlet URLs, and they are configured in WEB-
INF/web.xml.

The following are the security constraints configured in the META-INF/ejb-jar.xml file for an EJB
module:

Security Constraints Configured in EJB Module: <ejb-jar.xml>

<?xml version="1.0"?>
<ejb-jar xmlns="https://jakarta.ee/xml/ns/jakartaee">
 <display-name>product</display-name>
 <enterprise-beans>
 <entity>

50 | Security Guide

 <ejb-name>product</ejb-name> ①
 . . .
 <security-role-ref> ②
 <role-name>cust</role-name>
 <role-link>customer</role-link>
 </security-role-ref>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 . . .
 <security-role> ③
 <role-name>administrator</role-name>
 </security-role>
 <security-role> ④
 <role-name>customer</role-name>
 </security-role>
 <method-permission> ⑤
 <role-name>administrator</role-name>
 <method>
 <ejb-name>product</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getSecretKey</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission> ⑥
 <unchecked/>
 <method>
 <ejb-name>product</ejb-name>
 <method-name>doSomeAdmin</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission> ⑦
 <role-name>customer</role-name>
 <method>
 <ejb-name>product</ejb-name>
 <method-name>test1</method-name>
 </method>
 </method-permission>
 <exclude-list> ⑧
 <method>
 <ejb-name>product</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getCustomerProfile</method-name>
 <method-params></method-params>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Descriptions of security constraints in the previous DD (deployment descriptor) file are as follows:

3. Configuring Security in Applications and Modules | 51

① There is an EJB entity called product.

② The role-to-role reference mapping is declared. The actual declared Role, customer, can be
referred to by the role reference name, cust, which means that the role named cust in the EJB
code corresponds to the customer Role.

③ The logical role administrator is declared.

④ The logical role customer is declared.

⑤ The role-to-resource mapping is declared. This enables the role administrator to call the
getSecreteKey method of the remote EJB interface. According to this mapping, only Principals
belonging to the administrator role can call the getSecreteKey method.

⑥ doSomeAdmin method is declared as unchecked. This means that anyone can call the method
regardless of the Role.

⑦ Any principal in the role customer can call the test1 method of the product EJB.

⑧ The getCustomerProfile method is included in the Excluded list. This means that no role can call
this method.

The configuration for Web modules is similar to that for EJB modules except that the Roles access
Servlet URLs instead of EJB methods. Refer to Configuring Web Module Security� for more information
about security configuration for Web modules.

The two Roles, administrator and customer, are purely logical and do not have any meaning in the
target deployment environment. Therefore, these logical Roles must be mapped to the actual users
or user groups of the target system. This is referred to as principal-to-role mapping. Refer to
Principal-to-Role Mapping� for more information about the mapping.

3.1.3. Principal-to-Role Mapping

It is usually the task of the deployer to map the role defined in Jakarta EE modules or applications to
users or user groups in the actual environment. Note that mappings from Principals to logical Roles
have application scope.

For example, if two modules M1 and M2 are deployed as parts of the same application A1, the
principal-to-role mappings will be shared by the two modules. Furthermore, another application A2
may have a totally different principal-to-role from A1. Even if A1 and A2 each have a role with the
same name, these are recognized as different roles and are not shared.

These concepts are illustrated in the following figure.

52 | Security Guide

Principal-to-Role Mapping

As shown in the previous figure, two different applications A1 and A2 have different principal-to-role
mappings, and two modules M1 and M2 share the mapping included in the application.

The principal-to-role mapping is defined in the following files in JEUS.

• jeus-ejb-dd.xml, the JEUS DD file (EJB module)

• jeus-web-dd.xml (web module)

• jeus-application-dd.xml (Jakarta EE application)

The following is the example of the configuration of jeus-ejb-dd.xml for ejb-jar.xml.

Principal-to-Role Mapping: <jeus-ejb-dd.xml>

<?xml version="1.0"?>
<jeus-ejb-dd xmlns=“http://www.tmaxsoft.com/xml/ns/jeus”>
 <module-info>
 <role-permission> ①
 <principal>user1</principal>
 <role>administrator</role>
 <classname>mypackage.MyRolePermission</classname>
 </role-permission>
 <role-permission> ②
 <principal>user2</principal>
 <role>customer</role>
 </role-permission>
 <role-permission> ③
 <role>roleA</role>
 </excluded>
 </role-permission>
 <role-permission> ④
 <role>roleB</role>
 </unchecked>
 </role-permission>

3. Configuring Security in Applications and Modules | 53

 <unspecified-method-permission> ⑤
 <role>administrator</role>
 </unspecified-method-permission>
 </module-info>
 <beanlist>
 . . .
 </beanlist>
</jeus-ejb-dd>

The previous example contains the following security information.

① The role permission that grants the principal (user) named user1 to be in the role administrator.
This means that user1 is mapped to the role administrator, and consequently, user1 will inherit all
the rights of the Role.

As can be seen in the previous example, custom role permission is defined in the <classname>
tag. Refer to Configuring Security System for more information about the custom role permission.

② The role permission that grants the principal (user) named user2 to be in role customer. This
means that user2 is mapped to the role customer and consequently, user2 will inherit all the
rights of role Customer. Since no <classname> tag is specified, the default role permission will be
used.

③ The role roleA is excluded from all Principals, which means that no principal can be in roleA.

④ The role roleB is unchecked in the authorization system, which means that all Principals are
automatically included in roleB.

⑤ The <unspecified-method-permission> tag determines how unspecified EJB methods are to be
handled. An unspecified EJB method is an EJB method that is not included in the <method-
permission> tag in ejb-jar.xml. The <unspecified-method-permission> can be handled in the
following three ways: be mapped to a role (like in this example where they are mapped to the role
administrator), be marked as excluded (accessible to no one) or be marked as unchecked (be
accessible to everyone). The last option, unchecked, is the default value.

The configurations for Web modules (jeus-web-dd.xml) is similar to that for EJB
modules, except that the <unspecified-method-permission> tag is not used for
Web modules.

3.1.4. User Configurations

There are two user configuration methods:

• Use the following file for user configurations of the domain used by applications. (Refer to
Configuring the Security System User Information)

JEUS_HOME/domains/<domain name>/config/security/<security domain name>/accounts.xml

54 | Security Guide

• Configure accounts.xml in the WEB-INF (Web module) or META-INF (EJB module or EAR)
directories to set user configurations of EJB module (.jar file), Web module (.war file), or Jakarta EE
application (.ear).

User information has application security domain scope, regardless of the way it
is configured. In other words, a user in a security domain is shared by all
applications using the same security domain.

3.2. Configuring EJB Module Security
This section describes in detail how to configure security for EJB modules. For information about
security settings such as CSI that are not covered in this section, refer to "JEUS EJB Guide".

There are two security configuration methods as follows:

• Configuring ejb-jar.xml

• Configuring jeus-ejb-dd.xml

3.2.1. Configuring ejb-jar.xml

The following security items can be specified in ejb-jar.xml.

• Role-to-Role Reference mapping

• security identity configuration

• Logical role declaration

• EJB method permission configurations

The following example illustrates how to specify the aforementioned security items in ejb-jar.xml.

Security Configurations: <ejb-jar.xml>

<?xml version="1.0"?>
<ejb-jar xmlns="https://jakarta.ee/xml/ns/jakartaee">
 <display-name>product</display-name>
 <enterprise-beans>
 <entity>
 <ejb-name>product</ejb-name>
 . . .
 <security-role-ref>
 <role-name>cust</role-name>
 <role-link>customer</role-link>
 </security-role-ref>
 <security-identity>
 <run-as>
 <role-name>administrator</role-name>
 </run-as>
 </security-identity>
 </entity>

3. Configuring Security in Applications and Modules | 55

 </enterprise-beans>
 <assembly-descriptor>
 . . .
 <security-role>
 <role-name>administrator</role-name>
 </security-role>
 <security-role>
 <role-name>customer</role-name>
 </security-role>
 <method-permission>
 <role-name>administrator</role-name>
 <method>
 <ejb-name>product</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getSecretKey</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <unchecked/>
 <method>
 <ejb-name>product</ejb-name>
 <method-name>doSomeAdmin</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <role-name>customer</role-name>
 <method>
 <ejb-name>product</ejb-name>
 <method-name>test1</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <method>
 <ejb-name>product</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getCustomerProfile</method-name>
 <method-params></method-params>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

The following security items can be specified in ejb-jar.xml.

• Role-to-Role Reference mapping

The role-to-role reference mapping is specified in the <security-role-ref> tag. Its purpose is to
map a role reference to a logical role. In the EJB code, the role reference is used instead of the
actual Role.

The following tags are used inside the <security-role-ref> tag.

56 | Security Guide

Tag Description

<role-name> The role reference which is used in EJB code instead of the actual role name.

<role-link> The name of the actual role declared in the security-role tag. The role reference
is mapped to a role indicated by the role-link.

• Security identity configuration

Every EJB in the module has a security identity, which will be propagated to other EJBs during
remote calls. The security identity for an EJB is configured using the tags, <ejb-jar> <enterprise-
beans> <type> <security-identity>.

The configurable child tags are as follows.

Tag Description

<use-caller-
identity>

If this tag is empty, the caller of the EJB will be used as the security identity.

<run-as> If this tag is used, the principal of the role specified in <role-name> will be used
as the security identity when an EJB is called. If the <run-as-identity> tag exists in
jeus-ejb-dd.xml, this setting will be ignored.

• Logical role declaration

The <security-role> tag under the <assembly-descriptior> tag specifies the logical Roles that will
apply to the corresponding EJB module. All role names in ejb-jar.xml must be specified in this tag.

• EJB method Permission configuration

The <method-permission> tag, inside the <assembly-descriptor> tag, specifies security
constraints for each EJB method.

The following describes the child tags of the <method-permission>.

Tag Description

<role-name>
(optional)

Specifies the name of a logical role defined in <security-role>. It has access to the
methods defined in the following.

<unchecked>
(optional)

An empty tag. If specified, the following methods will be unchecked. Anyone can
access these methods, regardless of its Role.

3. Configuring Security in Applications and Modules | 57

Tag Description

<method>
(one or more)

The method to which the <role-name> and <unchecked> tags will be applied.
The child tags are as follows.

• <ejb-name>: The EJB name that contains the method.

• <method-intf>: The EJB interface type that contains the method. If omitted,
all interfaces in local and remote servers are implied.

• <method-name>: EJB method name.

• <method-params> (optional): Can have multiple <method-param> tags. If
the <method-param> tag is omitted, the same permissions will be applied to
any method with the given method-name, regardless of the parameter. (In
EJB, there may be multiple methods that have the same name but different
parameters. The Method Permission will be applied to all the methods with
the same name.) The value of the <method-param> tag must be a fully
qualified Java class name that includes the package name or Java Primitive
type such as int. If <method-params> is empty (<method-params/>), the
method has no parameters.

<exclude-list>
(one)

Defines excluded EJB methods that no one can access. Only one <excluded-list>
tag can exist, but can have multiple child <method> tags.

Refer to Role-to-Resource Mapping� for an explanation of the previous example.
Refer to the EJB specification for more information about these tags. Also refer to
"JEUS EJB Guide" for information about deploying EJB modules in JEUS.

3.2.2. Configuring jeus-ejb-dd.xml

The following security items can be configured in jeus-ejb-dd.xml.

• Security-related configurations

• Configuring EJB methods that are not defined in ejb-jar.xml

• Configuring EJB principal which uses the run-as identity

While the ejb-jar.xml file takes care of most role-to-method mappings for the EJB, it still needs to
determine where to declare the principal-to-role mappings and how to handle EJB methods that were
not handled in ejb-jar.xml. These mappings and handling are configured in the jeus-ejb-dd.xml file,
which usually resides in the META-INF directory of the deployed EJB .jar archive.

The following example illustrates how to configure the previous security configuration items in jeus-
ejb-dd.xml.

Security Configurations: <jeus-ejb-dd.xml>

<?xml version="1.0"?>
<jeus-ejb-dd xmlns=“http://www.tmaxsoft.com/xml/ns/jeus”>
 <module-info>

58 | Security Guide

 <role-permission>
 <principal>user1</principal>
 <role>administrator</role>
 <classname>mypackage.MyRolePermission</classname>
 </role-permission>
 <role-permission>
 <principal>user2</principal>
 <role>customer</role>
 </role-permission>
 <role-permission>
 <role>roleA</role>
 </excluded>
 </role-permission>
 <role-permission>
 <role>roleB</role>
 </unchecked>
 </role-permission>
 <unspecified-method-permission>
 <role>administrator</role>
 </unspecified-method-permission>
 </module-info>
 <beanlist>
 <jeus-bean>
 . . .
 <run-as-identity>
 <principal-name>user1</principal-name>
 </run-as-identity>
 </jeus-bean>
 . . .
 </beanlist>
</jeus-ejb-dd>

The following security items can be configured in jeus-ejb-dd.xml.

• Security-related configurations

Most security-related settings in jeus-ejb-dd.xml are set in the <jeus-ejb-dd> tag just below the
parent tag, <module-info>.

◦ <role-permission> (0 or more)

Descriptions of each child tag of <role-permission> are as follows. Each tag specifies
permission for a role (usually a principal-to-role mapping).

Tag Description

<principal> (0 or
more)

The principal name that is mapped to a Role.

<role> (required) Only one is allowed. A required name of the logical role.

This name will be passed as the first parameter of the constructor of
the Java class that implements the role permission. The role name
must match the logical name specified in ejb-jar.xml.

3. Configuring Security in Applications and Modules | 59

Tag Description

<actions> (optional) Contains additional data for the role permission. If set, this action
data will be passed as the second parameter of the constructor of the
Java class that implements the role permission.

<classname>
(optional)

The fully qualified Java class name of the class that implements the
role permission. This class must be a subclass of the
java.security.Permission class and have a public constructor that
accepts at least one parameter for the role name.

If omitted, the jeus.security.resource.RolePermission class is used.

<excluded> (optional) An empty tag. If set, the role will be excluded (no one can access the
Role(s) defined for the role permission).

This takes precedence over the <principal> and <unchecked> tags.

<unchecked>
(optional)

An empty tag. If set, the role will be unchecked (anyone can access
the Role(s) defined in the role permission).

This takes precedence over the <principal> tag.

• Configuring EJB methods that are not defined in ejb-jar.xml

There are three ways to handle EJB methods that are not specified in ejb-jar.xml. They are defined
in the child tag, <unspecified-method-permission>, inside the <module-info> tag. The
configurable child tags are as follows.

Tag Description

<role> (optional) If set, all unspecified methods will be mapped to this Role.

<excluded>
(optional)

If set, all unspecified methods will be excluded (accessible by no one).

This takes precedence over the <role> and the <unchecked> tags.

<unchecked>
(optional)

If set, all unspecified methods will be unchecked (accessible by anyone).

This takes precedence over the <role> tag.

• Configuring EJB Principal which uses the run-as identity

The principal needs to be set for an EJB that uses the run-as identity. The principal name specified
in the <jeus-bean> <run-as-identity> <principal-name> tag is used. The principal must be in the
role that is specified in the <security-identity><run-as><role-name> tag of ejb-jar.xml.

1. Refer to Role-to-Resource Mapping� for an explanation of the example.

2. For detailed information about each tag, refer to "JEUS EJB Guide".

60 | Security Guide

3.3. Configuring Web Module Security
This section explains in detail how to configure security for web (Servlet) modules.

The security of web modules is divided into two parts:

• Configuring web.xml: Role-to-Web Resource mapping configurations

• Configuring jeus-web-dd.xml: principal-to-role mapping configurations

3.3.1. Configuring web.xml

web.xml is the main DD file for a Web archive (WAR file). This is a standard Jakarta EE DD file that
usually resides in the WEB-INF directory of the WAR file.

The security items that can be configured in web.xml are as follows.

• Run-as Identity

Every Servlet in the Web module has a security identity, which will be propagated to EJBs during a
remote call.

The security identity for a servlet is configured in the <web-app><servlet><run-as> tag, which has
the following child tag.

Tag Description

<role-name>(optional) The role that runs the servlet. If omitted, the caller identity will be used.

• Role-to-role reference mapping

The role-to-role reference mapping is specified in the <security-role-ref> tag. Its purpose is to
map a role reference to a logical role. In the EJB code, the role reference is used instead of the
actual Role.

The <security-role-ref> tag is configured inside the <servlet> tag of web.xml and has the following
child tags.

Tag Description

<role-name> The role name that is used in Servlet codes.

<role-link> The actual role name defined in the <security-role> tag. The role
reference will be mapped to the actual role defined in the <role-name>
tag.

• Permissions to access servlet URL (Security constraints)

To restrict the access to Servlet URL, the <security-constraint> tag inside the <web-app> tag is
used.

3. Configuring Security in Applications and Modules | 61

<security-constraint> has the following child tags.

◦ <web-resource-collection> (one or more)

Specifies a list of Web resources for which access constrains are set.

Tag Description

<web-resource-
name>

The name of the web resource.

<url-patterns>(0
or more)

The URL (relative to the context root) pattern that is a part of the Web
resource.

The following are URL pattern examples.

◦ /mywebapp/*: All URL that includes mywebapp

◦ /something: The exact URL

◦ *.jsp: All resources that ends with "Jsp"

<http-
method>(0 or
more)

The HTTP methods that apply to the web resources.

◦ GET

◦ POST

◦ PUT

◦ <auth-constraint> (optional)

Specifies the roles that can access the web resource defined in the <security-constraint> tag.
There must be zero or more <role-name> child tag(s), each specifying a logical role name that
allows access to the resource.

If no role name is specified and it is empty (<auth-constraint/>), no one can access the web
resource (same as excluded Web resources).

If the <auth-constraint> tag is omitted, the web resource will be unchecked so that any one
can access it regardless of the role.

◦ <user-data-constraint> (optional)

Sets whether to declare a "transport guarantee" for connections that are made to the web
resources.

It has the <transport-guarantee> child tag, which specifies the guarantee level for the Web
resource connections.

Value Description

NONE The connection is unprotected.

INTEGRAL The connection guarantees the message integrity (ensures that the
sent message has not been modified).

62 | Security Guide

Value Description

CONFIDENTIAL Ensures that the messages sent are encrypted to prevent
eavesdropping.

• Logical Role Declaration

After the <security-constraint> tag, there is the <security-role> tag that declares the logical roles.
Each tag has the <role-name> tag, that declares the logical role names defined in DD.

The following is an example of security configurations of web.xml.

Web Module Security Configurations: <web.xml>

<?xml version="1.0"?>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee">
 <servlet>
 <servlet-name>HelloWorld</servlet-name>
 . . .
 <run-as> ①
 <role-name>R1</role-name>
 </run-as>
 <security-role-ref> ②
 <role-name>adminRef</role-name>
 <role-link>R1</role-link>
 </security-role-ref>
 . . .
 </servlet>
 <security-constraint> ③
 <web-resource-collection>
 <web-resource-name>A</web-resource-name>
 <url-pattern>/a/*</url-pattern>
 <url-pattern>/b/*</url-pattern>
 <url-pattern>/a</url-pattern>
 <url-pattern>/b</url-pattern>
 <http-method>DELETE</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <web-resource-collection>
 <web-resource-name>B</web-resource-name>
 <url-pattern>*.asp</url-pattern>
 </web-resource-collection>
 <auth-constraint/>
 </security-constraint>
 <security-constraint> ④
 <web-resource-collection>
 <web-resource-name>C</web-resource-name>
 <url-pattern>/a/*</url-pattern>
 <url-pattern>/b/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <web-resource-collection>
 <web-resource-name>D</web-resource-name>
 <url-pattern>/b/*</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>R1</role-name>

3. Configuring Security in Applications and Modules | 63

 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <security-role> ⑤
 <role-name>R1</role-name>
 </security-role>
 <security-role>
 <role-name>R2</role-name>
 </security-role>
 <security-role>
 <role-name>R3</role-name>
 </security-role>
</web-app>

The following describes the previous example:

① The run-as-identity is set to role R1, meaning that the propagated security identity of the servlet
must be a principal that is in R1. The actual principal is specified in the JEUS DD file.

② In the <security-role-ref> tag, the actual role R1 is mapped to the role reference adminRef. In the
actual Servlet source codes, the role reference adminRef is used instead of the Role.

③ The first security constraint specifies that the URLs with patterns, "/a", "/b", "/a/*", "/b/*" and HTTP
methods DELETE and PUT, and all URLs that end with "*.asp" must NOT be accessible to anyone.

This is because it is set to <auth-constraint/>.

④ The second security constraint says that the URLs with patterns, "/a/*", "/b/*" and HTTP method
GET, and all URLs with the pattern /b/* and HTTP method POST should only be accessible by
Principals that are in the role R1 and the connection should be CONFIDENTIAL.

⑤ Declares three logical roles: R1, R2, and R3.

If a web resource (URL pattern + HTTP method) is not set separately in web.xml, it means that
anyone can access the resource regardless of role. This is the default setting for web application
access in Jakarta EE.

For detailed information on all tags in web.xml, refer to the servlet specifications.
Also, for additional information on deploying servlets in JEUS, refer to "JEUS Web
Engine Guide".

3.3.2. Configuring jeus-web-dd.xml

This section explains how to configure jeus-web-dd.xml, which is the JEUS DD file for web modules.

• Defining Principal-to-Role mapping

To define a principal-to-role mapping in jeus-web-dd.xml, use the <jeus-web-dd><role-mapping>

64 | Security Guide

tag.

The following are child tags of <role-mapping>.

◦ <role-permission> (0 or more)

Specifies permission for a role (usually a principal-to-role mapping).

Tag Description

<principal> (0 or
more)

The principal name that is mapped to a Role.

<role> (1, required) The logical role name. This will be passed as the first parameter of
the constructor of the Java class that implements the role
permission. The role name must match the logical role name in
web.xml.

<actions> (optional) Contains additional data for the role permission. If set, this action
data will be passed as the second parameter of the constructor of the
Java class that implements the role permission.

<classname>
(optional)

The Java class name that implements the role permission.

This class must be a sub class of the java.security.Permission class
and have a public constructor that accepts at least one string
parameter (the role name).

If omitted, the jeus.security.resource.RolePermission class is used.

<excluded> (optional) An empty tag. If set, the role will be excluded. In other words, no
principal can be in the role.

This takes precedence over the <principal> and <unchecked> tags.

<unchecked>
(optional)

An empty tag. If set, the role will be unchecked. In other words, any
principal can be in the role.

This takes precedence over the <principal> tag.

• Setting <run-as-principal> in servlet

To set <run-as-principal> tag in a servlet, define the <servlet> tag and add the <run-as><principal-
name> tag to it. The value of the <principal-name> tag must be the principal that belongs to the
role defined in <run-as><role-name> tag of web.xml.

Currently, there are no tags to specify how to handle the Servlet URLs that are not
defined in web.xml of jeus-web-dd.xml. In the Servlet specifications, all
unspecified Servlet URLs are always regarded as unchecked and accessible by
everyone.

The following is an example of security configurations in jeus-web-dd.xml.

3. Configuring Security in Applications and Modules | 65

Web Module Security Configurations: <jeus-web-dd.xml>

<?xml version="1.0"?>
<jeus-web-dd xmlns=“http://www.tmaxsoft.com/xml/ns/jeus”>
 <context-path>/tutorial</context-path>
 <docbase>Tutorial</docbase>
 . . .
 <role-mapping>
 <role-permission> ①
 <principal>user1</principal>
 <principal>user2</principal>
 <principal>customerGroup</principal>
 <role>R1</role>
 </role-permission>
 <role-permission> ②
 <role>R2</role>
 </excluded>
 </role-permission>
 <role-permission> ③
 <role>R3</role>
 </unchecked>
 </role-permission>
 <role-permission> ④
 <principal>tellerGroup</principal>
 <role>R4</role>
 <actions>09:00-17:00</actions>
 <classname>
 jeus.security.resource.TimeConstrainedRolePermission
 </classname>
 </role-permission>
 </role-mapping>
 <servlet> ⑤
 <servlet-name>HelloWorld</servlet-name>
 <run-as-identity>
 <principal-name>user1</principal-name>
 </run-as-identity>
 . . .
</servlet>
 . . .
</jeus-web-dd>

The following describes the previous example:

① The Principals user1, user2, and customerGroup are in the role R1.

② The role R2 is excluded so no one will be in the role.

③ The role R3 is unchecked so any one can be in the role.

④ The principal tellerGroup will be in the role R4 on the condition that the current time is between 9
am and 5 pm. This logic is implemented in the implies() method of the
jeus.security.resource.TimeConstrainedRolePermission class.

⑤ user1 is used as a run-as-principal. When the Servlet calls an EJB, user1 will be passed as the
security identity. Note that the deployer must check that user1 is in the role R1, which is defined in
web.xml.

66 | Security Guide

3.4. Configuring Jakarta EE Application Security
This section explains how to set security for Jakarat EE applications (EAR file).

The basic procedure is as follows:

• Configuring application.xml: Declare logical roles.

• Configuring jeus-application-dd.xml: Configure the security domain for deployment and principal-
to-role mapping.

3.4.1. Configuring application.xml

Jakarta EE application is an archive file with the ".ear" extension. The EAR archive consists of EJB, Web,
and connector modules, and any other necessary supporting classes. The META-INF directory
contains the application.xml configuration file that provides various information about the
application.

This section explains the security-related information in application.xml.

There is basically only one type of security information in application.xml: declaration of logical
security Roles. The role declaration applies to all EJB and Web modules in the EAR file and has an
application scope.

Jakarta EE Application Security Configuration: <application.xml>

<?xml version="1.0" encoding="UTF-8"?>
<application version="1.4" . . .>
 <description>Application description</description>
 <display-name>myApp</display-name>
 <module>
 <web>
 <web-uri>myWebApp.war</web-uri>
 <context-root>myWebApp</context-root>
 </web>
 </module>
 <module>
 <ejb>myEjbApp.jar</ejb>
 </module>
 <security-role> ①
 <role-name>Administrator</role-name>
 </security-role>
 <security-role> ②
 <role-name>Customer</role-name>
 </security-role>
</application>

In the previous example, the following two roles are declared.

① "Administrator"

② "Customer"

3. Configuring Security in Applications and Modules | 67

sect_application_dd.xml_setup

These two roles are used in the DD files of EJB and Web modules to define role-to-resource
mappings. Securities for EJB and web modules are explained in Configuring EJB Module Security� and
Configuring Web Module Security�.

Before deploying applications to the JEUS Server, ensure that logical roles are mapped to the actual
Principals. This mapping is configured in the following files.

• For applications: jeus-application-dd.xml

• For EJB modules: jeus-ejb-dd.xml (for more information about principal-to-role mapping, refer to
Configuring jeus-ejb-dd.xml�)

• For Web modules: jeus-web-dd.xml (for more information about principal-to-role mapping, refer
to Configuring jeus-web-dd.xml�)

It is important to understand all the modules in a Jakarta EE application, because Roles and principal-
to-role mappings are shared within the limits of the application. If the role Administrator is defined in
the application. xml file, and the principal user2 is granted the role Administrator in jeus-application-
dd.xml, this role will be applied to all EJBs and Web modules in the application.

In the same way, even though this role and principal-to-role mapping are defined only in jeus-ejb-
dd.xml of a particular EJB module, they are accessible to all modules in the EAR file.

Note that all principal-to-role mappings in Jakarta EE applications have an
application scope whether it is configured in jeus-application-dd.xml, or in a
certain jeus-ejb-dd.xml or jeus-web-dd.xml file.

3.4.2. Configuring jeus-application-dd.xml

The principal-to-role mappings on the application level are set in jeus-application-dd.xml.

To define a principal-to-role mapping, add the following tags under the <application> tag in jeus-
application-dd.xml.

• <role-permission> (optional)

Each <role-permission> tag defines a principal-to-role mapping and can optionally configure
Excluded and Unchecked Roles. This tag works exactly the same that in jeus-web-dd.xml, jeus-ejb-
dd.xml, and policies.xml files.

It has the following child tags.

Tag Description

<principal> (0 or more) The principal name that is mapped to a Role.

<role> (1, required) The logical role name. This will be passed as the first parameter of the
constructor of the Java class that implements the role permission.

The role name must match the logical role name in application.xml.

68 | Security Guide

Tag Description

<actions> (optional) Contains additional data for the role permission. If set, this action data
will be passed as the second parameter of the constructor of the Java
class that implements the role permission.

<classname> (optional) The name of the Java class that implements the role permission. This
class must be a subclass of the java.security.Permission class and have
a public constructor that accepts at least one string parameter (the role
name).

If omitted, the jeus.security.resource.RolePermission class is used.

<excluded> (optional) An empty tag. If set, the role will be excluded. No one can be in the
Role(s) defined in the role permission.

This takes precedence over the <principal> and <unchecked> tags.

<unchecked> (optional) An empty tag. If set, the role will be unchecked. Anyone can be in the
Role(s) defined in the role permission.

This takes precedence over the <principal> tag.

The security domain to which the application is deployed must be specified inside the <application>
tag. By default, the security domain, SYSTEM_DOMAIN, will be used, but if a particular application
requires a specific security service, a new domain that includes the security service must be created
and deployed.

The security domain name can be specified using the deploy command of jeusadmin.

Jakarta EE Application Security Configurations: <jeus-application-dd.xml>

 <application>
 . . .
 <role-permission> ①
 <principal>user2</principal>
 <role>Administrator</role>
 </role-permission>
 <role-permission> ②
 <role>Customer</role>
 </unchecked>
 </role-permission>
 . . .
 </application>

In the previous example, the Jakarta EE application security is set as follows:

① The principal user2 is mapped to the role Administrator, and uses the default RolePermission.

② Since the role is unchecked, all principals are in the role Customer.

1. For more information about configuring a security domain, refer to
Configuring Security Domain.

3. Configuring Security in Applications and Modules | 69

2. For more information about how to develop and configure Custom
Permissions, refer to Configuring Security System Policy.

3. For information about how to deploy a Jakarta EE application on JEUS, refer to
"JEUS Server Guide".

3.5. Example
This section briefly introduces the configuration examples from the previous sections.

The following page shows the login page for accessing the main page. The following page can be
accessed only when the checked permission has been set for the URL. If the unchecked permission is
set, the page will directly go to the main page. If the excluded permission is set, authorization will fail
and an error page will appear.

Login Page

If authorization fails or an attempt was made to login using an unauthorized account, an error page
will appear. If the login is successful, the following page will appear.

70 | Security Guide

Main Page

The previous main page has three Servlet links, and can call three EJB methods. A successful login is
dependent on the login account and the configuration files. Thus, a user can directly check for
accessibility using different configurations and login accounts.

3. Configuring Security in Applications and Modules | 71

4. Programming with the Security System
API
This chapter explains about programming with the security system API.

4.1. Overview
This chapter explains how to develop programs with the security system API to add user’s own
security features to user applications. For example, there is the registration Servlet (called "auto-
registration") that automatically registers a new user to the JEUS security system by using an
application.

Before developing a security service, application programmers should check whether the standard
Jakarta EE security model and the JEUS security services support the desired security features.
Developing a program using the security API will decrease the compatibility between Jakarta EE
servers. It is recommended to use only the standard Jakarta EE security interfaces to maintain the
compatibility.

4.2. Configuring Java SE Permissions
The security system API can be used to protect the JEUS system from malicious user code (Servlet or
EJB) injections.

The security API can be used for user codes (Servlet or EJB) in the case when the Java security
manager is used, or when the source code (Servlet, EJB) successfully logs in using the
LoginService.login (Subject) method. In this case, the Subject is the subject of the user defined in the
accounts.xml file in the target security domain and has the necessary JEUS Permission configured in
the policies.xml file.

For more information about how to configure each file, refer to the following:

• Java SE security manager and Java SE Policy files: Configuring Java SE SecurityManager

• accounts.xml: Configuring Security System User Information

• policies.xml in the JEUS security system: Configuring Security System Policy and References

4.3. Basic API
The following classes in the jeus.security.base package play an important role when working with the
security system at the application programming level.

72 | Security Guide

Class Description

jeus.security.base.Subject A user.

A Subject has a single main principal, which acts as the Subject ID
(username). Several string property values may be sent to the
jeus.security.base.Subject class.

jeus.security.base.Credenti
alFactory

The member variable of the Subject class. It is used to create the actual
credentials of a Subject.

For example, the PasswordFactory class creates a password credential
instance, and the JKSCertificateFactory class gets a certificate from JKS
keystore and creates a credential instance for a certificate.

jeus.security.base.Policy Represents a single principal-to-role mapping and several role-to-
resource mappings. Contains PermissionMaps as a member variable.

jeus.security.base.Permissi
onMap

The container for java.security.Permission instances and the member
variables of the Policy class.

jeus.security.base.Role The interface that represents a logical role.

In role-to-resource PermissionMap, the role instance is mapped to the
resource permission. In the same way, in principal-to-role
PermissionMap, the principal is mapped to role permission.

jeus.security.base.Security
CommonService

Authenticates the subject and checks the permission for the Subject.

jeus.security.base.Security
Exception

The exception that occurs due to a security violation, such as failed
login, failed authentication, and failed authorization.

jeus.security.base.ServiceE
xception

The exception that occurs due to a critical runtime error in the security
system.

4.4. Resource API
As well as the basic classes in the jeus.security.base package, the classes in the jeus.security.resource
package also play an important role related to resources.

Class Description

jeus.security.resource.Prin
cipalImpl

The implementation class of the java.security.Principal interface.

jeus.security.resource.Gro
upPrincipalImpl

The subclass of PrincipalImpl that represents group principals and the
implementation class of the java.security.acl.Group that manages
members of the related nested groups.

jeus.security.resource.Pass
word

A simple Password Credential instance. It is created by the
PasswordFactory.

4. Programming with the Security System API | 73

Class Description

jeus.security.resource.Pass
wordFactory

The CredentialFactory that creates the Password Credential.

jeus.security.resource.Lock A credential that locks the relevant subject.

Any attempt to login to the locked subject will always fail.

jeus.security.resource.Lock
Factory

The CredentialFactory that creates the lock credential.

jeus.security.resource.Expi
ryTime

A credential. Sets the expiration of the subject.

Any attempt to login with the subject, that has already expired, will
always fail.

jeus.security.resource.Expi
ryTimeFactory

The CredentialFactory that creates the ExpiryTime.

jeus.security.resource.Role
Impl

The class that implements the role interface.

jeus.security.resource.Role
Permission

The subclass of java.security.Permission that represents a particular
principal belonging to a particular role. The RolePermission is used to
express principal-to-role mapping.

jeus.security.resource.Tim
eConstrainedRolePermissi
on

A sub class of RolePermission that represents a principal being in the
role expressed by the its super class only during the specified time
period.

jeus.security.resource.Reso
urcePermission

The subclass of java.security.Permission that expresses the concept
that a role can access a resource and perform particular actions.

ResourcePermission is used to express role-to-resource mapping.

For more information about the classes, refer to the Javadoc and References.

4.5. SPI Class
To communicate with the services that are the foundation of the security system, use the following
SPI classes from the jeus.security.spi package.

Class Description

jeus.security.spi.Authentica
tionRepositoryService

Used to add, remove, and search for Subject to/from a Subject
repository. A Subject (user) can be added within the program using this
class.

jeus.security.spi.Authorizat
ionRepositoryService

Used to add, remove, and search for Policy data to/from a Policy
repository. Permission can be added within the program using this
class.

74 | Security Guide

Refer to the Javadoc and References for more information. Also refer to
Developing Custom Security Service for more information about these SPI
classes.

4.6. Example
The following shows how to develop a program with the security API.

// Login the CodeSubject so that security checks are
// disabled (so that we can modify the Subject and Policy
// stores)
SecurityCommonService.loginCodeSubject();

// Make Subject with Principal “pete”
Principal petePrincipal = new PrincipalImpl(“pete”);
Subject pete = new Subject(petePrincipal);

// Make password “petepw” for Subject “pete”
PasswordFactory pf = new PasswordFactory(“petepw”);
pete.getCredentialFactories().add(pf);

// Add new Subject to the Subject store
AuthenticationRepositoryService.addSubject(pete);

// Make a new Policy
Policy policy = new Policy();

// Make role “someRole”
Role someRole = new RoleImpl(“someRole”);

// Make a RolePermission for role “someRole”
Permission rolePermission = new RolePermission(someRole);

// Add the RolePermission for “someRole” to the Policy
policy.getRolePolicy().addPermission(
 rolePermission, new Object[] {petePrincipal}, false, false);

// Create a ResourcePermission for resource “rsc1” with actions
// “action1” and “action2”
Permission rscPermission =
new ResourcePermission(“rsc1”, “action1,action2”);

// Add the ResourcePermission to the Policy using
// context id “ctx1”
policy.getResourcePolicy(“ctx1”, true).addPermission(
 rscPermission, new Object[] {someRole}, false, false);

// Add the new Policy to the Policy store
AuthorizationRepositoryService.addPolicy(policy);

// Logout the CodeSubject so that security checks are
// enabled again
SecurityCommonService.logout();

4. Programming with the Security System API | 75

// Make a Subject to be logged in
Subject pete2 = Subject.makeSubject(“pete”, “petepw”);

// Login Subject “pete” (should succeed since we added
// “pete” earlier)
SecurityCommonService.loginDefault(pete2);

// Check ResourcePermission “rsc1” for current Subject (“pete”)
// Should succeed since we added Policy for this above
SecurityCommonService.checkPermission(
 “ctx1”, new ResourcePermissin(“rsc1”, “action2”);

// Print the name of the current Subject (“pete”)
System.out.println(
SecurityCommonService.getCurrentSubject().getPrincipal().getName());

// Logout “pete”
SecurityCommonService.logout();

76 | Security Guide

5. Developing Customized Security Services
This chapter describes how to develop custom security services, which is a key feature of the JEUS
security system.

5.1. Overview
Using this feature, you can easily integrate the JEUS security system with various kinds of external
security systems or security data repositories.

The following sections describe how to develop custom security services.

• Service Class

• Implementation Basic Pattern

• 11 SPI Classes

• Custom Security Service Configurations

5.2. Service Class
The most basic class of the pluggable security architecture is the classjeus.security.base.Service class.

The Service class is an abstract class that must be extended by all security service implementation
classes. Currently, all available security SPI classes in the jeus.security.spi package extend this class.

The following is the class diagram for the Service class.

Service Class Diagram

The Service class provides a few basic things that apply to all security services.

5. Developing Customized Security Services | 77

• Service Description

A Service class provides a string type description that briefly explains what the service does. The
description can be obtained using the getDescription() method.

• Service Domain

Each Service instance will be assigned to a domain when the service instance is created at
runtime. So a domain will be essentially a collection of service instances. The domain of the
service can be obtained using the getDomain() method.

• Service Type

Each Service implementation class has a single type. The type acts like a marker so that a specific
service instance can be obtained from a set of service instances.

For example, if a Service implementation class implements some authentication functions, other
security services need to request the domain for the class in order to use this authentication
service class. To do so, they can pass the authentication type of the class so that the domain can
return the correct service instance.

The service type can be obtained by using the getType() method. However, since getType() is an
abstract method, it must be implemented by the sub-classes. The service type is actually a
java.lang.Class, an instance of the SPI class that is included in the jeus.security.spi package. Each
SPI class implements the getType() method as final. That is, the getType() method cannot be
redefined in a sub-class of SPI.

• Service

The service name can be obtained using the getName() method.

• Service MBean

The service class is associated with a JMX MBean, which is used to manage a particular service
instance.

The MBean can be obtained using the getMBean() method. Sub-classes must override this
method in order to return a different MBean instead of the default one.

By default, MBean is created based on the information that is returned from the getMBeanInfo()
method that is declared as a protected method. Sub-classes can redefine this method to return a
different MBeanInfo instance instead of the default one. To do so, the overriding implementation
must include the MBeanInfo of the super class.

• Service State

Each Service implementation class is in one of the two states, created or destroyed. The state can
be changed by invoking create() and destroy(). These methods delegate the actual service to the
abstract protected methods, doCreate() and doDestroy(). It is required that all service
implementation classes must implement both doCreate() and doDestroy() methods.

78 | Security Guide

The doCreate() and doDestroy() methods include the code that starts and terminates the service.
The typical doCreate() method contains the code that acquires some resources like DB
connections, while the doDestroy() method contains the code that releases those resources.

The current status of the service class can be obtained using the isCreate() and isDestroyed()
methods. There is also the method getState() that returns the current status as a string.

The following is the status-chart for the Service class.

The State-Chart of the Service Class

• Service Properties

The service class has a name-value pair property. This property can be set or retrieved using the
jeus.security.base.PropertyHolder interface. The service implementation class must implement
the interface.

The properties are used to initialize service instances. The properties are set before a service
instance is created, and then the create() method is called. After the properties have been set, the
service instances can be initialized by calling the doCreate() method to retrieve the property
values.

5.3. The Basic Pattern of Implementing Custom Security
Services
This section briefly describes how to implement the custom security services.

The following are required to implement a customized security service.

1. Users must have a general understanding of the security system and its architecture.

2. Choose the security functions that the custom security service needs to provide.

3. Choose the SPI class that has the necessary features. For more information about main SPI
classes, refer to SPI Class�.

4. Refer to the documents for information on SPI class. (Refer to Javadoc, References, and SPI Class�.)

5. Make a sub-class of the selected SPI class and implement the following methods. An empty public
constructor without parameter must be provided.

5. Developing Customized Security Services | 79

a. Optionally define a set of properties that are used to initialize services. Each property is a
public static final string type and what each property represents must be documented.

b. Implement the doCreate() method. This method will be called once when the security service
is started and it performs general initialization operations such as resource allocation. This
method reads the property values using the getProperty() method. The parameter of the
getProperty() method is the property name that was defined in the previous step.

c. Implement the doDestroy() method. This method is called once when the service is
terminated. The method should release any resources that were allocated during the
doCreate() method call and also perform clean-up operations such as writing logs to a certain
file.

d. Implement all abstract methods in the selected SPI class as specified in the Javadoc.

e. Optionally implement the methods to be used for managing the service through JMX.
Implement the getMBean() or getMBeanInfo() method.

6. Compile the class that implements SPI.

7. Register the new security service with JEUS as described in Configuring Security System.

5.4. SPI Class
The following SPI classes are defined in the jeus.security.spi package.

The following is the list of SPI classes defined in the jeus.security.spi package. The cardinality
indicates how many SPI instances can exist for each security domain. For the detailed information
about SPI classes, refer to References.

class name Purpose Cardin
ality

SecurityInstaller Installs and uninstalls the security system.

Only one must exist for the entire JVM.

1

SubjectValidationService Checks if the credential of the subject is valid prior to
logging in.

0 or
more

SubjectFactoryService Creates the custom subject prior to logging in. 1

AuthenticationService Authenticates the subject prior to logging in. 1

AuthenticationRepositoryService Add, get, or remove a subject from its repository. 1

IdentityAssertionService Maps credentials to subject using the cert-user-map.xml
file.

0 or
more

CredentialMappingService Maps credentials to subject using the truststore
information.

0 or
more

CredentialVerificationService Verifies that at least one of the credentials for the
subject is valid.

0 or
more

80 | Security Guide

class name Purpose Cardin
ality

AuthorizationService Checks whether the subject has permission to access a
role or resource.

1

AuthorizationRepositoryService Add, get, or remove Policies from the repository. 1

EventHandlingService Implements custom event handler for security events
and various security audits.

0 or
more

5.4.1. SubjectValidationService SPI

The jeus.security.spi.SubjectValidationService SPI is used to check whether all the credentials held by
a subject are valid. This means that there should be no invalid credentials for any reason. An invalid
credential means that the Subject is invalid and consequently that the subject should not be allowed
to log in.

A typical use for the SubjectValidationService instance is to check whether the subject contains a lock
credential. If so, it can be concluded that the subject is locked out and that any login process should
not be allowed to proceed.

Thus, the SubjectValidationService.checkValidity(Subject) method is usually called during the login
process. If a SecurityException occurs, the login process will fail. EventHandlingService class is used
to automatically configure a lock credential for the subject. For more information, refer to
EventHandlingService SPI�.

Note that the issue of authentication (verifying whether the returned subject corresponds to the
actual subject) is different from the validation of the Subject. Authentication and validation are not
dependent upon one another. However, login is dependent on both, as already mentioned.

ZERO OR MORE SubjectValidationService instances can be configured for each domain. If no
SecurityException occurs during the SubjectValidationService process, the subject is regarded as
valid, and the login process is allowed to proceed. However, if at least one SecurityException occurs,
the overall validation will fail and the login must NOT be allowed to proceed.

SubjectValidationService SPI class is functionally different from the
CredentialVerificationService class.

SubjectValidationService checks the credential to determine the validity of the
subject. CredentialVerificationService checks if the subject has at least one
credential to prove its authenticity. So the SubjectValidationService class is used
after the subject has been successfully authenticated, while
CredentialVerificationService class is used during the process of authentication in
the AuthenticationService class.

5. Developing Customized Security Services | 81

5.4.2. SubjectFactoryService SPI

jeus.security.spi.SubjectFactoryService SPI is a special SPI class used to create a subject without any
external information.

SubjectFactoryService SPI is used to create a subject using the SubjectFactoryService class without
receiving any parameters. On the other hand, regular implementation classes receive the username
and password from the prompt and create a subject based on the information.

The SubjectFactoryService class is created in the login mechanism to support other credential types
other than the password.

5.4.3. AuthenticationService SPI

The jeus.security.spi.AuthenticationService class is used to authenticate a Subject. It is used to verify
that the subject, which was received as a parameter, indeed corresponds to the subject that is
registered with the subject repository.

The following is the authentication procedure:

1. Calls the jeus.security.spi.CredentialMappingService.getSubjectName(Object) in the login
mechanism to check for the user the credential of the subject is mapped to.

2. Calls the jeus.security.spi.AuthenticationRepository.getSubject(String username) method to copy
the registered subject from the subject repository to the local server. This is called a local subject.

3. If the local subject is not null, check whether the credential of the local subject matches that of
the subject that needs to be authenticated. The comparison can be done by calling the SPI
method, jeus.security.spi.CredentialVerificationService.verifyCredentials(Subject, Subject).

In some cases, equals(Object) method is used to compare the credentials, but it lacks flexibility.

4. Finally, if all of the previous steps were completed successfully, the local Subject is returned from
the authenticate(Subject) method and eventually, that Subject will be used to log into the
SecurityCommonService.

One or more AuthenticationService instances can be configured for each domain. If at least one of
the configured AuthenticationService instances is successfully authenticated, the entire
AuthenticationService will regard the authentication as successful. If one instance successfully
authenticates the subject, no additional AuthenticationService will be queried.

5.4.4. AuthenticationRepositoryService SPI

jeus.security.spi.AuthenticationRepositoryService SPI has methods that add a subject to the
repository and delete or get a subject from the repository. This SPI is used in the classes that
implement the AuthenticationService class, or it can be used directly within the Jakarta EE application
code.

For example, this SPI must be used to write code that automatically adds a subject to the subject

82 | Security Guide

repository whenever a new user registers through a web site.

The main purpose of the AuthenticationRepositoryService class is to store a
jeus.security.base.Subject instance in a specified repository type at runtime. The typical repository
types are XML file and database.

The implementation and use of AuthenticationRepositoryService SPI is optional. However, it must be
provided in the case when the default AuthenticationService is used (since it calls the
AuthenticationRepositoryService.getSubject(String) method during the authentication), or if it is
directly used in a Jakarta EE application code.

Only one AuthenticationRepositoryService instance can be specified for a domain. Currently, multiple
AuthenticationRepositoryService’s cannot be used.

5.4.5. IdentityAssertionService SPI

jeus.security.spi.IdentityAssertionService SPI is necessary in the case when the username of a subject
is unknown, which means that the main principal is set to null. In this case, it needs to extract the
credentials of the subject and try to match these credentials to a username based on the information
in cert-user-map.xml. This username is later used to perform authentication.

A typical example is the use of a java.security.Certificate instance. The instance uses a certificate
credential without the main principal. In such case, during the authentication, it receives the
certificate credential from the subject and passes it as a parameter of the
IdentityAssertionService.getIdentity(object) method.

The method calls the IdentityAssertionService.doIdentity(object) method again. In the method, the
user name will be traced back using the attribute key value of the certificate defined in the cert-user-
map.xml file and sent as a return value.

5.4.6. CredentialMappingService SPI

jeus.security.spi.CredentialMappingService is necessary in the case when the username of a subject
is unknown, which means that the main principal is set to null. In this case, it needs to extract the
credentials of the subject and try to match these credentials to a username, which may be used later
to perform authentication.

A typical example is the use of a java.security.Certificate instance. The instance uses certificate
credential without the main principal. In such case, during the authentication, it receives the
certificate credential from the subject and passes it as a parameter of the
CredentialMappingService.getSubjectName(object) method.

The method calls the CredentialMappingService.doGetSubjectName(object) method again. In the
method, the user name will be traced back using the attribute key value of the certificate defined in
the cert-user-map.xml file and sent as a return value.

5. Developing Customized Security Services | 83

5.4.7. CredentialVerificationService SPI

jeus.security.spi.CredentialVerificationService SPI is used to support a new type of Proof Credential.

Proof Credential is a kind of credential that may be used to prove the authenticity of the Subject that
is returned as a parameter, which means that it corresponds to an existing subject. A typical example
of the proof credential is a password that is implemented by the jeus.security.resource.Password
class.

CredentialVerificationService SPI essentially declares the doVerifyCredentials(subject, subject)
method, which is one method that must be implemented by its sub-class. The first subject in the
signature of this method is the reference Subject, which contains the credentials of the actual subject
that is registered with the subject repository. The second argument is the proof Subject, which
contains the proof credentials. The doVerifyCredentials(Subject, Subject) method compares the
credentials of the two subjects and checks for a match.

The matching between credentials may be done in a number of different ways (just using the
equals(object) method may not be enough). If the credentials of any two subjects match, the method
will return, otherwise, a jeus.security.base.SecurityException will occur.

In some cases, it is not necessary to actually use the information of the reference
subject. Certain proof credentials can be checked by using only the information of
the proof Subject, such as a Certificate Credential.

The CredentialVerificationService that matches with the jeus.security.resource.Password is the
jeus.security.impl.verification.PasswordVerificationService class.

Zero or more CredentialVerificationService’s can be configured for each domain. If at least one match
is found in the CredentialVerificationService, the entire CredentialVerificationService verification is
regarded as a success. Otherwise, a SecurityException occurs and the entire verification is regarded
as a failure, and the authentication will fail.

5.4.8. AuthorizationService SPI

jeus.security.spi.AuthorizationService SPI defines the methods for authorization of the security
system. The purpose of this SPI is to answer the question, “Does the Subject S have the permission to
perform the action A?”.

A typical implementation class calls the
jeus.security.spi.AuthorizationRepositoryService.getPolicy(contextId) method and analyzes the
returned jeus.security.base.Policy object to obtain the answer to the previous question. It is also
possible to use other implementations that do not use the AuthorizationRepositoryService SPI.

One or more AuthorizationService can be configured for each domain. If at least one
AuthorizationService returns a positive value, the entire authorization will be regarded as a success.
Additional AuthorizationService objects will not receive the permission query if one successfully
authorizes the permission.

84 | Security Guide

5.4.9. AuthorizationRepositoryService SPI

jeus.security.spi.AuthorizationRepositoryService SPI is used to add, remove, or get a
jeus.security.base.Policy (which represents authorization policy) instance to/from the Policy
repository. This SPI may be used in the AuthorizationService implementation classes. It can also be
used directly in Jakarta EE application code to directly add or remove Policy to/from the Policy
repository when a particular event occurs.

The main purpose of AuthorizationRepositoryService is to store a jeus.security.base.Policy instance to
a certain repository type at runtime. The typical repository types are XML file, database, and LDAP
server.

The implementation and use of AuthorizationRepositoryServiceSPI is optional, but it must be
provided in the case when the default AuthorizationService is used (since it calls the
AuthorizationRepositoryService.getPolicy(String) method during authentication), or if it is directly
used in Jakarta EE application code.

Only one AuthorizationRepositoryService instance can be specified for a domain. Currently, multiple
AuthorizationRepositoryService’s cannot be used.

5.4.10. EventHandlingService SPI

EventHandlingService SPI is an interface that captures and processes various security events.

Using the EventHandlingService SPI, users can easily implement operations, including logging and
sending a notification email to the administrator when a security event occurs, setting a lock on a
subject, etc.

The basic concepts are very simple: the occurrences of jeus.security.base.Event’s in the security
service will be notified to all EventHandlingService’s in the domain. Then EventHandlingService
handles the event according to its content.

For example, an EventHandlingService can be used when a lock needs to be applied to a Subject.
Whenever the AuthenticationService fails to authenticate a Subject, it will generate a
security.authentication.failed Event. The lockout EventHandlingService catches this event and
executes the handleEvent(Event) method. In the method, a login counter is kept and when it reaches
a certain value (such as 3), a lock credential is applied to the Subject.

Then SubjectValidationService confirms that the subject is locked, and as a result, all attempts to log
in using this Subject will fail. Thus, by using EventHandlingService with SubjectValidationService, user
can implement a function that prohibits a subject from logging into the system if it fails to log in
three times in a row.

However, the most common use of the EventHandlingService SPI is probably to implement various
kinds of security loggers that record events. The events can be written in a text file, an XML file, or
sometimes in an encrypted file to prevent repudiation.

Zero or more EventHandlingService’s can be configured for each security domain.

5. Developing Customized Security Services | 85

5.4.11. Dependencies between SPI Implementations

There may be a dependency between different SPI classes. For example, the AuthenticationService
class depends on the AuthenticationRepositoryService class.

Here, dependency is simply the fact that one SPI implementation class calls a
static method of another SPI implementation class. If the implementation class of
AuthenticationService is AuthenticationServiceImpl, the class can obtain the
information about the subject by calling the
AuthenticationRepositoryService.getSubject() method.

Note that the fact that a dependency between SPI classes "may" exists implies that the dependency
could exist but is not mandatory. It is dependent on the actual implementation of the SPI class. No
SPI class directly calls the methods of another SPI class (with a few minor exceptions). In general, the
dependency is generated when a SPI implementation class calls a method of a different SPI
implementation class.

The following shows the dependencies between SPI implementations and SPI static methods in a
default security system implementation.

Dependencies Between Default SPI Implementation Classes in the Default Security System

5.5. Security Services Configurations
After a new SPI implementation class is compiled, the class must be registered with the JEUS security
system. For more information, refer to Configuring Security Domain Components.

86 | Security Guide

6. Using JACC Provider
This chapter describes the purpose of JACC and how to implement Custom JACC Provider to use it in
the JEUS security system.

6.1. Overview
Jakarta Authorization was first introduced in J2EE version 1.4 with the name of Java Authorization
Contract for Containers (JACC), and the current version is 2.0.

JACC serves two basic purposes.

• Provide a standardized SPI for EJB and Servlet authorization.

• Ensure compatibility between existing Java SE and Jakarta EE security models.

In short, JACC represents a standardized way of implementing an authorization provider that defines
and handles authorization for EJBs and Servlets. Thus, if a JACC provider is implemented, it can be
used in any JACC-compatible Jakarta EE server.

6.2. Introducing JACC Protocol
The entire JACC specification is divided into three parts as follows:

• Provider Protocol

• Policy Protocol

• Policy decision and execution protocol

For more information about JACC specifications (JSR-115), refer to JACC 2,0
specification in Jakarta EE Authorization 2.0 Specification.

6.2.1. Provider Configuration Protocol

The JACC Provider configuration protocol describes how a JACC provider (JACC implementation) is
announced and incorporated into the runtime environment of an application server. This protocol
defines how JACC providers are registered with Jakarta EE servers. In general, this process is very
simple as follows:

1. The Custom java.security.Policy class name is configured in the
jakarta.security.jacc.policy.provider system properties. The JACC provider contains the custom
java.security.Policy class.

2. The Jakarta EE server reads this class name and creates a class instance, and then casts it to the
java.security.Policy type.

6. Using JACC Provider | 87

https://jakarta.ee/specifications/authorization/2.0/

3. If successful, the default Java SE policy class will be replaced with the new JACC policy class by
calling the java.security.Policy.setPolicy() method.

4. After the completion of the previous steps, all authorization checks will be performed by the new
JACC policy. The current JACC policy object can be obtained using the
java.security.Policy.getPolicy() method.

For more information about the JACC Provider configuration protocol, refer to
JACC specifications.

6.2.2. Policy Configuration Protocol

The Policy Configuration protocol essentially defines how the security constraints defined in Jakarta
EE deployment descriptor file (ejb-jar.xml, web.xml) are to be mapped to the java.security.Permission
set defined in the jakarta.security.jacc package. It also defines how these Permissions are to be
added to the JACC provider (Custom java.security.Policy).

This helps the provider to make correct authorization decisions for EJB and Servlet modules.

The Policy Configuration protocol does NOT define how to configure principal-to-
role mappings. It only describes how to configure role-to-resource mappings
based on the information in the standard Jakarta EE DD file. The principal-to-role
mappings are defined according to the JACC provider vendor.

Policy can be configured as follows:

1. Specify the fully qualified class name of Custom jakarta.security.jacc.PolicyConfigurationFactory in
the jakarta.security.jacc.PolicyConfigurationFactory.provider system property (“-D” property).

The JACC provider contains Custom jakarta.security.jacc.PolicyConfigurationFactory class.

2. The Jakarta EE server reads the property and creates a class instance (PCF).

3. Deploy the servlet and EJB modules.

4. The deployment code parses the provided web.xml and ejb-jar.xml DD files and converts the
security constraints to JACC permission instances. The permission class is included in the
jakarta.security.jacc package. Each permission instance represents the Role-to-Resource mapping
defined in the servlet and EJB.

5. The deployment code calls the PCF.getPolicyConfiguration() method and receives an instance of
the jakarta.security.jacc.PolicyConfiguration type.

6. The deployment code adds the role-to-resource permissions created in step 4 to
PolicyConfiguration using various PolicyConfiguration methods.

7. After all permissions have been added, the PolicyConfiguration.commit() method is called.

When a Servlet and/or EJB module is undeployed, PolicyConfiguration.delete() method is called. This

88 | Security Guide

removes all the permissions of the Servlet/EJB module.

For more information about the policy configuration process, refer to the JACC
specifications.

6.2.3. Policy Decision and Execution Protocol

The policy decision and execution protocol describe how (EJB and Servlet) authorization decisions are
to be carried out at runtime. They are applied after the requirements of the previous two protocols
have been met.

Essentially, Policy decision and execution work as follows. This section uses a servlet as an example,
but it also applies equally to an EJB.

1. An HTTP request is sent to the Servlet page.

2. The Servlet container configures some JACC context information using the
jakarta.security.jacc.PolicyContext class.

3. The Servlet container then constructs two JACC Web permission instances (defined in the
jakarta.security.jacc package). These permission instances represent the permission defined for
the current Servlet page.

4. The Servlet container queries the JACC policy provider to see if the servlet requester has the two
permissions mentioned in step 3. There are several ways to interpret the query.

For example, the Policy.implies() method can be used to interpret the query. In this case, all
permissions, which are checked by the java.security.ProtectionDomain that is initialized by the
principal of the requester, are used as parameters.

5. The JACC provider receives the request and determines if the requester has the permission to
access the servlet page by using the following information: context information set from step 2,
the permission instances created in step 3, the current principal(s), the principal-to-role mapping,
and the role-to-resource mapping.

6. If the outcome of the authorization check is positive, the Servlet container will allow access to the
Servlet page. Otherwise, an authorization error page will be returned.

For more information about policy decision and execution protocol, refer to the
JACC specifications.

6.3. Developing JACC Provider
This section describes how to develop the Custom JACC provider and some development instructions.

6. Using JACC Provider | 89

6.3.1. Implementing JACC Provider

The following is a simple picture that shows the relationships between the classes that need to be
implemented for your JACC provider. In the figure, the classes that need to be implemented are
labeled using names starting with “MyJACC”. Any name can be chosen for these classes.

JACC Provider Class

The following list shows the classes that are required for a complete implementation of a JACC
provider:

• java.security.Policy

The heart of a JACC provider implementation is usually creating a subclass of the
java.security.Policy class. The class is used in JACC for authorization purposes.

The usual way of implementing the subclass of java.security.Policy is by defining a new class, we
call it MyJACCPolicy here, that extends java.security.Policy. Then, MyJACCPolicy overrides the
implies() method in order to implement the policy decision and protocol that are described in
Policy Decision and Execution Protocol. When implementing the implies() method, both the
permissions that are added using the PolicyConfiguration interface and the principal-to-role
mappings must be considered in order to interpret an authorization query.

MyJACCPolicy must provide a public constructor without parameters, so that the Jakarta EE server
can easily create a class instance.

• jakarta.security.jacc.PolicyConfigurationFactory

In order to satisfy the Policy configuration protocol, the application server must be able to add
permission instances to JACC java.security.Policy. This is accomplished using the
jakarta.security.jacc.PolicyConfiguration interface. The abstract class,
jakarta.security.jacc.PolicyConfigurationFactory, is used to create the PolicyConfiguration

90 | Security Guide

instance.

Thus, in order to create a complete JACC provider, you must implement the
getPolicyConfiguration() method in the jakarta.security.jacc.PolicyConfigurationFactory class. This
means that you must create a new subclass of the
jakarta.security.jacc.PolicyConfigurationFactory class. Here, we call the new class
MyJACCPolicyConfigurationFactory. MyJACCPolicyConfigurationFactory must be a concrete class
with a public no-argument constructor, so that it can be easily instantiated by the application
server.

The MyJACCPolicyConfigurationFactory must provide a public no-argument constructor to enable
the Jakarta EE server to easily create instances of the class.

• jakarta.security.jacc.PolicyConfiguration

In order to satisfy the Policy configuration protocol, the application server must be able to add
permission instances to JACC java.security.Policy. This is accomplished using the
jakarta.security.jacc.PolicyConfiguration interface. The abstract class,
jakarta.security.jacc.PolicyConfigurationFactory, is used to create the PolicyConfiguration
instance, as already mentioned.

Implementing the jakarta.security.jacc.PolicyConfiguration interface is thus a requirement to
complete a JACC provider. We will call our implementation class MyJACCPolicyConfiguration.

jakarta.security.jacc.PolicyConfigurationFactory implementation (MyJACCPolicy
ConfigurationFactory) should always return an instance of the MyJACCPolicyConfiguration class.

This section briefly explains how to implement each of the classes. For more
information about how to implement the javax.security.jacc.PolicyConfiguration
class, refer to the Policy Configuration Protocol of the JACC specification, and the
Jakarta EE Javadoc for each class.

6.3.2. Packaging JACC Provider

In general, the JACC Provider and the supporting classes referenced by the JACC provider should be
packaged together into a JAR file and be delivered, in a JAR format, to the target application server.
We will call the JAR file, “MyJACCProvider.jar”.

The path of the JAR file for the JACC provider must be included in the application server path. If
needed, certain system properties can be configured, but the procedure for this varies slightly for
different application servers. How to configure this for JEUS will be explained in Integrating JACC
Providers with the JEUS Security System.

6.3.3. Default JACC Provider

The JEUS security system provides a very simple default JACC provider. In general, it is strongly

6. Using JACC Provider | 91

discouraged to use this default provider as it was mainly developed for test purposes. Instead, the
default standard authorization provider described in the earlier chapter is recommended for use.

However, if you wish to use another JACC provider, you must create your own JACC JAR archive and
include the JACC provider file in it since there is no support for commercial products.

6.4. Integrating JACC Providers with the JEUS Security
System
This section describes how to integrate JACC providers with the JEUS security system.

The process to integrate the JEUS security system with a JACC Provider is as follows.

1. Implement a Principal-to-Role Mapper

The JACC interface does not contain any implementation related to principal-to-role mapping, but
only for role-to-resource mapping. The user must implement a separate JEUS-specific interface to
implement the mapping, and JEUS provides the
isjeus.security.impl.aznrep.JACCPrincipalRoleMapper interface for this purpose. This interface
contains a single method, that needs to be implemented, called
addPrincipalRoleMapping(PermissionMap map, String policyId). This method adds the principal-
to-role mapping to PolicyConfiguration, which is represented by the policyId.

Note that principal-to-role mappings have application scope in Jakarta EE. This
is because all the principal-to-role mappings in an application are merged into
a single map. Refer to the API documentation for more information about the
PermissionMap class and about the add() method, that is used in merging
PermissionMap instances.

The implementation of the JACCPrincipalRoleMapper interface must provide a public no-
argument constructor, and it must be added to the JAR file of the JACC Provider. For more
information on this, refer to References and Javadoc.

The process of the JACCPrincipalRoleMapper interface creating the principal-to-role mapping is as
follows:

a. The class name that implements the jeus.security.jacc.principalRoleMapper class is
configured to the system property, jeus.security.jacc.principalRoleMapper.

b. The class that implements the jeus.security.impl.aznrep.JACCAuthorizationRepositoryService
class reads this property to create an instance by calling the
Class.forName(mapperClassname).newInstance() method.

c. Then the addPrincipalRoleMapping() method of the instance is called to create and add the
principal-to-role mappings, that are defined in the JEUS DD file.

2. Setting the Security Configuration File

92 | Security Guide

The JEUS security system uses two adapter classes to connect JEUS native authorization API with
the JACC authorization API.

The roles of the two adapter classes are as follows:

◦ jeus.security.impl.azn.JACCAuthorizationService

Implements the container part of the Policy Decision and Execution protocol by invoking the
java.security.Policy.getPolicy().implies() method to check for authorization.

◦ jeus.security.impl.aznrep.JACCAuthorizationRepositoryService

Implements the Policy Configuration protocol by allowing the container-generated
jeus.security.base.Policy instance to be added to the PolicyConfiguration instance, which is a
configuration component of the JACC provider.

In order to enable JACC, both of these security Services must be configured in the domain service
definition of the security-domains.xml file.

JACC Security Configuration File: <security-domains.xml>

<?xml version="1.0"?>
<security-domains>
 ...
 <security-domain>
 <name>JACC_DOMAIN</name>
 <authorization>
 <jacc-service/>
 </authorization>
 </security-domain>
 . . .
</security-domains>

3. Adding the JACC Provider JAR file to the System Path

To add the JACC provider JAR file to the system path, simply place the JAR file in the following
directory.

JEUS_HOME/lib/system

4. Setting Java System Properties

The JACC protocol and JEUS specifies three Java system properties to enable the application server
to detect the presence of the JACC provider. These properties are as follows:

◦ jakarta.security.jacc.policy.provider

The name of the class that represents the JACC Provider, and implements java.security.Policy.

◦ jakarta.security.jacc.PolicyConfigurationFactory.provider

6. Using JACC Provider | 93

The name of the class that implements PolicyConfigurationFactory that creates and loads
PolicyConfiguration instances.

◦ jeus.security.jacc.principalRoleMapper

The name of the class that implements the
jeus.security.impl.aznrep.JACCPrincipalRoleMapper interface, and creates the principal-to-role
mapping from JEUS DD file.

The previous three system properties must be configured in the <jvm-option> element of
domain.xml.

Java System Property Configuration for JACC <domain.xml>

<?xml version="1.0"?>
<domain xmlns=“http://www.tmaxsoft.com/xml/ns/jeus”>
 <servers>
 <server>
 <name>server1</name>
 <!-- server JVM option -->

 <jvm-config>
 . . .
 <jvm-option>
 -Djakarta.security.jacc.policy.provider=
 myprovider.MyJACCPolicy
 </jvm-option>
 <jvm-option>
 -Djakarta.security.jacc.PolicyConfigurationFactory.provider=
 myprovider.MyJACCPolicyConfigurationFactory
 </jvm-option>
 <jvm-option>
 -Djeus.security.jacc.principalRoleMapper=
 myprovider.MyJACCPrincipalToRoleMapper
 </jvm-option>
 </jvm-config>
 . . .

Default JACC Provider Class Name

As already mentioned, the default class names for JACC provider are as follows:

Classification Class Name

Policy jeus.security.impl.jacc.JACCPolicyWrapper

PolicyConfigurationF
actory

jeus.security.impl.jacc.JACCPolicyConfigurationFactoryImpl

JACCPrincipalRoleMa
pper

jeus.security.impl.jacc.JACCDefaultPrincipalRoleMapper

These classes are packaged and placed in the following location.

94 | Security Guide

JEUS_HOME/lib/system/jeus.jar

6. Using JACC Provider | 95

7. Using JAAS
This chapter introduces Java Authentication and Authorization Service (JAAS) and how to integrate
SunOne Directory Server with the JEUS security system.

7.1. Overview
JAAS stands for the Java Authentication and Authorization Service. It implements the Java version of
standard Pluggable Authentication Module (PAM), and authenticates and performs access control by
supporting user based authentication.

In Java 2 SDK, and Standard Edition (J2SDK) 3, JAAS (JavaTM Authentication and Authorization Service)
was an optional package (extension). It has been integrated since the J2SDK 4.

The main purposes of JAAS are as follows.

• Authenticates users.

Uses secure method to authenticate the user who is executing the Java code, regardless of the
type of code (application, applet, bean, or servlet).

• Approves users.

Confirms that the user maintains the access control required to execute the action.

Java 2 has been providing the access control (based on the source of the code and the signature) of
the code source base. However, since the additional function of performing the access control based
on the executor is not enough, JAAS supports the extended Java2 security architecture.

JAAS authentication is executed using the plug-in availability method. Thus, an application works
separately from the authentication-based technology. A new or updated authentication technology
can be used as a plug-in within the application, which eliminates the need to modify the application.

The application validates the authentication process by instantiating the LoginContext object. The
LoginContext object decides on the authentication technology or LoginModule for use based on the
configurations. The basic LoginModule verifies a user with the entered username and password, and
some modules can verify a user through a voice recognition, fingerprints, or object.

If the user is authenticated, the approval component of JAAS protects the access to the resources by
working with the core Java access control model. In J2SDK 3, access control was determined only by
the location of the code and CodeSource. However, in J2SDK 4, it is determined by the source of the
execution code and the user or service which can be represented by a Subject object that executes
the code. If the authentication is successful, the LoginModule updates the subject by using the
relevant principal and qualifications.

For more information about JAAS specification, refer to JAAS Tutorial.

96 | Security Guide

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/tutorials/index.html

For basic integration between LDAP, to which the JAAS mechanism has been applied, a database, and
the JEUS security system, you must extend and implement the LoginModule. The JEUS security
system provides the services related to login and approval.

The following sections show examples to explain how LDAP and database work together by applying
core JAAS related classes and interfaces to the JEUS security system.

• Example of integrating LDAP to LoginModule

• Example of integrating DBRealm to LoginModule

7.2. Implementing LoginModule to Integrate JEUS with
LDAP
The javax.security.auth.login.LoginContext interface class provides the basic method used for
authentication. This class enables a user to develop an application, which provides a particular
authentication type, without depending on the login authentication technology.

As shown in the following, the JAAS authentication mechanism, which is extended from the
LoginModule, is provided to work with LDAP. The authentication mechanism is performed through
the LdapLoginModule that inherits the LoginModule interface.

LdapLoginModule has been extended to enable integration with the JEUS security system.

jeus.security.impl.login.LdapLoginModule

package jeus.security.impl.login;

import jeus.security.base.Domain;
import jeus.security.resource.Password;
import jeus.security.resource.PrincipalImpl;
import jeus.security.resource.RolePrincipalImpl;
import jeus.util.logging.JeusLogger;

import javax.security.auth.Subject;
import javax.security.auth.callback.*;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import java.security.Principal;
import java.text.MessageFormat;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Map;

public class LdapLoginModule implements LoginModule {
 protected static final JeusLogger logger = (JeusLogger)
JeusLogger.getLogger("jeus.security.loginmodule");

 // initial state
 private Subject subject;
 private CallbackHandler callbackHandler;

 private boolean succeeded = false;

7. Using JAAS | 97

 private boolean commitSucceeded = false;

 private String username;
 private String password;
 private String domain;

 private Principal userPrincipal;
 private Password userCredential;

 private SunOneLdapAuthenticator authenticator;

 private static final String INITIAL_CONTEXT_FACTORY = "initialContextFactory"; // optional
 private static final String PROVIDER_URL = "providerURL";
 private static final String CONNECTION_USERNAME = "connectionUsername";
 private static final String CONNECTION_PASSWORD = "connectionPassword";
 private static final String USER_BASE = "userBase";
 private static final String USER_SEARCH_MAPPING = "userSearchMapping";
 private static final String USER_PASSWORD_ATTR = "userPasswordAttr";
 private static final String USER_ROLE_ATTR = "userRoleAttr";
 private static final String ROLE_BASE = "roleBase";
 private static final String ROLE_NAME_ATTR = "roleNameAttr";
 private static final String ROLE_SEARCH_MAPPING = "roleSearchMapping";

 private final String SUN_JDK_LDAP_CONTEXT_FACTORY = "com.sun.jndi.ldap.LdapCtxFactory";

 public void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options) {

 this.subject = subject;
 this.callbackHandler = callbackHandler;
 this.domain = Domain.SYSTEM_DOMAIN_NAME;

 authenticator = new SunOneLdapAuthenticator();
 initAuthenticator(authenticator, options);
 }

 private void initAuthenticator(SunOneLdapAuthenticator authenticator, Map options) {
 // INIITIAL_CONTEXT_FACTORY
 String value = (String) options.get(INITIAL_CONTEXT_FACTORY);
 if (value == null) {
 authenticator.setContextFactory(SUN_JDK_LDAP_CONTEXT_FACTORY);
 } else {
 authenticator.setContextFactory(value);
 }

 authenticator.setProviderUrl((String) options.get(PROVIDER_URL));
 authenticator.setConnectionUsername(
 (String) options.get(CONNECTION_USERNAME));
 authenticator.setConnectionPassword(
 (String) options.get(CONNECTION_PASSWORD));

 value = (String) options.get(USER_BASE);
 if (value != null) {
 authenticator.setUserBase(value);
 } else {
 String msg = "LoginMoulde initialization failed. " + "userBase option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }

98 | Security Guide

 authenticator.setUserPasswordAttr((String) options.get(USER_PASSWORD_ATTR));

 value = (String) options.get(USER_SEARCH_MAPPING);
 if (value != null) {
 authenticator.setUserSearchMapping(new MessageFormat(value));
 } else {
 String msg = "LoginMoulde initialization failed. " + "userSearchMapping option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }

 authenticator.setUserRoleAttr((String) options.get(USER_ROLE_ATTR));

 value = (String) options.get(ROLE_BASE);
 if (value != null) {
 authenticator.setRoleBase(value);
 } else {
 String msg = "LoginMoulde initialization failed. " + "roleBase option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }

 value = (String) options.get(ROLE_NAME_ATTR);
 if (value != null) {
 authenticator.setRoleNameAttr(value);
 } else {
 String msg = "LoginMoulde initialization failed. " + "roleNameAttr option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }

 value = (String) options.get(ROLE_SEARCH_MAPPING);
 if (value != null) {
 authenticator.setRoleSearchMapping(new MessageFormat(value));
 } else {
 String msg = "LoginMoulde initialization failed. " + "roleSearchMapping option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }
 }

 public boolean commit() throws LoginException {
 if (succeeded == false) {
 return false;
 } else {
 userPrincipal = new PrincipalImpl(username);
 if (!subject.getPrincipals().contains(userPrincipal))
 subject.getPrincipals().add(userPrincipal);

 ArrayList roles = authenticator.getRoles();
 for (Iterator i = roles.iterator(); i.hasNext();) {
 String roleName = (String) i.next();
 logger.fine("Adding role to subject : username = " + username + ", roleName = " +
roleName);
 subject.getPrincipals().add(new RolePrincipalImpl(roleName));
 }

 userCredential = new Password(password);

7. Using JAAS | 99

 subject.getPrivateCredentials().add(userCredential);

 username = null;
 password = null;
 domain = null;
 commitSucceeded = true;
 return true;
 }
 }

 public boolean abort() throws LoginException {
 if (succeeded == false) {
 return false;
 } else if (succeeded == true && commitSucceeded == false) {
 succeeded = false;
 username = null;
 password = null;
 domain = null;
 userPrincipal = null;
 userCredential = null;
 } else {
 logout();
 }
 return true;
 }

 public boolean logout() throws LoginException {
 subject.getPrincipals().remove(userPrincipal);
 subject.getPrivateCredentials().remove(userCredential);
 succeeded = false;
 succeeded = commitSucceeded;
 username = null;
 password = null;
 domain = null;
 userPrincipal = null;
 userCredential = null;
 return true;
 }

 public boolean login() throws LoginException {
 Callback[] callbacks = null;

 // prompt for a user name and password
 if (callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " +
 "to garner authentication information from the user");

 callbacks = new Callback[3];
 callbacks[0] = new NameCallback("user name: ");
 callbacks[1] = new PasswordCallback("password: ", false);
 callbacks[2] = new TextInputCallback("domain: ");
 try {
 callbackHandler.handle(callbacks);
 username = ((NameCallback) callbacks[0]).getName();
 char[] tmpPassword = ((PasswordCallback) callbacks[1]).getPassword();
 if (tmpPassword == null) {
 tmpPassword = new char[0];
 }
 password = new String(tmpPassword);

100 | Security Guide

 ((PasswordCallback) callbacks[1]).clearPassword();
 domain = ((TextInputCallback) callbacks[2]).getText();

 if (!authenticator.authenticate(username, password)) {
 throw new LoginException("LDAP authentication failed.");
 }
 succeeded = true;
 } catch (UnsupportedCallbackException uce) {
 uce.printStackTrace();
 LoginException le = new LoginException(
 "Error: " + uce.getCallback().toString() +
 " not available to garner authentication information " +
 "from the user");
 le.initCause(uce);
 throw le;
 } catch (Exception e) {
 e.printStackTrace(); // todo. logging
 if (e instanceof LoginException) {
 throw (LoginException) e;
 } else {
 LoginException le = new LoginException(e.toString());
 le.initCause(e);
 throw le;
 }
 }
 return succeeded;
 }
}

The RolePrincipalImpl information needs to be converted to the RolePrincipalImpl
type, because the user and role information, which is added during runtime,
must be applied to the JEUS security system.

7.3. Configuring LDAP JAAS LoginModule Service
To provide the login service by applying the JAAS LoginModule to a particular domain in the JEUS
security system, specify the <jaas-login-config> element when configuring the domain security
service. For more information, refer to the 'authentication' section in Configuring Security Service.

To provide the LDAP LoginModule security service to DEFAULT_APPLICATION_DOMAIN, configure the
login service and approval service as follows.

Configuring LDAP JAAS LoginModule Service: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus" version="9.0">
. . .
 <security-domain>
 <name>DEFAULT_APPLICATION_DOMAIN</name>
 <authentication>
 <jaas-login-config>
 <login-module>

7. Using JAAS | 101

 <login-module-classname>
 jeus.security.impl.login.LdapLoginModule
 </login-module-classname>
 <control-flag>required</control-flag>
 <option>
 <name>initialContextFactory</name>
 <value>com.sun.jndi.ldap.LdapCtxFactory</value>
 </option>
 <option>
 <name>providerURL</name>
 <value>ldap://192.168.1.63:389</value>
 </option>
 <option>
 <name>connectionUsername</name>
 <value>cn=Directory Manager</value>
 </option>
 <option>
 <name>connectionPassword</name>
 <value>adminadmin</value>
 </option>
 <option>
 <name>userBase</name>
 <value>ou=People,dc=sample,dc=com</value>
 </option>
 <option>
 <name>userSearchMapping</name>
 <value>(uid={0})</value>
 </option>
 <option>
 <name>roleBase</name>
 <value>ou=Groups,dc=sample,dc=com</value>
 </option>
 <option>
 <name>roleNameAttr</name>
 <value>cn</value>
 </option>
 <option>
 <name>roleSearchMapping</name>
 <value>(uniqueMember={0})</value>
 </option>
 </login-module>
 </jaas-login-config>
 </authentication>
 <authorization>
 <repository-service>
 <custom-repository>
 <classname>
 jeus.security.impl.aznrep.CustomPolicyFileRealmAuthorizationRepositoryService
 </classname>
 <property>
 <name>PolicyClassName</name>
 <value>jeus.security.base.CustomJeusPolicy</value>
 </property>
 <property>
 <name>UserPrincipalClassName</name>
 <value>jeus.security.resource.PrincipalImpl</value>
 </property>
 <property>
 <name>RolePrincipalClassName</name>

102 | Security Guide

 <value>jeus.security.resource.RolePrincipalImpl</value>
 </property>
 </custom-repository>
 </repository-service>
 </authorization>
 <security-domain>
. . .
</security-domains>

The following is the description for each class.

• jeus.security.impl.callback.JAASUsernamePasswordCallbackHandler

Provides the basic mechanism for obtaining authentication information (username and
password) for LoginModule of the JEUS security system.

• jeus.security.impl.login.LdapLoginModule

Supports LoginModule based on the LDAP Attribute value that is defined as an option value in the
JEUS security system.

• jeus.security.impl.aznrep.CustomPolicyFileRealmAuthorizationRepositoryService

Provides the authorization service by applying the
UserPrincipalClassName/RolePrincipalClassName type, defined by the user, in the JEUS security
system.

• jeus.security.base.CustomJeusPolicy

Extends and implements the jeus.security.base.Policy class. This class supports principal-to-role
mapping even when there is no jeus-web-dd.xml descriptor at runtime in the JEUS security
system and when the LoginModule defines the RolePrincipalImpl class for the Principal.

When you are finished with the configurations, start JEUS, and then start the login service for the
application deployed to DEFAULT_APPLICATION_DOMAIN.

7.4. Implementing LoginModule to Integrate with
Database
The authentication mechanism is performed through the DBRealmLoginModule that inherits the
LoginModule interface. To integrate with the JEUS security system, extend and implement the
DBRealmLoginModule as shown in the following.

jeus.security.impl.login.DBRealmLoginModule

package jeus.security.impl.login;

import jeus.security.base.Domain;
import jeus.security.base.ServiceException;
import jeus.security.resource.Password;

7. Using JAAS | 103

import jeus.security.resource.PrincipalImpl;
import jeus.security.resource.RolePrincipalImpl;
import jeus.util.logging.JeusLogger;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.*;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import javax.sql.DataSource;
import java.security.Principal;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

/**
 * User: choco
 * Date: 2016. 09. 13
 * Time: PM 4:35:57
 */
public class DBRealmLoginModule implements LoginModule {
 protected static final JeusLogger logger = (JeusLogger)
JeusLogger.getLogger("jeus.security.login");
 protected String dsExportName;
 protected String principalsQuery = "select password from jeus_users where username=?";
 protected String rolesQuery = "select role from jeus_roles where username=?";

 private String username;
 private String password;
 private String domain;

 private Subject subject;
 private CallbackHandler callbackHandler;
 private boolean succeeded = false;
 private boolean commitSucceeded = false;

 protected Map options;
 private Principal userPrincipal;
 private Password userCredential;

 public void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options) {
 this.subject = subject;
 this.callbackHandler = callbackHandler;
 this.options = options;

 try {
 domain = Domain.getCurrentDomain().getName();
 } catch (ServiceException e) {
 domain = Domain.SYSTEM_DOMAIN_NAME;
 }

104 | Security Guide

 dsExportName = (String) options.get("exportName");
 if (dsExportName == null) {
 String msg = "LoginMoulde initialization failed. " + "exportName option missing.";
 logger.warning(msg);
 throw new IllegalArgumentException(msg);
 }

 Object tmp = options.get("principalsQuery");
 if (tmp != null)
 principalsQuery = tmp.toString();
 tmp = options.get("rolesQuery");
 if (tmp != null)
 rolesQuery = tmp.toString();
 logger.debug("DBRealmLoginModule, export name : " + dsExportName);
 logger.debug("principalsQuery=" + principalsQuery);
 logger.debug("rolesQuery=" + rolesQuery);
 logger.debug("initialize successfully");
 }

 public boolean login() throws LoginException {
 Callback[] callbacks = null;

 // prompt for a user name and password
 if (callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " + "to garner
authentication information from the user");

 callbacks = new Callback[3];
 callbacks[0] = new NameCallback("user name: ");
 callbacks[1] = new PasswordCallback("password: ", false);
 callbacks[2] = new TextInputCallback("domain: ");
 try {
 callbackHandler.handle(callbacks);
 username = ((NameCallback) callbacks[0]).getName();
 char[] tmpPassword = ((PasswordCallback) callbacks[1]).getPassword();
 if (tmpPassword == null) {
 tmpPassword = new char[0];
 }
 password = new String(tmpPassword);
 ((PasswordCallback) callbacks[1]).clearPassword();
 domain = ((TextInputCallback) callbacks[2]).getText();

 String expectedPassword = getUsersPassword();
 if (validatePassword(password, expectedPassword) == false) {
 throw new LoginException("DBRealm authentication failed.");
 }
 succeeded = true;
 } catch (UnsupportedCallbackException uce) {
 uce.printStackTrace();
 LoginException le = new LoginException(
 "Error: " + uce.getCallback().toString() +
 " not available to garner authentication information " +
 "from the user");
 le.initCause(uce);
 throw le;
 } catch (Exception e) {
 e.printStackTrace(); // todo. logging
 if (e instanceof LoginException) {
 throw (LoginException) e;

7. Using JAAS | 105

 } else {
 LoginException le = new LoginException(e.toString());
 le.initCause(e);
 throw le;
 }
 }
 return succeeded;
 }

 private String getUsersPassword() throws LoginException {
 String password = null;
 Connection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 try {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup(dsExportName);
 conn = ds.getConnection();
 ps = conn.prepareStatement(principalsQuery);
 ps.setString(1, username);
 rs = ps.executeQuery();
 if (rs.next() == false)
 throw new FailedLoginException("No matching username found");

 password = rs.getString(1);
 }
 catch (NamingException ex) {
 throw new LoginException(ex.toString(true));
 }
 catch (SQLException ex) {
 logger.debug("Query failed", ex);
 throw new LoginException(ex.toString());
 }
 finally {
 if (rs != null) {
 try {
 rs.close();
 }
 catch (SQLException e) {
 }
 }
 if (ps != null) {
 try {
 ps.close();
 }
 catch (SQLException e) {
 }
 }
 if (conn != null) {
 try {
 conn.close();
 }
 catch (SQLException ex) {
 }
 }
 }
 return password;
 }

106 | Security Guide

 public boolean logout() throws LoginException {
 subject.getPrincipals().remove(userPrincipal);
 subject.getPrivateCredentials().remove(userCredential);
 succeeded = false;
 succeeded = commitSucceeded;
 username = null;
 password = null;
 domain = null;
 // trusted = false;
 userPrincipal = null;
 userCredential = null;
 return true;
 }

 public boolean commit() throws LoginException {
 if (succeeded == false) {
 return false;
 } else {
 userPrincipal = new PrincipalImpl(username);
 if (!subject.getPrincipals().contains(userPrincipal))
 subject.getPrincipals().add(userPrincipal);

 ArrayList roles = getRoleSets();
 for (Iterator i = roles.iterator(); i.hasNext();) {
 String roleName = (String) i.next();
 logger.debug("Adding role to subject : username = " + username + ", roleName = " +
roleName);
 subject.getPrincipals().add(new RolePrincipalImpl(roleName));
 }

 userCredential = new Password(password);
 subject.getPrivateCredentials().add(userCredential);

 username = null;
 password = null;
 domain = null;
 commitSucceeded = true;
 return true;
 }
 }

 public boolean abort() throws LoginException {
 if (succeeded == false) {
 return false;
 } else if (succeeded == true && commitSucceeded == false) {
 succeeded = false;
 username = null;
 password = null;
 domain = null;
 userPrincipal = null;
 userCredential = null;
 } else {
 logout();
 }
 return true;
 }

 protected ArrayList getRoleSets() throws LoginException {

7. Using JAAS | 107

 Connection conn = null;
 HashMap setsMap = new HashMap();
 PreparedStatement ps = null;
 ResultSet rs = null;
 ArrayList roles = new ArrayList();
 try {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup(dsExportName);
 conn = ds.getConnection();
 ps = conn.prepareStatement(rolesQuery);
 try {
 ps.setString(1, username);
 }
 catch (ArrayIndexOutOfBoundsException ignore) {
 }
 rs = ps.executeQuery();

 while (rs.next()) {
 String rolename = rs.getString(1);
 roles.add(rolename);
 }
 }
 catch (NamingException ex) {
 throw new LoginException(ex.toString(true));
 }
 catch (SQLException ex) {
 logger.debug("SQL failure", ex);
 throw new LoginException(ex.toString());
 }
 finally {
 if (rs != null) {
 try {
 rs.close();
 }
 catch (SQLException e) {
 }
 }
 if (ps != null) {
 try {
 ps.close();
 }
 catch (SQLException e) {
 }
 }
 if (conn != null) {
 try {
 conn.close();
 }
 catch (Exception ex) {
 }
 }
 }

 return roles;
 }

 protected boolean validatePassword(String inputPassword, String expectedPassword) {
 if (inputPassword == null || expectedPassword == null)
 return false;

108 | Security Guide

 return inputPassword.equals(expectedPassword);
 }
}

The RolePrincipalImpl information needs to be converted to the RolePrincipalImpl
type, because the user and role information, which is added during runtime,
must be applied to the JEUS security system.

7.5. Configuring LoginModule Service
To provide the login service by applying the JAAS LoginModule to a particular domain in the JEUS
security system, configure the <jaas-login-config> element for the domain security service. For the
details, refer to 'authentication' section in Configuring Security Service.

To provide the Database LoginModule security service to DEFAULT_APPLICATION_DOMAIN, configure
the login service and authentication service as follows:

Domain Service Configuration: <security-domains.xml>

<?xml version="1.0" encoding="UTF-8"?>
<security-domains xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
. . .
 <security-domain>
 <name>DEFAULT_APPLICATION_DOMAIN</name>
 <authentication>
 <jaas-login-config>
 <login-module>
 <login-module-classname>
 jeus.security.impl.login.DBRealmLoginModule
 </login-module-classname>
 <control-flag>required</control-flag>
 <option>
 <name>exportName</name>
 <value>dbrealmtest</value>
 </option>
 <option>
 <name>principalsQuery</name>
 <value>
 select password from DEFAULT_APPLICATION_DOMAIN_Principals
 where username=?
 </value>
 </option>
 <option>
 <name>rolesQuery</name>
 <value>
 select role from DEFAULT_APPLICATION_DOMAIN_roles
 where username=?
 </value>
 </option>
 </login-module>
 </jaas-login-config>
 </authentication>

7. Using JAAS | 109

 <authorization>
 <repository-service>
 <custom-repository>
 <classname>
jeus.security.impl.aznrep.
 CustomPolicyFileRealmAuthorizationRepositoryService
 </classname>
 <property>
 <name>PolicyClassName</name>
 <value>jeus.security.base.CustomJeusPolicy</value>
 </property>
 <property>
 <name>UserPrincipalClassName</name>
 <value>jeus.security.resource.PrincipalImpl</value>
 </property>
 <property>
 <name>RolePrincipalClassName</name>
 <value>jeus.security.resource.RolePrincipalImpl</value>
 </property>
 </custom-repository>
 </repository-service>
 </authorization>
 <security-domain>
. . .
</security-domains>

The following is the description for each class.

• jeus.security.impl.login.DBRealmLoginModule

Supports LoginModule based on the exportname, principal, and role database query values.
Optional for the JEUS security system.

The following are the list of options.

Item Description

exportName Sets the export-name of the database, defined in domain.xml.

principalsQuery Defines a query, with one primary key, that obtains a password for the
principal.

rolesQuery Defines a query, with one primary key, that obtains roles of the principal.

• jeus.security.impl.aznrep.CustomPolicyFileRealmAuthorizationRepositoryService

Provides the authorization service by applying the
UserPrincipalClassName/RolePrincipalClassName type, defined by the user, in the JEUS security
system.

• jeus.security.base.CustomJeusPolicy

Extends and implements the jeus.security.base.Policy class. This class supports principal-to-role
mapping even when there is no jeus-web-dd.xml descriptor at runtime in the JEUS security
system and when the LoginModule defines the RolePrincipalImpl class for the Principal.

110 | Security Guide

When you are finished with the configurations, start JEUS, and then start the login
service for the application deployed to DEFAULT_APPLICATION_DOMAIN.

7. Using JAAS | 111

Appendix A: Security Event Service
This appendix describes the security event services.

A.1. Overview
This appendix describes the standard security events that are emitted to EventHandlingService from
the SPI classes and default security service implementation classes. Use this reference to develop
your own event handling providers by implementing the jeus.security.spi.EventHandlingService SPI.

The listing format is as follows:

G.2.X <Event type> = Event type
 Source Class: Class where the event occurred
 Event Type: Event type
 Event Level: Event level (FATAL, SERIOUS, WARNING, INFORMATION, DEBUG).
 Event Context: Key-value pairs for the event context.
 Emitted When? Conditions under which the event occurs

Normally, events are only emitted to an EventHandlingService that is in the same domain as the
event source. This excludes two events, the security.install.successful and security.uninstall.attempt
events, that are emitted to all configured domains in the security system.

For more information about the jeus.security.base.Event class and the
jeus.security.spi.EventHandlingService class, refer to Javadoc.

A.2. Events
The following is the list of the standard security events.

security.validation.failed

Source Class jeus.security.spi.SubjectValidationService

Event Type security.validation.failed

Event Level WARNING

Event Context ◦ Key: “subject”

◦ Value: jeus.security.base.Subject that failed validation.

Emitted When Whenever a SubjectValidationService throws a SecurityException

112 | Security Guide

security.authentication.failed

Source Class jeus.security.spi.AuthenticationService

Event Type security.authentication.failed

Event Level WARNING

Event Context ◦ Key: “subject”

◦ Value: jeus.security.base.Subject that failed validation.

Emitted When Whenever user authentication for the Subject fails.

security.authorization.failed

Source Class jeus.security.spi.AuthorizationService

Event Type security.authentication.failed

Event Level WARNING

Event Context ◦ Key: “contextid”

Value: Context ID for which the permission was checked

◦ Key: “permission”

Value: java.security.Permission that needs to be checked.

◦ Key: “subject”

Value: jeus.security.base.Subject that failed user authentication.

Emitted When Whenever the user authentication fails

security.authentication.repository.subject.added

Source Class jeus.security.spi.AuthenticationRepositoryService

Event Type security.authentication.repository.subject.added

Event Level INFORMATION

Event Context ◦ Key: “subject”

◦ Value: jeus.security.base.Subject that is added

Emitted When Whenever a Subject is successfully added to the
AuthenticationRepositoryService.

security.authentication.repository.subject.removed

Source Class jeus.security.spi.AuthenticationRepositoryService

Appendix A: Security Event Service | 113

Event Type security.authentication.repository.subject.removed

Event Level INFORMATION

Event Context ◦ Key: “subject”

◦ Value: jeus.security.base.Subject that is deleted.

Emitted When Whenever a Subject is successfully removed from the
AuthenticationRepositoryService.

security.authentication.repository.subject.removed.complete

Source Class jeus.security.spi.AuthenticationRepositoryService

Event Type security.authentication.repository.subject.removed.complete

Event Level INFORMATION

Event Context ◦ Key: “name”

◦ Value: The deleted Subject

Emitted When Whenever a Subject is successfully removed from the
AuthenticationRepositoryService.

security.authorization.repository.policy.added

Source Class jeus.security.spi.AuthorizationRepositoryService

Event Type security.authorization.repository.policy.added

Event Level INFORMATION

Event Context ◦ Key: “policy”

◦ Value: jeus.security.base.Policy that is added

Emitted When Whenever a Policy is added to the AuthorizationRepositoryService.

security.authorization.repository.policy.removed

Source Class jeus.security.spi.AuthorizationRepositoryService

Event Type security.authorization.repository.policy.removed

Event Level INFORMATION

Event Context ◦ Key: “policy”

◦ Value: jeus.security.base.Policy that is deleted

Emitted When Whenever Policy data is removed from the AuthorizationRepositoryService.

114 | Security Guide

security.authorization.repository.policy.removed.complete

Source Class jeus.security.spi.AuthorizationRepositoryService

Event Type security.authorization.repository.policy.removed.complete

Event Level INFORMATION

Event Context ◦ Key: “contextid” Value: The java.lang.String type Context ID that was
removed from the repository.

Emitted When Whenever a context id is removed from the
AuthorizationRepositoryService.

security.install.successful

Source Class jeus.security.spi.SecurityInstaller

Event Type security.install.successful

Event Level INFORMATION

Event Context None

Emitted When After the security system has been successfully installed.

security.uninstall.attempt

Source Class jeus.security.spi.SecurityInstaller

Event Type security.uninstall.attempt

Event Level INFORMATION

Event Context None

Emitted When Before the security system is to be uninstalled.

Appendix A: Security Event Service | 115

Appendix B: JEUS Server Permissions
This appendix describes the standard Permission resource names and resource actions.

B.1. Overview
This appendix lists the standard Permission resource names and resource actions. They are used by
various JEUS sub-modules such as JNDI, JMS, manager, and security to check for authority to access
the resources. The java.security.Permission type related to the resource Permission check is always
jeus.security.resource.ResourcePermission, and the context id is always “default”.

Authorization is always performed by combining the resource name with the resource action. In
general, the resource name is the name of the target resource, and the resource action is the action
that will be performed on the target. If the authorization configurations do not seems to be properly
configured, check Master Server or the server logs and add the proper permissions.

B.2. JEUS System Resource Name
This section only describes the major resource names that are provided in the default JEUS security
system.

Resource name Description

jeus.* Accesses all resource names in the JEUS system.

jeus.server.<server-
name>.*

Accesses all resource names of a particular server in the JEUS system. The list
of permissions that are checked by the server when the default security
system is used.

Depending on the resource action, it is categorized as follows:

◦ boot: When starting the server.

◦ down: When terminating the server.

◦ deploy: When deploying applications to the server.

◦ ftp: When using ftp for file transfer.

jeus.server.<server-
name>.app.<applicati
on-name>

The resource name for a particular application of a specific server in the JEUS
system.

jeus.cluster.<cluster-
name>.*

Accesses all the resource names of a specific cluster of the JEUS system.

116 | Security Guide

Resource name Description

jeus.domain.<domain
-name>

The resource name for permission to dynamically modify the configurations
in the JEUS system. The domain specified here is the JEUS system domain
instead of the security domain.

Depending on the resource action, it is categorized as follows:

◦ dynamicConfiguration: When dynamically changing the domain
configurations using jeusadmin.

jeus.jndi The resource name for JNDI operation permission of the JEUS system.

Depending on the resource action, it is categorized as follows:

◦ lookup: When trying to look up a object using JNDI.

◦ modify: When adding/deleting/changing a JNDI repository object such as
bind/unbind/rename.

◦ list : When retrieving the list of objects that is stored in the JNDI
repository.

jeus.node.<node-
name>

The resource name for a specific node in the JEUS system. Used when adding
or deleting nodes. For more information about nodes, refer to "JEUS Server
Guide" in JEUS Server Guide.

Depending on the resource action, it is categorized as follows:

◦ edit: When adding or deleting a node.

B.3. jeusadmin Command Permission Configurations
Based on the default security system, the permissions can be set in units of jeusadmin command.

When permissions are set in units of jeusadmin command, only the permission for the command will
be checked, and other internal permissions will be ignored. The resource names of the command
permissions are related to the command option. The resource names, explained earlier, are used for
the server, servers, cluster, clusters, node options. For other options, the name,
jeus.domain.<domain-name> is used as the resource name.

The resource action for the command permission is defined for the command name, and not for the
command aliases. Thus, the actual command name, that can be checked using help <command-
name> command, should be used. For more information about commands, refer to "Part II. Console
Commands and Tools" in JEUS Reference Guide.

The following is an example that gives the administrator permission to user1, and the permission to
perform deploy on server2 to user2. Since only the permission for server2 will be granted to user2,
the resource name is set to "jeus.server.server2.*". The resource action is set to "deploy-application",
which is the actual deployment command name in jeusadmin.

Appendix B: JEUS Server Permissions | 117

Security System Policy Configuration: <policies.xml>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<policies xmlns="http://www.tmaxsoft.com/xml/ns/jeus">
 <policy>
 <role-permissions>
 <role-permission>
 <principal>user1</principal>
 <role>adminRole</role>
 </role-permission>
 <role-permission>
 <principal>user2</principal>
 <role>server2DeployRole</role>
 </role-permission>
 </role-permissions>
 <resource-permissions>
 <context-id>default</context-id>
 <resource-permission>
 <role>adminRole</role>
 <resource>jeus.*</resource>
 <actions>*</actions>
 </resource-permission>
 <resource-permission>
 <role>server2DeployRole</role>
 <resource>jeus.server.server2.*</resource>
 <actions>deploy-application</actions>
 </resource-permission>
 </resource-permissions>
 </policy>
</policies>

118 | Security Guide

References
• Java Authorization Contract for Containers Specification Version 1.0

Provides information about the JACC provider.

• Jakarta EE 9 Specification

Provides information on the basic security architecture applied to Jakarta EE servers including
JEUS.

• EJB 4.0 Specification

Provides information about the EJB security model.

• Servlet 5.0 Specification

Provides information about the Servlet security model.

• Javadoc for java.security, javax.security.auth, jakarta.security.jacc

Provides detailed information about the basic classes related to security.

• Javadoc JEUS API

JEUS_HOME/docs/api/jeusapi/index.html

• XML Reference - domain.xml settings for security service

JEUS_HOME/docs/reference/schema/index.html

References | 119

	Security Guide
	Contents
	1. Introduction to the Security System
	1.1. Overview
	1.2. Key Features
	1.3. Architecture
	1.4. Core Concepts
	1.4.1. Login
	1.4.2. Authentication
	1.4.3. Authorization
	1.4.4. Auditing
	1.4.5. Services and SPI
	1.4.6. Domain

	1.5. Improving Performance and Security Level
	1.5.1. Improving Performance
	1.5.2. Improving Security Level

	2. Configuring the Security System
	2.1. Overview
	2.2. Configuring the Security System Domain
	2.2.1. Configuring XML
	2.2.2. Configuring User Accounts and Security Policies

	2.3. Configuring Security Domain Components
	2.3.1. Configuring XML

	2.4. Configuring Security Services
	2.4.1. Configuring XML

	2.5. Configuring the Security System User Information
	2.5.1. Configuring XML
	2.5.2. Using Database
	2.5.3. Configuring Password Security
	2.5.4. Cached Login Information

	2.6. Configuring Security System Policies
	2.6.1. Configuring XML
	2.6.2. Using Database

	2.7. Configuring Additional Settings
	2.7.1. Configuring Java SE SecurityManager
	2.7.2. Configuring JACC Provider
	2.7.3. Configuring information to Grant Identity
	2.7.4. Configuring Identity Certificate Information

	3. Configuring Security in Applications and Modules
	3.1. Overview
	3.1.1. Module Deployment vs. Application Deployment
	3.1.2. Role-to-Resource Mapping
	3.1.3. Principal-to-Role Mapping
	3.1.4. User Configurations

	3.2. Configuring EJB Module Security
	3.2.1. Configuring ejb-jar.xml
	3.2.2. Configuring jeus-ejb-dd.xml

	3.3. Configuring Web Module Security
	3.3.1. Configuring web.xml
	3.3.2. Configuring jeus-web-dd.xml

	3.4. Configuring Jakarta EE Application Security
	3.4.1. Configuring application.xml
	3.4.2. Configuring jeus-application-dd.xml

	3.5. Example

	4. Programming with the Security System API
	4.1. Overview
	4.2. Configuring Java SE Permissions
	4.3. Basic API
	4.4. Resource API
	4.5. SPI Class
	4.6. Example

	5. Developing Customized Security Services
	5.1. Overview
	5.2. Service Class
	5.3. The Basic Pattern of Implementing Custom Security Services
	5.4. SPI Class
	5.4.1. SubjectValidationService SPI
	5.4.2. SubjectFactoryService SPI
	5.4.3. AuthenticationService SPI
	5.4.4. AuthenticationRepositoryService SPI
	5.4.5. IdentityAssertionService SPI
	5.4.6. CredentialMappingService SPI
	5.4.7. CredentialVerificationService SPI
	5.4.8. AuthorizationService SPI
	5.4.9. AuthorizationRepositoryService SPI
	5.4.10. EventHandlingService SPI
	5.4.11. Dependencies between SPI Implementations

	5.5. Security Services Configurations

	6. Using JACC Provider
	6.1. Overview
	6.2. Introducing JACC Protocol
	6.2.1. Provider Configuration Protocol
	6.2.2. Policy Configuration Protocol
	6.2.3. Policy Decision and Execution Protocol

	6.3. Developing JACC Provider
	6.3.1. Implementing JACC Provider
	6.3.2. Packaging JACC Provider
	6.3.3. Default JACC Provider

	6.4. Integrating JACC Providers with the JEUS Security System

	7. Using JAAS
	7.1. Overview
	7.2. Implementing LoginModule to Integrate JEUS with LDAP
	7.3. Configuring LDAP JAAS LoginModule Service
	7.4. Implementing LoginModule to Integrate with Database
	7.5. Configuring LoginModule Service

	Appendix A: Security Event Service
	A.1. Overview
	A.2. Events

	Appendix B: JEUS Server Permissions
	B.1. Overview
	B.2. JEUS System Resource Name
	B.3. jeusadmin Command Permission Configurations

	References

