Jakarta Concurrency Guide

JEUS 9

TMAYSOF T



Copyright

Copyright 2025. TmaxSoft Co., Ltd. All Rights Reserved.

Company Information
TmaxSoft Co., Ltd.
TmaxSoft Tower 10F, 45, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea

Website: https://www.tmaxsoft.com/en/

Restricted Rights Legend

All TmaxSoft Software (JEUS®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

JEUS® is registered trademark of TmaxSoft Co., Ltd.

Java, Solaris are registered trademarks of Oracle Corporation and its subsidiaries and affiliates.
Microsoft, Windows, Windows NT are registered trademarks or trademarks of Microsoft Corporation.
HP-UX is a registered trademark of Hewlett Packard Enterprise Company.

AIX is a registered trademark of International Business Machines Corporation.

UNIX is a registered trademark of X/Open Company, Ltd.

Linux is a registered trademark of Linus Torvalds.

Noto is a trademark of Google Inc. Noto fonts are open source. All Noto fonts are published under
the SIL Open Font License, Version 1.1. (https://www.google.com/get/noto/)

Other products and company names are trademarks or registered trademarks of their respective


https://www.tmaxsoft.com/en/
https://www.google.com/get/noto/

owners.

The names of companies, systems, and products mentioned in this manual may not necessarily be
indicated with a trademark symbol (", ®).

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: APACHE2.0,
CDDL1.0, EDL1.0, OPEN SYMPHONY SOFTWARE1.1, TRILEAD-SSH2, Bouncy Castle, BSD, MIT, SIL OPEN
FONT1.1

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks

JEUS 9 3.1.2 2025-03-24 -
JEUS 9 3.1.1 2024-12-24 -



Contents

1. Jakarta Concurrency
1.1. Overview
1.2. Managed Task
1.3. Container Thread Context
2. Managed Objects
2.1. ManagedExecutorService
2.2. ManagedScheduledExecutorService
2.3. ContextService
2.4. ManagedThreadFactory

O N U W W ===



1. Jakarta Concurrency

This chapter describes the background to the introduction of Jakarta Concurrency and its
functionality.

1.1. Overview

It is recommended that application servers do not use concurrency APIs such as Thread, Timer, and
ExecutorService provided in Java SE in the EJB or a web component. It is assumed that Jakarta EE
application components such as Servlets and EJB are executed in a thread managed by an application
server. It is also assumed that the functions provided in a container are executed in the same thread.

For these reasons, application components cannot safely use Jakarta EE services in a thread that is
not managed by a container. Furthermore, if resources are used in a thread that is not managed by a
container, potential issues regarding usability, security, reliability, and scalability can occur in Jakarta
EE.

To solve problems that occur in unmanaged threads, Jakarta Concurrency specification, which
extended the concurrency utilities of Java SE, is provided.

This technology guarantees the execution of applications without damaging the integrity of
containers in the Jakarta EE environment.

1.2. Managed Task

In order to reduce consumption of unnecessary resources, a container must pool resources and
manage life cycles. However, if asynchronous tasks are executed in a component by using the
concurrency APIs provided in Java SE, then the container cannot manage the resources as it cannot
recognize them.

As a result, this specification has defined managed tasks by expanding on the tasks defined in
java.utill.concurrent in the existing Java SE. This allows a container to manage general tasks as
managed tasks, and maintains the execution context when a task is executed asynchronously.

1.3. Container Thread Context

In the Jakarta EE environment, a container contains the context information of each service when a
service is executed.

If the Java SE's concurrency APl is used in a component, then to maintain the context information of a
service in a thread where a new container has been created, application developers must propagate
the context in the following method.

1. Store the container context of the application component thread.

1. Jakarta Concurrency | 1



2. Determine which container context to store and propagate.

3. Apply the container context in the newly created thread.

4. Restore the context of the original component thread.

By using the above method, a task can be executed while maintaining the context of Java SE's

concurrency API. However, if the Jakarta Concurrency services is used, user-defined tasks can be
easily sent to managed objects. This allows the context to be automatically maintained and restored.

When Executing a Task by Maintaining the Context

* java.util.concurrent.Callable
> call()
* java.lang.Runnable
o run()
* jakarta.enterprise.concurrent.ManagedTaskListener
> taskAborted
o taskSubmitted
o taskStarting
* jakarta.enterprise.concurrent.ManagedTaskListener
> taskAborted
o taskSubmitted
o taskStarting
* jakarta.enterprise.concurrent.Trigger
o getNextRuntime()

o skipRun()

2 | Jakarta Concurrency Guide



2. Managed Objects

This chapter describes the managed objects provided by Jakarta Concurrency by using examples.

2.1. ManagedExecutorService

The jakarta.enterprise.concurrent.ManagedExecutorService interface inherits Java SE's
java.util.concurrent.ExecutorService. Just like ExecutorService, it is used for executing asynchronous
tasks, and the application server maintains the context of the tasks that have been executed

asynchronously.

Resource Definition Example
The following is an example of defining ManagedExecutorService as a resource.
Example of Defining ManagedExecutorService as a Resource: <domain.xml>
<domain>
<server>
<data-sources>
<data-source>testdb</data-source>
</data-sources>

<managed-executor-service>mes1</managed-executor-service>
</server>

<resources>
<managed-executor-service>
<export-name>mesi</export-name>
<long-running-task>true</long-running-task>
<thread-pool>
<min>10</min>
<max>20</max>
<keep-alive-time>60000</keep-alive-time>
<queue-size>4096</queue-size>
<stuck-thread-handling>
<max-stuck-thread-time>3600000</max-stuck-thread-time>
<action-on-stuck-thread>None</action-on-stuck-thread>
<stuck-thread-check-period>300000</stuck-thread-check-period>
</stuck-thread-handling>
</thread-pool>
</managed-executor-service>
</resources>

</domain>

The configuration items are as follows.

» Basic Items

2. Managed Objects | 3



Item

Export Name

Long Running Task

* Thread Pool

Description

Sets the name that will be used to register a managed executor service
with the naming server.

Indicates whether a task run by a managed executor service is long-
running. Boolean type.

Configures the thread pool used in a managed executor service.

Item
Min
Max

Keep Alive Time

Queue Size

* Stuck Thread Handling

Description

Minimum number of threads managed by a thread pool.
Maximum number of threads managed by a thread pool.

Keep-alive time for inactive threads. If a thread pool contains more than
the minimum number of threads, inactive threads for the specified time
will be automatically removed. If this option is set to 0, threads will not
be removed.

Size of the queue which stores the application objects processed by a
thread pool.

Configures how to handle a thread when it is occupied by a specific task for longer than specified.

Item

Max Stuck Thread Time

Action On Stuck
Thread

Stuck Thread Check
Period

User Warning Class

4 | Jakarta Concurrency Guide

Description

Length of time before a thread is identified as stuck.

Action to take when stuck threads are detected. Choose one of the
following:

* None: Takes no action.

+ Interrupt: Sends an interrupt signal by calling
java.lang.Thread#interrupt().

+ IgnoreAndReplace: Ignores the Stuck Thread and replace it with a
new thread. When the Stuck state is released, the ignored thread is
discarded.

« Warning: Leaves a thread dump with a warning in the log.

Interval in milliseconds between each consecutive check for the stuck
thread status.

If action-on-stuck-thread is set to Warning, the default value for this
option is thread dump. However, you can write a class to execute the
action you want by configuring this option. The class must implement
the jeus.util.pool.Warning in jclient.jar. After writing the class, locate in
SERVER_HOME/lib/application.



Application Example
The following is an example of an application using ManagedExecutorService.
Example of an Application using ManagedExecutorService

public class AppServlet extends HTTPServlet implements Servlet {
// Retrieve our executor instance.
@Resource(name=mes1”)
ManagedExecutorService mes;

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
ArraylList<Callable> builderTasks = new ArraylList<Callable>();
builderTasks.add(new AccountTask(reqID, accountID));
builderTasks.add(new InsuranceTask(reqID, accountID));

// Submit the tasks and wait.
List<Future<Object>> results = mes.invokeAll(builderTasks);

AccountInfo accountInfo = (AccountInfo) results.get(0).get();
InsuranceInfo insInfo = (InsuranceInfo) results.get(1).get();
// Process the results

2.2. ManagedScheduledExecutorService

The jakarta.enterprise.concurrent.ManagedScheduledExecutorService interface inherits all the
functions of ManagedExecutorService, as well as the functions of Java SE's
java.util.concurrent.ScheduledExecutorService. This enables the interface to be able to execute tasks
periodically/delays. In addition, tasks can be controlled by using the trigger and
ManagedTaskListener interfaces.

Resource Definition Example
The following is an example of defining ManagedScheduledExecutorService as a resource.
Example of Defining ManagedScheduledExecutorService as a Resource: <domain.xml>
<domain>
<server>
<data-sources>
<data-source>testdb</data-source>
</data-sources>
<managed-scheduled-executor-service>mses1</managed-scheduled-executor-service>
</server>
<resources>
<managed-scheduled-executor-service>
<export-name>msesi</export-name>
<long-running-task>true</long-running-task>

<thread-pool>
<min>10</min>

2. Managed Objects | 5



<max>20</max>

<keep-alive-time>60000</keep-alive-time>

<queue-size>4096</queue-size>

<stuck-thread-handling>
<max-stuck-thread-time>3600000</max-stuck-thread-time>
<action-on-stuck-thread>None</action-on-stuck-thread>
<stuck-thread-check-period>300000</stuck-thread-check-period>

</stuck-thread-handling>

</thread-pool>
</managed-scheduled-executor-service>
</resources>

</domain>

The configuration items are as follows.
* Basic Items

Item Description

Export Name Sets the name that will be used to register a managed scheduler
executor service with the JNDI naming server.

Long Running Task Indicates whether a task run by a managed scheduled executor service
is long-running. Boolean type.

e Thread Pool

Configures the thread pool used in a managed executor service.

Item Description

Min Minimum number of threads managed by a thread pool.

Max Maximum number of threads managed by a thread pool.

Keep Alive Time Keep-alive time for inactive threads. If a thread pool contains more than

the minimum number of threads, inactive threads for the specified time
will be automatically removed. If this option is set to 0, threads will not
be removed.

Queue Size Size of the queue which stores the application objects processed by a
thread pool.

* Stuck Thread Handling

Configures how to handle a thread when it is occupied by a specific task for longer than specified.

Item Description

Max Stuck Thread Time Length of time before a thread is identified as stuck.

6 | Jakarta Concurrency Guide



Item Description

Action On Stuck Action to take when stuck threads are detected. Choose one of the
Thread following:

* None: Takes no action.

+ Interrupt: Sends an interrupt signal by calling
java.lang.Thread#interrupt().

+ IgnoreAndReplace: Ignores the Stuck Thread and replace it with a
new thread. When the Stuck state is released, the ignored thread is
discarded.

* Warning: Leaves a thread dump with a warning in the log.

Stuck Thread Check Interval in milliseconds between each consecutive check for the stuck
Period thread status.

User Warning Class If action-on-stuck-thread is set to Warning, the default value for this
option is thread dump. However, you can write a class to execute the
action you want by configuring this option. The class must implement
the jeus.util.pool.Warning in jclient.jar. After writing the class, locate in
SERVER_HOME/lib/application.

Application Example
The following is an example of an application using ManagedScheduledExecutorService.
Example of an Application using ManagedScheduledExecutorService

public class AppServlet extends HTTPServlet implements Servlet {
@Resource(name=mses1”)
ManagedScheduledExecutorService mses;

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
Runnable printTask = new Runnable() {
@0verride
public void run() {
System.out.println(System.currentTimeMillis());
I3
I
// printTask is executed every 5 seconds
mses.schedule(printTask, 5, TimeUnit.SECONDS);

2.3. ContextService

The ContextService function provides a method for creating managed tasks instead of
ExecutorService. By using the ContextService function, you do not have to worry about the context
when creating a task, as the context is maintained when a task is executed in the application server.

2. Managed Objects | 7



Before executing a task by using a dynamic proxy, you configure the context in the thread, and then
execute the task. Then, after all tasks have been performed, restore the context.

Resource Definition Example
The following is an example of defining ContextService as a resource.
Example of Defining ContextService as a Resource: <domain.xml>
<domain>
<server>
<data-sources>
<data-source>testdb</data-source>
</data-sources>

<context-service>cs1</context-service>
</server>

<resources>
<context-service>
<export-name>csi1</export-name>
</context-service>
</resources>

</domain>

The configuration items are as follows.

* Basic Items

Item Description

Export Name Sets the name that will be used to register a context service with the
JNDI naming server.

Application Example
The following is an example of an application using ContextService.
Example of an Application using ContextService

public class AppServlet extends HTTPServlet implements Servlet {
@Resource(name=cs1”)
ContextService cs;

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
// Regular Runnable task
Runnable simpleTask = new Runnable() {

@0verride
public void run() {
int sum = 0;

for (int i =0; i <10; i++) { sum += i; }
System.out.println(sum);

8 | Jakarta Concurrency Guide



T

// Convert a regular task to a contextual task through ContextService
cs.createContextualProxy(simpleTask, Runnable.class);

// Pass a contextual task to the Java SE executor
ExecutorService es = Executors.newFixedThreadPool(1);
es.submit(simpleTask);

2.4. ManagedThreadFactory

The jakarta.enterprise.concurrent.ManagedThreadFactory interface inherits Java SE's
java.util.concurrent.ThreadFactory function, which enables it to create threads. Typically, it is used to
submit ThreadFactory as the constructor’'s parameter when creating ThreadPoolExecutor. Therefore,

even in Java SE's concurrency API, the context for a task can be maintained when a worker thread
executes a task.

Resource Definition Example

The following is an example of defining ManagedThreadFactory as a resource.
Example of Defining ManagedThreadFactory as a Resource: <domain.xml>
<domain>
;;(;I’VEI’>
<data-sources>

<data-source>testdb</data-source>
</data-sources>

<managed-thread-factory>mtf1</managed-thread-factory>
</server>

<resources>
<managed-thread-factory>
<export-name>mtf1</export-name>
<thread-priority>5</thread-priority>
</managed-thread-factory>
</resources>

</domain>

The configuration items are as follows.

* Basic Items

Item Description

Export Name Sets the name that will be used to register a managed thread factory
with the JNDI naming server.

2. Managed Objects | 9



Item Description

Thread Priority Sets thread priority. (Default value: 5)

Application Example
The following is an example of an application using ManagedThreadFactory.
Example of an Application using ManagedThreadFactory

public class AppServlet extends HTTPServlet implements Servlet {
// Retrieve our executor instance.
@Resource(name=mtf1”)
ManagedThreadFactory mtf;

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
// Regular Runnable task
Runnable simpleTask = new Runnable() {

@0verride
public void run() {
int sum = 0;

for (int i =0; i <10; i++) { sum += i; }
System.out.println(sum);

T

// Execute simpleTask in a thread provided by ManagedThreadFactory
mtf.newThread(simpleTask).start();

// Or pass ThreadFactory as a parameter of ThreadPoolExecutor
Executor e = new ThreadPoolExecutor(5, 10, 6L, TimeUnit.MINUTES,

new ArrayBlockingQueue<Runnable>(4096), mtf);
e.execute(new SimpleTask());

10 | Jakarta Concurrency Guide



	Jakarta Concurrency Guide
	Contents
	1. Jakarta Concurrency
	1.1. Overview
	1.2. Managed Task
	1.3. Container Thread Context

	2. Managed Objects
	2.1. ManagedExecutorService
	2.2. ManagedScheduledExecutorService
	2.3. ContextService
	2.4. ManagedThreadFactory


