Getting Started Guide

Tmax 6

TMAYSOF T

Copyright

Copyright 2018. TmaxSoft Co., Ltd. All Rights Reserved.

Restricted Rights Legend

All TmaxSoft Software (Tmax®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

Tmax®, Tmax WebtoB® and JEUS® are registered trademarks of TmaxSoft Co., Ltd. Other products,
titles or services may be registered trademarks of their respective companies.

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: openssl-
0.9.7.m, zlib-1.1.4, expat-2.0.0, netsnmp, DCE1.0, pthread, google-diff-match-patch, libevent, getopt.

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks
Tmax 6 2.1.1 2018-06-11 -

Contents

Glossary
1. Introduction to TP-Monitor

1.1. Overview
1.2. Middleware
1.3. TP-Monitor

2. Introduction to Tmax

2.1. Overview
2.2. Architecture of Tmax
2.2.1. System Configuration
2.2.2. TIM
2.2.3. Socket Communication
2.3. Features of Tmax
2.3.1. Process Management

2.3.2. Distributed Transaction

2.3.3. Load Balancing
2.3.4. Failure Handling
2.3.5. Naming Service
2.3.6. Process Control
2.3.7. RQ Feature
2.3.8. Security Feature

2.3.9. System and Resource Management
2.3.10. Multiple Domains and Various Gateway Services

2.3.11. Various Client Agents

2.3.12. Various Communication Methods
2.3.13. Various Development Methods
2.3.14. Reliable Message Transfer

2.4. Characteristics of Tmax

2.5. Issues on the Tmax Adoption

2.5.1. System Environment

2.5.2. Issues

3. Introduction to WebT

3.1. Overview
3.2. WebTConnectionPool
3.3. WebT-Server System

4. Tmax Applications

4.1. Application Configuration
4.2. Buffer Types
4.3. Client/Server Program

O OV OV o U1 un U1 =

13
13
16
18
22
24
27
28
28
29
29
30
32
33
35
37
39
41
41
42
44
44
44
45
46
46
46
48

4.3.1. Client Program
4.3.2. Server Program
4.4. System Configuration File
4.5. API
4.5.1. Tmax Standard API
4.5.2. Non-standard API
4.6. Error Message
4.6.1. X/Open DTP related Error
4.6.2. FDL-related Error
. Examples
5.1. Programs for Each Communication Type
5.1.1. Synchronous Communication
5.1.2. Asynchronous Communication
5.1.3. Interactive Communication
5.2. Global Transaction Programs
5.3. Database Programs
5.3.1. Oracle Insert Program
5.3.2. Oracle Select Program
5.3.3. Informix Insert Program
5.3.4. Informix Select Program
5.3.5. DB2 Program

5.4. Database Integration Programs

5.4.1. Synchronous Mode (Homogeneous Database)
5.4.2. Synchronous Mode (Heterogeneous Database)
5.4.3. Asynchronous Mode (Homogeneous Database)

5.4.4. Interactive Mode (Homogeneous Database)

5.5. Programs Using TIP
5.5.1. TIP Structure
5.5.2. TIP Usage
5.5.3. TIP Usage Example

5.5.4. Program for Checking System Environment Information
5.5.5. Program for Checking System Statistical Information

5.5.6. Program for Starting and Terminating a Server Process

5.6. Local Recursive Calls
. Guide Organization
6.1. Overview

6.2. Guide Organization and Description

48
52
57
58
58
60
66
66
67
68
68
68
71
74
80
86
86
91
97

104

111

119

119

125

128

134

142

142

145

147

155

158

161

166

169

169

169

Glossary

Two-phase commit (2PC) Protocol

A two step protocol used to guarantee transaction properties for global transactions related to
more than one homogeneous or heterogeneous database. The first step is the prepare phase.
The second step is the commit phase.

Atomicity

All or nothing. All work in a transaction is performed, or nothing is performed.

CARRAY and X_OCTET Buffers

A buffer used to save binary type data that has a specified number of bytes. The length of a buffer
must be specified to exchange data.

Client Handler (CLH)

A process that mediates between clients and servers, requests a service from a server that
handles businesses, connects to a server, and manages the connection.

Client Listener (CLL)

A process for connections between clients and Tmax. CLL receives requests from clients by setting
the PORT Listener to manage client connections.

Commit

As a part of handling transactions, makes tentative changes permanent.

Consistency

The successful result of a transaction is updated to shared resources. If the transaction fails,
shared resources are kept in their original states.

Database Access System

A service that enables multiple database servers to be used with a single consistent method in a
distributed environment.

Data Dependent Routing (DDR)

A method that distributes loads with data values. If multiple nodes provide the same service,
routing is possible for the nodes within the data range.

Dynamic Load Management (DLM)

A method that dynamically selects a handling group according to the load ratio. If loads are
concentrated at a certain node, Tmax distributes the loads with this method, which dynamically
adjusts the loads for each node.

Distributed Transaction Processing (DTP)

Multiple Resource Managers (RMs) handle a single transaction.

Domain Socket

A method that uses the socket API without any changes and uses a file to enable communication

Glossary | 1

between processes.

Downsizing

The process of changing a centralized mainframe environment to an open distributed system
environment.

Durability

The result of a transaction is always maintained after it is committed.

FIELD Buffer

A buffer used to save field key and data value pairs. All native types can be saved in this buffer.

Global Transaction

A complete unit of work that takes place in an environment managed by more than one resource
manager.

Gateway Process (GW)

Handles inter-domain communication when multiple domains exist.

Hybrid Messaging System (HMS)

A Tmax feature that is the communication medium for loosely coupled senders and receivers. It
supports the Queue and Topic methods.

Isolation

Changes in shared resources affected by a transaction do not influence other transactions before
the transaction is committed.

Middleware

The system software that provides a single user environment in a distributed computing
environment. It connects a network of heterogeneous systems, supports communication between
clients and servers, and connects between computers.

Messaging Oriented Middleware (MOM)

A service that handles messages by putting them into a queue and provides an asynchronous
message management feature.

Object Request Broker (ORB)

A service that provides the feature that enables a client object to call a method of a remote server
using a software bus called ORB.

Processing On Demand (POD)

A server process that starts and handles business logic only when there is a client request.

Remote Access Control Daemon (RACD)

Remotely controls all domains in which Tmax is installed.

Raw Client Agent (RCA)

An agent that supports multiple ports that efficiently handle processes with the multi-threading

2 | Getting Started Guide

method.

Rollback

An operation that recovers the result of a transaction to a previous state due to a transaction
failure or a user request.

RPC System

A service that synchronously runs a program located in another computer through a network.

Reliable Queue (RQ)

Enables data to be maintained and reliably handled by preventing a request from disappearing
due to a failure.

Reliable Queue Server (RQS)
As a process that manages the disk queue of the Tmax system, it reads/writes from/to a file.

Simple Client Agent (SCA)
An agent that supports multiple ports that can handle both non-Tmax clients and Tmax clients.

System Load Management (SLM)
A method that distributes loads by using a defined load ratio.

STRING Buffer

A buffer used to save a string that ends with NULL. The length of the buffer does not need to be
specified.

STRUCT and X_C_TYPE Buffers

A buffer used to save a C language struct.

Tmax Control Server (TCS)

A server process that handles business logic passively at the request of CLH and returns the
results.

Tmax Information MAP (TIM)

Core information required to operate the Tmax system. It is created by the TMM service and
located in the shared memory managed by Tmax.

Tmax Information Provider (TIP)

Checks system environment information and statistics information, and operates and manages
the system.

Transaction Log Manager (TLM)
Saves transaction logs in tlog before CLH executes commit when a transaction occurs.

Tmax Administrator (Tmadmin)

Monitors Tmax-related information and manages changes in the configuration file.

Glossary | 3

Tmax Manager (TMM)

A core process that operates and manages the Tmax system. It manages all shared information of
the Tmax system and the following server processes: Client Listener (CLL), Client Handler (CLH),
Transaction Management Server (TMS), and Application Program (AP).

Transaction Management Server (TMS)

A process that changes databases and handles transactions while operating in a database-related
system. It delivers commit/rollback requests from XA services to Resource Manager (RM).

Transaction Processing Monitor (TP-Monitor)

Transaction management middleware, which monitors transactions and maintains their
consistency.

Transaction

A complete unit of work. A single transaction includes multiple tasks.

User Control Server (UCS)

A server process that actively handles business logic without a caller request and returns the
results. It is a unique feature of Tmax.

Web Application Server (WAS)

A service that handles transactions in the web and provides the mutual communication (J2EE)
feature between heterogeneous systems.

Web Transaction (WebT)

A program that supports the transaction service for Tmax and Java application programs.

X_COMMON Buffer

A buffer used to save a C language struct. Only the char, int, and long types can be used as
members of the struct.

4 | Getting Started Guide

1. Introduction to TP-Monitor

To facilitate a better understanding of Tmayx, this chapter describes the concepts and features of
middleware and TP-Monitor.

1.1. Overview

TP-Monitor (Transaction Processing Monitor) is the transaction management middleware that
monitors transactions and maintains their consistency. A transaction is the smallest unit of handling
among sessions, systems, and databases that operate via various protocols.

Since Tmax is a product based on TP-Monitor, this chapter first describes middleware and TP-
Monitor.

1.2. Middleware

Because the centralized mainframe environment has various issues, such as cost and operation, it
became necessary to downsize the environment to an open distributed system environment that
separates hosts by application.

However, the open distributed environment has issues involving the compatibility and integration
between server programs. Additionally, communication between different operating systems has to
be managed in multiple distributed systems because applications are handled in a single mainframe.
As a result, multiple systems, server programs, and network resources must be used in a single user
environment.

The following tables illustrate the issues of the two environments.
* The centralized mainframe environment

Classification Issue

Cost * High adoption cost
* High maintenance cost

Operation * Does not consider a user environment because the mainframe environment
takes precedence over the application process

System Difficult to communicate between heterogeneous systems

Difficult to migrate a program to another system

Difficult business expansion

* The open distributed system environment

1. Introduction to TP-Monitor | 5

Classification Issue

Cost * Requires professional technical skills for network, DBMS, etc.
Operation + Inefficient system operation
* Does not consider a user environment
+ Issues due to the distributed environment
+ Difficult to manage and monitor systems
+ Difficult to handle a failure
+ Different operating methods for multiple servers
* Issues due to multiple providers
* Performance suffers as the number of users increases
* Load differences between servers
System « Difficult to manage processes
* Requires multiple communication methods
+ System security vulnerability
+ Difficult to handle heterogeneous databases and global transactions
+ Difficult to migrate a program between heterogeneous servers
* Development issues (various OS and development languages)

* Provides transaction handling and process management features in the
distributed environment with only a single middleware

Middleware has been developed to solve the open distributed environment issues.

Middleware is system software that provides a single user environment in a distributed computing
environment. It connects a network of heterogeneous systems and supports communication
between clients and servers, and connections between computers. Middleware enables stable
communication in applications and in the operating environment by integrating heterogeneous
hardware, protocols, and communication environments.

Clients and database servers do not need to directly communicate with each other because
middleware engages in communication between the two systems. Since middleware has the
business logic necessary for applications, clients and server programs only need to communicate
with middleware. Clients and database servers can be configured into a single system environment
through middleware. Middleware guarantees system integration for heterogeneous machines in a
multiple database environment, and provides data compatibility and consistency. This environment
provides maximum performance for minimal resources.

The following figure shows the client/server environment with middleware.

6 | Getting Started Guide

Client Server DB Server

==

=

fan

[

|

I
| H\I

[

0l

MiddleWare

Presentation Logic Business Logic DataBase

Middleware Workflow

Middleware products can be divided into six types according to usage and purpose:
* Transaction Processing Monitor (TP-Monitor)

Handles transactions in a heterogeneous distributed environment and manages various handling
processes. Tmax belongs to this TP-Monitor product type.

* Web Application Server (WAS)

Handles transactions on the web and provides the mutual communication feature (J2EE) to
heterogeneous systems.

* Messaging Oriented Middleware (MOM)

Handles messages by putting them into a queue and provides an asynchronous message
management feature.

+ Database Access System

Enables multiple database servers to be used with a single consistent method in a distributed
environment.

* RPC System
Through the network, synchronously runs a program located in another computer.
* Object Request Broker (ORB)

Provides a feature that enables a client object to call a remote server method using a software
bus called ORB.

1. Introduction to TP-Monitor | 7

1.3. TP-Monitor

Most application systems are used in a centralized environment based on mainframes. The open
distributed system was developed because of the various issues of the centralized environment such
as cost and management.

The open distributed system, however, has issues of its own such as system operation and
management. Middleware was adopted to resolve these issues. TP-Monitor is middleware that
monitors transactions and maintains their consistency. A transaction is the smallest unit of handling
among sessions, systems, and databases that operate via various protocols.

Major features of TP-Monitor are as follows:
+ Convenient application development

A complex application process can be developed by focusing on features, not data. It is very
difficult to develop an application in the mainframe environment because business logic and data
handling logic are developed together. However, if TP-Monitor is used, all middleware, client
programs, and database server programs only need business logic, modules provided to users,
and the data management feature, respectively. This modularization helps ease application
development.

+ Efficient application management

Efficiently manages each application by using TP-Monitor to manage distributed business
systems.

* Heterogeneous DBMS resource management

Manages heterogeneous DBMS resources by integrating and managing DBMS transactions.
* Load balancing

Distributes loads and supports distributed transactions for optimized resource usage.
* High performance and reliability

Reduces overhead and response time by managing a large number of clients with limited
resources.

8 | Getting Started Guide

2. Introduction to Tmax

This chapter describes the Tmax concepts, its architecture, features, characteristics, and issues.

2.1. Overview

Tmax stands for Transaction Maximization, which means the maximization of the transaction
handling ability. Tmax is a TP-Monitor product that handles transactions (for heterogeneous systems
in a distributed environment), distributes loads, and takes a proper action when an error occurs.

Tmax provides an efficient development environment with optimized solutions used in the
client/server environment. It also improves performance and handles all failures.

Tmax complies with the X/Open DTP (Distributed Transaction Processing) model, the international
standard for distributed transaction processing. Tmax was developed to meet the API, services, and
X/Open model transaction model components standards created by the international standard
organization OSI (Open Systems Interconnection group). Tmax transparently handles the
applications of heterogeneous systems in a distributed environment. It also supports OLTP (On-Line
Transaction Processing) and meets ACID (Atomic, Consistent, Isolated, Durable: Transaction
Properties) for transaction processing.

Tmax dramatically enhances performance by transparently handling applications. Tmax also
provides an efficient development environment for creating new applications by facilitating the
processing of mission-critical legacy applications. In all industries, Tmax guarantees system reliability
by controlling loads and preventing failure in critical systems in which large numbers of transactions
are handled. It can be utilized to develop large-scale OLTP applications and used in various industries
(for example, airlines, hotels, hospitals, and banks) and businesses (for example, online jobs, credit
card approval, and customer and sales management).

For more information about transactions, refer to "Transactions" in Tmax
0 Application Development Guide.

2.2. Architecture of Tmax

This section describes the system configuration and features.

2.2.1. System Configuration

The following figure shows the system configuration of Tmax.

2. Introduction to Tmax | 9

TCS
Registration

TCS
Maodification

TCS
Inguiry

ucs
Data
Transmission

DBMS

Tmax Architecture

* Tmax Manager (TMM)

A core process that operates and manages the Tmax system. TMM manages all shared
information in the Tmax system and the following server processes: Client Listener (CLL), Client
Handler (CLH), Transaction Management Server (TMS), and Application Program (AP).

The following are the major features of TMM:

Major Feature Description

Shared memory When configured environment information is compiled with the c¢fl command,
allocation a binary file is created. TMM loads the binary file into shared memory and
manages the Tmax system using the loaded information.

Process TMM is the main process for the operation and termination of all systems.
management

Log TMM manages Tmax system logs (slog) and user logs (ulog).
management

* Client Listener (CLL)

A process for the connection between clients and Tmax. It receives requests from clients by
setting PORT Listener for managing client connections.

* Client Handler (CLH)

Mediates between clients and servers, requests a service from a server that handles tasks,
connects to a server, and manages the connection.

Delivers requests from clients through a function (for example, tpcall) to a proper server, and
transmits requests for XID numbering and commit/rollback in the XA service environment.

10 | Getting Started Guide

* Transaction Management Server (TMS)

Manages databases and handles transactions while operating in a database-related system.
Delivers commit/rollback requests of XA services to the Resource Manager (RM).

+ Transaction Log Manager (TLM)

Saves transaction logs in tlog before CLH commits when a transaction occurs.
 Reliable Queue Server (RQS)

Manages the disk queue of the Tmax system and executes reads/writes from/to a file.
+ Gateway Process (GW)

Handles inter-domain communication in the environment in which multiple domains exist.
« Tmax Administrator (Tmadmin)

Monitors Tmax-related information and manages changes in the configuration file.
* Remote Access Control Daemon (RACD)

Remotely controls all domains in which Tmax is installed.
* Tmax Control Server (TCS)

Handles business logic at the request of CLH and returns the results.
» User Control Server (UCS)

Handles business logic at the request of CLH and returns the results. A corresponding process
maintains control.

* Tmax Information Provider (TIP)

Checks system environment and statistics information, and operates and manages the system.
(boot/down only)

The following figure shows the services performed by the Tmax system.

2. Introduction to Tmax | 11

Tmax System

svr2
(TOUPPER)

Business
Server Process

Business
Server Process

Services of the Tmax System

The following describes how Tmax system performs a service:

1. When a client executes tpstart, the CLL process handles the connection request to connect to the
CLH process.

2. If there is a service request, CLH handles all services.

3. CLH receives a client service request (tpcall), analyzes the service, and maps the service to the
proper business server process (svr2).

4. The business server process (svr2) handles the service and then returns the result (tpreturn) to
CLH.

5. CLH receives the result and sends it to the client.

2.2.2. TIM

Tmax Information MAP (TIM) is core information required to operate the Tmax system. TIM is created
by the TMM process, and located in the shared memory managed by Tmax.

TIM can be divided into the following according to the role:
+ Information for setting the Tmax system

Loaded to shared memory and referred to if necessary to manage <tmconfig.m>, the Tmax
configuration file.

+ Information for operating the Tmax system

Manages information to operate the Tmax system. The information includes the following: how
to respond to a failure that occurs in the system, base information for load balancing, naming
service information to access each service if a system consists of multiple pieces of equipment,

12 | Getting Started Guide

and application location.
+ Information for application status

Manages the status (Ready, Not Ready, Running, etc.) of application processes loaded in a
system.

« Information for distributed transactions

Manages information for operating a database that mediates communication with RM, and
manages numbering information for transaction processes.

2.2.3. Socket Communication

Tmax uses the UNIX domain socket communication method. This method uses the socket API
without any changes, and enables communication between processes by using a file. It is more
stable and faster than an external communication method based on ports. Both this method and
FIFO (Named Pipe) use a file and manage messages from kernels. However, the socket
communication method has a two-way communication feature and unlike FIFO, it is easy to build
multiple client/server environments.

The following figure shows the process of UNIX domain socket communication of CLL, CLH, and TLM.
The application server (PSR) connects to CLL, CLH, and TLM.

Domain Socket Communication

2.3. Features of Tmax

Tmax has the following features:

2. Introduction to Tmax | 13

* Process management

To provide an optimized environment, Tmax adjusts the number of the server’s application
handling processes created for each client. Tmax provides a 3-tier based client/server
environment.

« Transaction management

Tmax guarantees data integrity by supporting Two-Phase Commit for distributed transactions.
Tmax also facilitates the use of global transactions by providing simple functions such as
tx_begin, tx_commit and tx_rollback. It also improves efficiency with the transaction manager that
uses multi threads, and guarantees stability with recovery/rollback by rapidly responding to
errors with dynamic logging. Transactions can be easily scheduled and managed because all
transactions are centrally managed.

* Load balancing

Tmax provides the load balancing feature with the following 3 methods to increase throughput
and reduce handling time.

o System Load Management (SLM)
o Data Dependent Routing (DDR)
> Dynamic Load Management (DLM)

* Failure handling

Tmax can operate normally by using failover through load balancing and service backup even
when a hardware failure occurs. Even if a software failure occurs due to a down server process,
services are provided continuously.

* Naming service

Naming service provides service location information in distributed systems by providing
transparency and a name for easy service calls.

* Process control

Tmax provides three methods of data transmission processes. For more information, refer to
Process Control.

o Tmax Control Server (TCS)
o User Control Server (UCS)
> Processing On Demand (POD)

» Reliable Queue (RQ) feature

Data is maintained and reliably handled with a disk queue that prevents requests from
disappearing due to a failure.

* Security feature

14 | Getting Started Guide

Tmax provides a data protection feature based on the Diffie-Hellman algorithm, supports the
following 3-step security feature, and includes the UNIX security feature.

o Step 1: System connection authentication

A unique password is set for the entire Tmax system (domain). Only clients who registered the
password can connect to the Tmax system.

o Step 2: User authentication

Tmax services can be used with user IDs that are registered in the Tmax system after
authentication.

o Step 3: Service access authentication

Services that require special security can be used by users who have the corresponding
privileges. Tmax 4.0 and later versions support this.

For more information about security, refer to "Security System" in Tmax
0 Application Development Guide.

¢ Convenient API and various communication methods

Tmax supports the following communication methods: Synchronous communication,
Asynchronous communication, Conversational communication, Request Forwarding, Notify, and
Broadcasting. Tmax provides a convenient API for these methods.

+ System and resource management

> The following statuses of the entire system can be monitored: process status, service queuing
status, the number of handled services, and the average time of handling a service. System
status and queue management system statistics can be analyzed, and a report can be
created.

o Resources are efficiently managed because applications and databases are integrated and
managed.

* Multiple domains and various gateway services

Remote distributed systems can exchange data; heterogeneous platform based systems can be
easily integrated; and various gateway modules, such as SNA CICS, SNA IMS, TCP CICS, TCP IMS,
and OSI TP, are supported. It is possible to handle a transaction service and route to multiple
domains.

* Various client agents

Tmax provides various agents to easily change a 2-tier system into a 3-tier system.

2. Introduction to Tmax | 15

Classification Description

Raw Client Agent Supports multiple ports that efficiently handle processes with the multi-
(RCA) threading method.

Simple Client Agent Supports multiple ports that can handle both non-Tmax and Tmax
(SCA) clients.

* Various development methods

Classification Description

Real Data Processor Supports direct data delivery using UDP communication data, not via the
(RDP) Tmax system.

Window control Handles concurrent bundled data by providing the WinTmax library, the
client library for multiple windows settings.

* Extensibility

o Integration with the web

If the client/server environment and the web environment are integrated using Java
Applet/Servlet, PHP, etc., response time can be decreased and system performance can
improve. For the service integration, Tmax provides WebT. For more information about WebT,
refer to Tmax WebT User Guide.

o Integration with mainframe

Host-link enables access to application services in a legacy system, such as IBM mainframe,
like those in the client/server environment.

o Easy to change other middleware

Systems developed with other middleware, such as Tuxedo, TopEnd, and Entera, can be easily
integrated with Tmax without any changes to the source code. This easy integration can
improve performance, provide high level technical support, and reduce costs.

2.3.1. Process Management

The existing 2-tier client/server environment is the most general environment for developing
applications. A single server process is created for a single client in this environment. As the number
of clients increases, the number of server processes also increases. For this reason, it takes a long
time to create processes and to open/close files and databases. Furthermore, since a server can be
used only by a client who is connected to the server, usage of a server process is very low and the
maintenance cost is very high.

The 3-tier client/server structure using TP-Monitor is adopted to solve the problems. Tmax, the TP-
Monitor product, enables a system to be optimized and operated as it adjusts the number of created
processes, schedules idle server processes, and tunes server processes.

16 | Getting Started Guide

The following figure shows the 2-tier client/server structure:

Insert

Update

P
-

Inquiry

P
-

o] ol oll]

Inquiry

P
o

il

P
=

Insert/Update/lnquiry

Insert/Update/lnquiry

[

Insert/Update/Inquiry

Insert/Update/lnquiry

Database

2-tier Client/Server Structure

The following figure shows the 3-tier client/server structure:

Database

3-tier Client/Server Structure

Better systems can be built in the 3-tier environment compared to the 2-tier environment in terms of
performance, extensibility, management, and failover.

The following are comparisons of 2-tier and 3-tier client/server environments.

* Application

2. Introduction to Tmax | 17

2-tier Environment 3-tier Environment

* Unit business of a small * Enterprise business

scale department + Multiple servers

* Asingle server * Large number of users (50 or more)

* Small number of users

« OLTP applications and large number of transactions
(less than 50)

* Batch applications

« Advantages

2-tier Environment 3-tier Environment
+ Short program * Modularization for application development
development period (easy

+ Integration is possible in heterogeneous hardware and in a
to test) database environment.

* Low initial adoption cost + Improved performance by making the best use of system

+ Easy to develop simple resources

rograms .
prog + Easy expansion

+ Can implement security features including system
management, load balancing, and failover

+ Disadvantages

2-tier Environment 3-tier Environment
* Dramatically lower * Long application development periods (client/server
performance as the integration test)
number of transactions

_ * High initial adoption cost
increases
+ A program must be separately developed for a client and a

+ Integration is impossible in . I
server even if the program is simple

heterogeneous platforms
and in a database
environment

+ Difficult to be expand

* Impossible to implement
the security feature
including system
management, load
balancing, and failover

2.3.2. Distributed Transaction

A transaction utilizes various resources by handling a single logical unit and maintains data integrity

18 | Getting Started Guide

among distributed resources. A distributed transaction is a transaction among distributed systems in
the network, and it must be meet the ACID (Atomicity, Consistency, Isolation, Durability) transaction
properties. The Tmax system guarantees ACID for distributed transactions in heterogeneous DBMSs
and multiple homogeneous DBMSs.

Classification Description

Atomicity All-or-nothing proposition. All work in a transaction is performed, or nothing is
performed.
Consistency The successful result of a transaction must be maintained in a consistent status in

shared resources.

Isolation While a transaction is performed, another operation cannot be performed for the
transaction. The result cannot be shared before it is committed.

Durability The result of a transaction is always maintained after it is committed.

Tmax manages distributed transactions and complies with the X/Open DTP model that consists of
Application Program (AP), Transaction Manager (TM), Resource Manager (RM), and Communication
Resource Manager (CRM). Tmax supports the ATMI function, which is the set of standard functions
that comply with the X/Open DTP model. Tmax binds and handles transactions that occurin a
heterogeneous DBMS that complies with the X/Open DTP model.

The following figure shows the X/Open DTP structure.

Local
Application Program (AP) _ Transaction

Distributed
_ Transaction

X/Open DTP Structure

* Application Program (AP)
Provides the DT boundary (Distributed Transaction).
* Resource Manager (RM)
Provides a feature to access resources such as a database.

+ Transaction Manager (TM)

2. Introduction to Tmax | 19

Creates an ID for each DT, manages the progress, and provides a recovery feature for both
completion and failure.

+ Communication Resource Manager (CRM)
Controls communication between distributed APs.

* Open System Interconnection-Transaction Processing (OSI-TP)
Handles communication with a separate TM section.

When distributed transactions are handled, 2 step (two-phase) commit is supported for data integrity
and APIs are provided for global transactions. Distributed transactions are managed using multiple
heterogeneous hardware platforms and databases in a physically distributed environment.

* Two-phase commit (2PC) protocol

2PC is used to guarantee transaction properties for global transactions related to more than one
homogeneous or heterogeneous database. 2PC handles a transaction with 2 steps to guarantee
ACID properties when more than one database is integrated.

o Step 1: Prepare Phase

Checks that all databases related to a transaction are prepared to handle the transaction. If all
databases are prepared, a signal is delivered. In this step, whether each database, network,
or server combined with a single global transaction can commit or rollback is checked and
databases are prepared.

o Step 2: Commit Phase

If all databases send a normal signal, the transaction is committed. If one or more databases
send an abnormal signal, the global transaction is completed by performing rollback. It is the
step that sends a commit message to all nodes and performs the commit request with RM.
Notice that a data change job is complete when all nodes that participated in Commit Phase
finish, and notify of the successful commit to the node that requests tx_commit().

The following figure shows how a 2PC (Two-phase commit) is performed.

20 | Getting Started Guide

_ 3

tx_begin();

tpeall(“A");

tpcall(*B");

t_commit(;

Guarantees ACID Patabass Database
A B

2PC (Two-phase commit)

* Global transaction

Multiple heterogeneous hardware and databases are handled as a single logical unit
(transaction). A global transaction related to a DBMS located in more than one homogeneous or
heterogeneous system is handled by supporting two-phase commit to guarantee data integrity.
The Tmax system supports global transactions by providing simple functions such as tx_begin,
tx_commit, and tx_rollback. When a global transaction is handled, communication between nodes
is handled by a client handler.

The following describes how a global transaction is executed.
o Step 1: Prepare Phase

A node that starts a distributed transaction (global coordinator) checks whether it can
perform commit or rollback for other nodes that are participating in the distributed
transaction.

o Step 2: Commit Phase

The global coordinator receives replies from other nodes and performs commit. If one or
more nodes send a message indicating the node is not prepared, the transaction is rolled
back.

* Recovery / Rollback
If a transaction fails, the previous transaction is recovered even if RM is changed.
« Transaction managed from a central location

A transaction is centrally managed and controlled even if nodes are physically separated.

2. Introduction to Tmax | 21

* Transaction scheduling

A transaction is controlled with priority and concurrency.

2.3.3. Load Balancing

Tmax provides the load balancing feature to increase throughput and reduce handling time by using
the following 3 methods: System Load Management (SLM), Data Dependent Routing (DDR), and
Dynamic Load Management (DLM).

Load Balancing by SLM

System Load Management (SLM) uses a defined load ratio to distribute loads. The load value is set
according to hardware performance. If the number of service requests of a node exceeds the load
value, the service connection is switched to another node. The load value can be set for each node.

The following describes how SLM is handled.

1. CLH receives a client request.
2. CLH determines whether it is a SLM service using TIM and checks the throughput of each server.
3. CLH performs scheduling for a proper server group.

The following figure is an example of load balancing by SLM. If the load values of Node 1, Node 2,

and Node 3 are 1, 5, and 2, respectively, Node 1 handles 1 job, the next job is handled by Node 2, and
the next job by Node 3. The next 3 consecutive jobs are handled by Node 2.

™

4 \

Workstation Server
Load=1

Enterprise Server

Load=5
—
|- o Workstation Server
T Load=2

_)
Load Balancing by SLM

Load Balancing by DDR

Data Dependent Routing (DDR) uses data values to distribute loads. If multiple nodes provide the
same service, routing is possible among the nodes within the data range. Any entered field value is
checked, and a service is requested from the proper server group.

22 | Getting Started Guide

The following describes how DDR is handled.

1. CLH receives a client request.
2. CLH determines whether it is a DDR service using TIM and checks the classified field value.
3. CLH performs scheduling for the defined server group.
The following figure is an example of load balancing by DDR. In the following figure, customers aged

between 0 and 9, between 10 and 19, and 20 or over are handled in Node 1, Node 2, and Node 3,
respectively.

4 a

Node 1
Client O<Nosi0 " Inquiry Service
i No=13 ~ 11<No=20 Mode 2
L"f _— * Inquiry Service
*_.—-—"
21<No = Node 3

Inquiry Service

1\ J

Load Balancing by DDR

Load Balancing by DLM

Dynamic Load Management (DLM) dynamically selects a handling group according to load ratio. If
loads are concentrated at a certain node, Tmax distributes the loads with this method, which
dynamically adjusts the load sizes. System loads can be checked with the queuing status of a running
process.

The Tmax system manages a memory queue for each process and saves a request service to this
queue if there currently is no process to be mapped. The number of transactions in the memory
queue is the system load.

The following describes how DLM is handled.

1. CLH receives a client request.

2. CLH determines whether it is a DLM service using TIM and checks the number of queuing
requests by server.

3. If the threshold is reached, CLH performs scheduling for the next server group.

The following figure is an example of load balancing by DLM. In the following figure, it is assumed
that Node 1 and Node 2 have the same services. If service requests are concentrated at Node 1,

2. Introduction to Tmax | 23

Tmax distributes the loads by using the dynamic distribution algorithm.

- -.\

Client

- . Node 1
b . Inquiry Service

|

MNode 2
T Inquiry Service

Load Balancing by DLM

2.3.4. Failure Handling

Tmax guarantees high availability of system resources by providing continuous services even if a
failure occurs. Failures can be hardware or software failures.

Hardware Failure

Tmax can normally operate with load balancing or a service backup even if a hardware failure occurs.

Since Tmax is a peer-to-peer system in which nodes monitor each other, a failure can be handled in
the same condition regardless of the number of nodes.

24 | Getting Started Guide

* Heartbeat: Responds to network failures
= Time before response: Heartbeat * 3

» Does not request backup services when recovery completes
» Needs manual termination for resource management

@ Service Channel @ Backup Image/

SVC v
Heartbeat Check

¥

il
0
L]
i
¢
-
L P —————

pppp——

Hardware Failure

A hardware failure can be handled in 2 methods:

* Load balancing

In an environment in which a certain service is provided by multiple nodes, if a failure occursin a
node, another node provides the service without a break. A client connects to a backup node and

requests the service from the node.

Registration
| Modification

Registration

™ | Modification

Registration ; Registration
| Modification A | Modification

””

Before Failure After Failure

Failover by Load Balancing

* Service backup

If a failure occurs in a node, another node runs a prepared backup process and handles the

2. Introduction to Tmax | 25

service.
- Before a Failure (Normal operation)

A failure that can occur in any node can be handled because it is a peer-to-peer system.

Node A

Backup =D
Service = Withdrawal

Node B

Backup =C
Service = Deposit

Backup = A

Service = Inquiry

Node C

Backup =B

Service = Registration

Failover by Service Backup - Before a Failure

o After a Failure (Normal operation)

The specified backup node provides the service without a break.

. Node A

Backup =C ™ Backup=A
Service = Deposit , Withdrawal Service = Inquiry

Node C

Backup =B

Service = Registration

Failover by Service Backup - After a Failure

26 | Getting Started Guide

Software Failure

If a server process terminates abnormally due to an internal software bug or a user error, it can
automatically restart. Notice that if a system process, such as TMS, CAS, and CLH, restarts endlessly
without any conditions and it is abnormally terminated, a running server process can be terminated

together.

| » Detects status information of all processes
» Immediately starts at abnormal termination

. S‘UC I'_

TMM -

Software Failure

2.3.5. Naming Service

Tmax guarantees location transparency with a naming service, which enables easy service calls by
providing service location information in distributed systems. Although a client does not know the
server address, the user can get server information with a service name. The naming service makes
programming easy because a service can be easily and clearly called and the desired service can be
provided with only the service name.

Tmax Node 1

— = Tmax Node 2 Tmax Node 3 = =
Tmax Client A Purchase Auction Tmax Client B

Naming Service

2. Introduction to Tmax | 27

2.3.6. Process Control
Tmax supports the following 3 server processes:
* Tmax Control Server (TCS)

Passively executed by a client request. It must be booted in advance to handle a request. TCS is
the most typical method for handling a client request, receiving a caller request from a Tmax
handler, handling the job, returning the result to Tmax, and waiting for another request.

» User Control Server (UCS)

Actively transfers data without a caller request. It is a unique feature of Tmax. It must be booted
in advance to handle a request. It can periodically transfer data to a client without a request as
well as handle a client request like TCS. That is, UCS can handle client requests like TCS with
added functions that can process applications actively and voluntarily.

* Processing On Demand (POD)

Executed only when there is a client request and then terminated after handling the job. It is
appropriate for seldom performed tasks.

Booted
in advance

R _—€

Sch eduled Cycle

Unrequested Result Reception

1y

Server Processes

For more information about how to control server processes, refer to "Server
ﬂ Programs" in Tmax Application Development Guide.

2.3.7. RQ Feature

Reliable Queue (RQ) enables a service to be handled reliably by preventing a request from being
deleted due to a failure. A requested job is saved to disk and then handled, if the job requires a long
period of time or needs reliability. Even if there is a system failure or other critical error, the job can
be normally handled after system recovery.

28 | Getting Started Guide

-
3
jat]
-
=
o
3
@
=

S A SR —

RQ Process

Whether a requested service was saved correctly to disk can be checked with the return value of the
tpenq() function. A queuing job does not affect other jobs because it is independently handled by
Queue manager (Qmgr). Whether Qmgr successfully completes the job can be checked with the
tpdeq() function.

2.3.8. Security Feature

Tmax provides a data protection feature based on the Diffie-Hellman algorithm and supports a 5-
step security feature, which includes the UNIX security feature.

2.3.9. System and Resource Management

System Management

The following statuses of the entire system can be monitored: process status, service queuing status,
the number of handled services, and the average time of handling a service. System status and
gueue management system statistics can be analyzed and a report can be created.

The following features are supported:
+ Static system management

The general system environment is set according to the user environment for the Tmax system
components such as a domain, node, server group, server, service, etc.

+ Dynamic system management

The following components can be changed while Tmax is running:

2. Introduction to Tmax | 29

Component Description

Domain Service timeout, transaction timeout, node (machine) live check time, etc. can
be changed.

Node Message queue timeout can be set.

Server group The load value by node, the load balancing method, etc. can be changed.

Server Max queue count, server start count during queuing, server restart count, the

number of servers, server priority, etc. can be changed.

Service Service priority, service timeout, etc. can be changed.

* Monitoring and administration
> The dynamic environment setting can be changed.

> Various reports can be displayed and various statistical information is provided such as
transaction throughput of a server, the number of handled jobs by service, average
processing time, etc.

Resource Management

Resources are efficiently managed because applications and databases are integrated and managed.

In existing systems, resources are wasted because the whole system cannot be managed. Tmax
manages applications using the centralized monitoring feature for the entire distributed system.

If homogeneous or heterogeneous databases are used together for a single application, Tmax
integrates and manages them in the dimension of applications.

2.3.10. Multiple Domains and Various Gateway Services

The Tmax domain is the top level unit that is independently managed (started / terminated) by Tmax.
Even if a system is distributed by region or application and it is managed in multiple domains, the
domains can be integrated. Additionally, the multi-domain 2PC function is supported through a
gateway.

Remote distributed systems can exchange data, heterogeneous platform systems can be easily
integrated, and various gateway modules, such as SNA CICS, SNA IMS, TCP CICS, TCP IMS, and OSI
TP, are supported. It is possible to handle a transaction service and route it to multiple domains.

Multiple domains solve problems, such as difficulty in managing all nodes and the rapid increase of
communication traffic between nodes, that may occur when multiple nodes are managed from a
single domain. Furthermore, a requested service can be handled in any system. Service methods in a
multiple domain environment are different according to service handling, routing, and transactions
between multiple domains.

The following figure shows the flow of calling a service in a multi-domain environment. Multiple
domains are connected via gateways. A domain gateway acts as a server or client when connecting

30 | Getting Started Guide

to another gateway. There is no start order for gateways.

Service Flow in a Multiple Domain Environment

Domain B

Tmax provides various gateways, such as TCP/IP, X.25, and SNA, for easily integration with systems
for other business and external organizations. A gateway enables efficient communication and
provides convenient management by separating business logics and related modules. Since
gateways are managed by Tmax, they can be automatically recovered after a failure and do not need

to be managed by an administrator.

The following figure illustrates the role of a gateway. If a client requests a service, it receives the
result from a domain, which provides the proper service. At this time, inter-domain routing is
possible via a gateway according to transaction services or service values.

Tmax Client

External Organization

AP

AP

Al

b

’t\> X.25

pcall

/

TCP/IP TCP/IP

tpcall Gateway /«——»

Tmax Gateway Service

System for Other Business

2. Introduction to Tmax | 31

2.3.11. Various Client Agents

Tmax provides various agents to facilitate easy conversion from a 2-tier system to a 3-tier system.

Raw Client Agent (RCS)

RCA connects to an existing communication program, which cannot use the Tmax client library, by
using the TCP/IP socket and enables the program to use services provided by the Tmax system. It
supports services in REMOTE or LOCAL mode. A single client library like the existing Tmax client
library can be used by a single client program. However, a single thread acts as a single Tmax client
because RCA is developed using the multi-thread method. Up to 32 ports can be specified to support
various clients.

RCA provides the reliable failover feature with RCAL, which controls user connections, and RCAH,
which was created with user logic. It also supports administration tools such as rcastat and rcakill.

The following figure shows the RCA structure:

RCA

I

D

N

F
ol

-
(]
-]
=
=

Tmax Domain
Client THREAD POOL

RCA Structure

Simple Client Agent (SCA)

SCA connects to an existing communication program, which cannot use the Tmax client library, via
TCP/IP and enables the program to use services provided by the Tmax system. It consists of a
customizing routine and the CLH library, which is linked with CLH.

Jobs on the network, such as connect/disconnect to a client and data transmission/reception, are
internally handled in the system. A developer can connect to a client by setting the client and the
predefined port number in the Tmax configuration file; and change and complement the received
data and data to be transferred.

Up to 8 ports can be specified to support various clients. The SCA module can directly transfer data to
the CLH module and simultaneously handle both non-Tmax clients and Tmax clients. SCA provides
services using a TCP/IP raw socket or the Tmax client library.

32 | Getting Started Guide

The following figure illustrates how to call a service using Client Agent (CA), a type of SCA.

* Possible to directly
transfer data

[1
ATTACK

TCPIP CA TRJE] ry

Client CLH APPLICATION

Service Call using CA

2.3.12. Various Communication Methods
A client requests communication with a server using one of the following 4 methods:
+ Synchronous communication

A client sends a request to a server and waits while blocked until the reply is received.

Client Server

Requests a service

Service()

Returns the result

Synchronous Communication

+ Asynchronous communication

A client can perform other tasks after sending a request to a server, while waiting for the reply.
The client can receive the reply using a function.

2. Introduction to Tmax | 33

Client Server

Service()

Requests a service

Returns the result

tpreturn()
}

tpgetrply()

« Conversational communication

When a client wants to send a request to a server, a connection is made and the service request is
sent. When the client receives a message from the server, a conversational communication
function is used. The client and the server send and receive messages by sending and receiving
control through local communication. A control owner can send a message. When
communication is made, a connection descriptor is returned. The returned connection descriptor
is used to verify that the message was transferred.

Client

tpconnect()

tpsend()
tprecv()

Conversational Communication
* Forwarding Type
o Type A

Type A improves the efficiency of each module by modularizing business logic and handling
services step by step. Problems can be systematically analyzed and corrected. Synchronous
and asynchronous communication can be used together.

34 | Getting Started Guide

Requests a service
5 »Server A

Client

tpcall(transfer)

Server B Handles withdrawal
''''' tpforward (deposit)

Handles deposit

tpreturn()

Forwarding Type - Type A

o Type B

Type B integrates existing legacy systems like external organizations. A server process is not
in blocking status in order to continuously handle any service requests received. This type
supports a service that transfers a reply from a legacy system to a caller.

Client Server

tpsubscribe();
tpsetunsol
(get_post);

get_post();

Forwarding Type - Type B

2.3.13. Various Development Methods

Real Data Processor (RDP)

Data can be directly transferred from RDP to a client instead of via Client Handler (CLH) to rapidly
handle data that is continuously changing in real time. Therefore, RDP improves performance of the
Tmax system by reducing the loads of CLH. It is supported only for the UDP data type, and it is
configured as a form of UCS server process.

2. Introduction to Tmax | 35

Initial Connection/
.H_Ijt_gquest

Client * Real Data Processing Line

Direct Data Transfer between a Client and RDP

Window Control

Libraries are provided that can be conveniently used in a Windows client program. The two libraries
provided, which operate based on threads, are WinTmax and tmaxmt.

* WinTmax
WinTmax is the Windows client library and it can set multiple windows.

It consists of manager and worker threads. Since up to 256 windows can be set, it is useful to
handle data that arrives simultaneously.

Classification Description

Manager thread Connects to the Tmax system, receives data, manages worker threads,
and releases the connection to the Tmax system.

Worker thread Receives data and transfers data to a specific window.

The following figure shows the structure of the WinTmax library.

36 | Getting Started Guide

P

Manager
Thread

@

* Connects to the Tmax system .'"

* Sends data rker thread * Receives Data
Manages wol t l’i:.-i! -3 « Trancfers Dat
* Releases the connection to the

T systam

Tmax Domain

Structure and Features of the WinTmax Library

* tmaxmt

It enables a client program to act as threads. A developer must develop a program using threads.
Each thread sends and receives data using specified functions such as WinTmaxAcall() and
WinTmaxAcall2(). Each function internally creates threads, calls a service, and transfers the result

to a specified window or function.

WinTmaxAcall sends data to a specified window using SendMessage while WinTmaxAcall2 sends

data to a specified callback function.

2.3.14. Reliable Message Transfer

Tmax reliably transfers messages using Hybrid Messaging System (HMS). Tmax HMS has the

following characteristics:

* Hybrid architecture

TP-Monitor (Tmax) and Messaging Oriented Middleware (MOM) exist together. 2PC is supported
between MOM and RM. Tmax HMS enables each module to be flexibly integrated with each other
in order to provide MOM features. It has the structure in which TMS, TP-Monitor (basic feature of

Tmax), and MOM exist together.
* Reliable failover
Uses DBMS to save persistent messages.

* High availability

> Responds to a failure by specifying a backup node. It guarantees reliable failover and
message transfers by using storage. It uses DBMS to guarantee failover reliability and
recovers a persistent message from the DBMS if a failure occurs.

o Responds to a system failure by configuring High Availability (HA) of Active-Standby.

2. Introduction to Tmax | 37

Tmax #1 Tmax #2

Failure

Occurrence Recover T

High Availability of HMS

* JMS Messaging Model Adoption

Adopts the JMS messaging model to support P2P and Publish/Subscribe, and provides C
language APIs similar to the JMS specification for convenience.

JMSAPL - HMS API

{ Connecﬁon"n
. Factory

Tmax
Connection

‘ Connection ‘

Ereah\
.

Producer

Consumer

Recv From

Send To

Destination Destination

API Compatibility of JMS

HMS, a Tmax feature, is the communication medium for a loosely coupled sender and receiver. It
supports the Queue and Topic methods.

* Queue method (Point-to-Point)

38 | Getting Started Guide

Each message is transferred to a single consumer. There is no timing dependency between
transmission and reception.

HMS AP
- - Provided APl is used to
create, send, and receive

E a message
MSG ’ . - I
" Consumes :
Sends R q @
—— Ackowledges
MSG

HMS-Queue Method

* Topic method (Publish/Subscribe)

Each message is transferred to multiple consumers. Reliability is guaranteed by sending the
message through a durable subscription.

MSG

‘ T Subscribes

Delivers

Y

MSG .
bublishes Tﬂplt | . MSG
} Subscribes

Delivers

A J

HMS-Topic Method

é For more information about HMS, refer to Tmax HMS User Guide.

2.4. Characteristics of Tmax

Tmax adopts the peer-to-peer structure instead of the existing master/slave method. RACD (Remote
Access Control Daemon) exists in each node. Tmax prevents Queue Full by using the stream pipe
communication method. By blocking heavy transactions in network processes, the stream pipe
communication method provides more reliable communication between processes than the
message queue method. With these characteristics, Tmax minimizes the memory resource waste,
supports rapid failover, and enables an administrator to actively respond to a failure.

The following are the characteristics of Tmax.

+ Complies 100% with various DTP international standards such as X/Open and ISO-TP

2. Introduction to Tmax | 39

o Complies with the X/Open Distributed Transaction Processing (DTP) model, the international
standard for processing distributed transactions, and specifies a compatible API and system
structure based on the application program (AP), transaction manager (TM), resource
manager (RM), communication resource manager (CRM), etc.

o Specifies the framework for the following: features of a DTP service specified by Open
Systems Interconnection (OSI) group, the international standard organization; API for the
features; the feature for supporting distributed transactions; and the feature for adjusting
multiple transactions that exist in a distributed open system.

o Supports transparent business handling between heterogeneous systems in a distributed
environment and On-Line Transaction Processing (OLTP).

Enhances the efficiency of protection and multiplexing

Enhances the efficiency of protection and multiplexing by implementing Inter Process
Communication (IPC) of the stream pipe method.
* Provides various message types and communication types
o Supports various message types such as integer, long, and character

o Supports various communication types such as synchronous communication, asynchronous
communication, conversational communication, and forwarding type communication

o Supports Field Definition Language (FDL) and structure array

Fault tolerance and failover
o TP-Monitor with the peer-to-peer method
o Handles H/W and S/W failures

o Supports various features for preventing failure

Scalability

o Ensures stable system performance even if the number of clients increases

o

Efficiently changes from a 2-tier model to a 3-tier model using Client Agent (CA)

o

Provides various protocols for legacy systems

o

Provides services in the web environment using WebT
o Provides various protocols for legacy systems such as TCP/IP, SNA, and X.25
o Supports various process control methods
* Flexibility
o Supports various process control methods
o Supports customized features if necessary
* High Performance
o Efficiently utilizes system resources
> Provides an API to enhance productivity for simple and clear development
> Provides the system monitoring feature that is convenient and easy to use.

* Supports various H/W platforms

40 | Getting Started Guide

o Supports for IBM 0S/390, most UNIX systems, Linux systems, Windows NT system, etc.
* Supports almost all 4GL such as PowerBuilder, Delphi, Visual C/C++, Visual Basic, and .NET(C#, VB)

2.5. Issues on the Tmax Adoption

2.5.1. System Environment

Supported Environment

The following shows the basic environment of the Tmax system.

Classification Description
Protocol Application APL: XATMI and TX

Integrating API: XA
Network: TCP/IP, X.25, and SNA (LU 0/6.2)
(ON) Server: All UNIX, NT, and Linux
Client: All UNIX, Windows, MS-DOS, etc.
Platform All H/W that support IBM 0S/390, UNIX, Linux, and Windows NT

Development C, C++, and COBOL
language for

servers
Development Supports interfaces for C, C++, and various 4GL (Power Builder, Delphi, Visual
language for C/C++, Visual Basic, .NET (C#, VB), etc.)

clients

DBMS Oracle, Informix, Sybase, and DB2 (UDB)

Server Requirements

The following table shows requirements for a server when adopting Tmax:

Classification Description
Hardware Memory: 0.50 MB Disk (Tmax client): 0.277 MB

(Include - 83 KB, DLL - 86 KB, and Type Compiler - 108 KB)
Software IBM OS 390, UNIX, Linux, and Windows NT
C, C++, or COBOL Compiler

Network TCP/IP
protocol

2. Introduction to Tmax | 41

Client Requirements

The following table shows requirements for a client when adopting Tmax:

Classification Description
Hardware Memory: 0.537 MB + 0.2 - 0.5 MB / application

Disk (Tmax client): 0.277 MB
(Include - 83 KB, DLL - 86 KB, and Type Compiler - 108 KB)

An additional 203 KB (DLL, PBD) for Power Builder is required.
Software Linux, Windows NT, Windows (2000, XP), MS-DOS, and UNIX
Power Builder, Delphi, Visual Basic, Visual C++, C, and .NET (C#, VB)

Network TCP/IP
protocol

2.5.2. Issues
There are issues in terms of features, performance, reliability, etc. when adopting Tmax.

The following are the details of the issues of the features.

Issues Details

Basic features of ¢ Process management

TP-Monitor + Distributed transaction support
* Load balancing
+ Various communication methods between clients and servers
* Failure handling (handling and preventing all server failures)
* Heterogeneous DBMS support

Additional * Security feature

features

* System management

* Naming service

+ Multiplexing feature of the BP clients

* Appropriate security features for specific systems
* Structure array communication support

* Ability for integration with a host

The following are the details of the issues besides features.

42 | Getting Started Guide

Issues Details
Performance * The average handling time and the maximum number of jobs handled per
hour

* Resource usage

Reliability * Failure frequency of a customer

(failure handling) Ability and time for handling a failure

Education and « Technology level of engineers
technical * Education and consulting support (professional education for application
support development (OS, network, and TP-Monitor) and consulting for the system
design step)
Risk * Trial and error minimization when adopting a new system
management + System building using new technology
+ Understanding of tasks for building
Convenience for + Client/server development tool support

development

_ * Drivers provided for development
and operation

+ System statistical information monitoring
« Dynamic change of the TP-Monitor environment
+ Convenience for system operation
* The report feature
User satisfaction + Satisfaction for features
+ Satisfaction for technical support and education
+ Satisfaction for unexpected product capabilities
Compatibility « Complies with international standards such as X/Open DTP and OSI-TP
+ Independence from specific H/W and DBMS
Business Size + Capital scale
* The number of employees
+ Sales
« Growth potential
Other * Technology transfer

* Version up planning

2. Introduction to Tmax | 43

3. Introduction to WebT

This chapter describes the basic features and roles of WebT which supports transaction services for
Tmax and Java application programs.

3.1. Overview

Tmax is a middleware product that operates in a client/server environment.Web Transaction (WebT)
supports transaction services between Tmax and Java application programs. WebT is distributed as
an API library. It is used by Web Application Server (WAS) products that operate in a web environment
such as JEUS. It is designed to provide dynamic data services using the transaction handling and load
balancing features of Tmax in a web environment.

The following figure shows the service flow between WebT and Tmax. If a client sends a request, the
server program of Tmax is executed through the WebT module and then the service will run.

MACHINE #1 MACHINE #2

N\,

Servlet, PHP
with WebT

i/‘
»

Light Load

Application H.

— =

Light Traffic

Service Flow between WebT and Tmax

3.2. WebTConnectionPool

In order to efficiently manage Tmax connections, WebT provides a class called WebTConnectionPool.
WebTConnectionPool does not create a new connection object whenever a Tmax service is
requested, but reuses an old object that was previously used. By doing this, resources and time that
are spent to set and close network connections for a Tmax server can be saved.

A WebTConnectionPool consists of one WebTConnectionGroup or more, and each

44 | Getting Started Guide

WebTConnectionGroup connects to one Tmax server. A client program can be connected to a Tmax
server using the name of a WebTConnectionGroup.

If a WebT module links with JEUS, a JEUS container manages a WebTConnectionPool. The JEUS
container creates a connection pool by using the WebT properties configuration file or JEUS
configuration file and automatically returns a non-returned connection to the connection pool.

3.3. WebT-Server System

A WebT-Server system exists between a Tmax system and JEUS. It enables a Tmax client to call a EJB
service of JEUS.

The following figure shows how an EJB service is called through a WebT-Server system.

Tmax System Jeus System

Client]]

——————————— Web T-Server-----------~
System

WebT-Server System

A WebT-Server system consists of the following modules.
* JAVA GW
Processes service requests sent from Tmax to JEUS.
* JTmax
A daemon in JEUS receives a Tmax service request.
* WebT Library
Processes data that is exchanged between Tmax and JEUS.
+ Other Utilities

The webtutil.jar is a file that packages classes to use in jeus.jar and jeusutil.jar when using WebT.
Itis a library used to start WebT without JEUS.

3. Introduction to WebT | 45

4. Tmax Applications

This chapter describes the basic concepts, client/server programs, APIs, and errors for developing
Tmax applications.

4.1. Application Configuration

A Tmax application consists of a client program and a server program. The client program handles
user interfaces (presentation logic), while the service routine for servers handles tasks and
implements access logic.

If a client has a request, a server handles the request. Although there are N clients, a single call starts
a single service. When a client has a request, the following occurs: the client connects to CLL, a tpcall
is made for the request, CLL handles the request, and the request is returned if it is successfully
handled. When a client program connects to Tmax, it needs information from Tmax such as the host
address and the port number. The information is saved in the .profile or the tmax.env file and set in
the TMAX_HOST_ADDR and TMAX_HOST_PORT properties, respectively.

A server program consists of main() that is provided by Tmax and service routines written by a
developer.

Tmax provides various API functions to handle connection data requests from clients and servers.
Tmax API complies with the international standard for distributed processing (X/Open DTP model).
When an application is developed, only a service routine is developed.

The following figure shows the configuration of a Tmax application.

Server Process

N Client

Tmax Application Configuration

4.2. Buffer Types

When a client requests a service from a server, it uses the following communication buffer for
communication.

46 | Getting Started Guide

String Buffer Hello WorldW-0

Carray Buffer Hlell |l |lo w wlol|rl|ll|d W
0 0
Field Buffer(FDL) keyh |H|e |l |I |o key w WorldW0
_ AN S
v Y
carray hdata string wdata

struct data { char h[6]; char w(6]; };

Struct Buffer(SDL) [H|e |1 |1 |o wlo|r|l|d

Tmax Communication Buffer Type

* STRING buffer

Used to save a string that ends with NULL. The buffer length does not need to be specified. There
is no problem caused by platform differences.

* CARRAY and X_OCTET buffers

Used to save binary type data that has the specified number of bytes. The length of a buffer must
be specified to exchange data. There is no problem caused by platform differences.

¢ STRUCT and X_C_TYPE buffers

Used to use a C language struct. All primitive types can be used as members of the struct. A
declared struct and an array of structs can also be used as a member of the struct.

¢« X COMMON buffer

Used to save a C language struct. Only the char, int, and long types can be used as members of
the struct.

* FIELD buffer

Used to save field key and data value pairs. All primitive types can be saved in this buffer. It is
used when an exchanged data type can be changed. It provides various APIs for accessing and
converting data.

4. Tmax Applications | 47

Field Definition Language (FDL)

FDL can operate and handle specific data from the desired information using a field key buffer, unlike
a general structure.

FDL specifies names for each field key (NAME, ADDR, and TEL), numbers, and types in a <XXX.f> field
buffer file. If <XXX.f> is compiled using FDLC, a file mapped into <XXX_fdl.h> is created. Field keys and
values selected by a user can be accessed by referring to the <XXX_fdl.h> included during
compilation.

Fkey : Value
NAME ¢ Hong Fkey | Data : Fkey ! Data :Length
ADDRSEUUI Data transmission

TEL | 200-200

%

Tmax maps filed keys into unique values internally.

FDL Method

4.3. Client/Server Program

The client program handles user interfaces (presentation logic), while the service routine for servers
handles tasks and implements access logic.

4.3.1. Client Program

A client program receives input from a user, requests a service from a server, receives a response
from the server, and outputs the service response to the user.

Client Program Flow

The following is the flow of a client program:

main()
{
Connect to Tmax
Allocate a buffer for transmission/reception
Write client business logic (receives a user request and saves it to the transmit message
buffer)
Request and respond to a service (sends the transmit message buffer to Tmax CLH and
saves the response data to the reception message buffer through Tmax CLH)
Write client business logic (displays the response data to the user)
Release the buffer for transmission/reception
Release the connection to Tmax

48 | Getting Started Guide

Tmax Client Application Binary

Int tmaxreadenv(); Checks information of connection to Tmax

int tpcall(); or
tpacall(), tpgetrply(); (business logic) to Tmax

int tpfree(); Releases dynamically allocated memary
int tpend(); Releases the connection to the Tmax system

Requests a socket connection to the Tmax system

Allocates a transmit/receive message buffer by
allocating dynamic memory

Receives a response after requesting a service

Client Program Flow

The following are descriptions for the major functions of a client program.

¢ Function for Tmax communication environment

Function

Description

tmaxreadenv() Specifies Tmax environment variables that are referenced when a Tmax

client program is executed in a specific file. When writing a program
that calls the tmaxreadenv() AP, a specific file path and name can be
set. The file can then be parsed with a file pointer when the
corresponding client program is executed.

Tmax environment variables, such as TMAX_HOST_ADDR and
TMAX_HOST_PORT, are loaded into memory that is allocated when a
client program is executed and used to call related API functions.

* Functions for connecting to a client and a server

Function Description

tpstart()

tpend()

Requests a socket connection to CLL and passes the accepted connection to CLH.
When this function is called, values set in TMAX_HOST_ADDR and TMAX_HOST _PORT

are used.

Terminates a socket connection.

* Functions for allocating and releasing a buffer

4. Tmax Applications | 49

Function Description

tpalloc() Allocates memory used for data transmission/reception between clients and servers
via Tmax. The memory allocated is the size required for data transmission/reception.

Dynamically allocated memory must be explicitly released.

tpfree() Releases memory that was dynamically allocated using tpalloc(). An allocated
memory buffer must be returned. If the memory is not returned, garbage (memory
leakage) occurs.

* Function for synchronous communication

Function Description

tpcall() Requests a service from CLH and transfers transmission data. CLH checks a service
requested by a client and then transfers it to a server application process.

A client waits until receiving a reply for the service request.

* Functions for asynchronous communication

Function Description

tpacall() Requests a service from CLH and transfers transmission data. CLH checks a service
requested by a client and then transfers it to a server application process.

A client performs logic after calling tpacall() regardless of whether it receives a reply
to the service request.

tpgetrply() Requests reply data from CLH through the parameter (cd) value for tpacall().

If there is reply data to be sent to a corresponding client in CLH, the data is
immediately transferred.

It waits until the reply data is received, or sends a reception error to the client
according to flags.

The following figure shows the process of major functions in a client program.

50 | Getting Started Guide

Tmax System

svr2
(TOUPPER)
© Tmaxreadenv(]n;9
] tart();

h——" =::_-__-_---T§--[-{-]---+ Business

- ;—!Im _ Bﬂ Server Process
TSt TN

' TR Business

s Server Process
O tpend();

1117 \Must be required
when setting XA

Process of Functions in a Client Program

For more information about each function, refer to Tmax Application Development
ﬂ Guide and Tmax Reference Guide.

Client Program Configuration

To create an executable file, compile a client program after coding is completed.

To compile a client program, the following must be defined: a client program written by a developer,
the Tmax client library, a structure file if a structure buffer is used, and a field key buffer file in which
field tables are defined.

The following figure shows the configuration of a client program:

Client Program Client Library Structure File Field Key File

m libeli.a(libeli.so)

L

sdlc —¢ —i demo.s fdlc —¢c =i demo.f

mpil
Co prie —0 tmax.fdl

—0 tmax.sdl

tmax.sdl tmax.fdl

Execution

Tmax Client Program Configuration

+ Client program

4. Tmax Applications | 51

A client program written by a developer.
« Tmax client library (libcli.a / libcli.so)

The library provided by Tmax. It is the object code of functions used to develop a client program.
* Structure file

If a client program uses a structure such as STRUCT, X_C_TYPE, or X_COMMON, a structure file
that ends with <file_name.s> is needed. The structure file must be compiled with the sdlc
command in advance. After compilation, the data of a structure is converted to standard
communication type data and a binary type file is created. The binary file is used to send and
receive data with the standard communication method when a client program is executed.

* Field key file

If a field key structure is used, a field definition file that ends with <.f> is needed. If the file is
compiled using the fdlc command, a field key buffer file creates <field_key_buffer_name_fdl.h>
using the key mapping method and uses it when a program is executed. Unlike an existing
structure file, it can reduce resource waste because some user desired fields can be operated and
transferred. However, overhead can occur when mapping keys.

4.3.2. Server Program

A server program receives a user request, handles it, and returns a reply to the client.

Server Program Flow

The following is the flow of a server program.

52 | Getting Started Guide

TCS Program Pseudo Code Development Point

int tpsvrinit(int argc, char, * *argv)

{ Logic for common jobs, initialization,
Custom logic and connection to DBMS in non-XA mode

(unnecessary in XA mode)

SVC1(TPSVCINFO *msg)

{
*data access of TPSVCINFO Data requested from a client is assigned

Business-related arithmetic operation logic,
DB transaction (ESQL) logic, integration logic, etc.

Business handling logic

tpreturn(); or tpforward(); Response data is handled and transferred

int tpsvrdone() : _—
{ Logic for tasks handled before process termination,

undoing termination of non-XA mode transaction with
DBMS, and connection release
(unnecessary in XA mode)

Custom logic

Server Program Flow

int tpsvrinit(int argc, char **argv)

{
Initialize a server (connect to DBMS in the non-XA mode)
}
SVC_NAME (TPSVCINFO *msg)
{
Handle DB transactions (ESQL)
Business handling logic
Send response result to a client
}
int tpsvrdone()
{
Tasks handled before server termination (release connection to DBMS in non-XA mode)
}
void tpsvctimeout()
{
Related to SVCTIME properties
Called from a service timeout handler
}

The following are descriptions of major functions of a server program.

* Function for initializing a server

4. Tmax Applications | 53

Function Description

tpsvrinit() Called when a server application process starts.

The standard input of tpsvrinit() is made through the configuration for the
Tmax configuration file. A developer redefines and then uses tpsvrinit(). If it
is not redefined, tpsvrinit(), which basic logic of the Tmax server library is
applied to, is called.

* Function for terminating a server

Function Description

tpsvrdone() Called just before a server application process is normally terminated.

A developer redefines and then uses tpsvrdone(). If it is not redefined,
tpsvrdone(), which basic logic of the Tmax server library is applied to, is
called.

« Tmax response functions

Function Description

tpreturn() Notifies CLH of the termination of service logic and transfers reply data. CLH
checks the information of a service caller and immediately sends reply data.

If the dynamically allocated memory pointed to by the reply data buffer is
freed, the server application stops any running processes and readies to
receive the next reply.

tpforward() Notifies CLH of the termination of service logic and transfers data to SVC.
CLH checks whether a server process that includes a service to be
transferred is available and immediately sends data.

If the dynamically allocated memory pointed to by the reply data buffer is
freed, the server application stops any running processes and readies to
receive the next reply.

The following figure shows the process of major functions in a server program.

54 | Getting Started Guide

main() A() B() <) main()

{ { { i {
} tpeall(B); tpeall(C); tpreturn(}; }

tpreturn{); tpreturni); 1
1 1

A() B()

N)
S .
i i

)

In the case of using tpcall() when calling a service of multiple steps In the case of using tpforward() when calling a service of multiple steps

<)
{

tpreturn(J;
}

Comparison of tpcall and tpforward

Server Program Configuration

A server program consists of main(), which is provided by Tmax, and service routines written by a

developer.

The following figure shows the configuration of a server program.

Tmax Environment File

tmconfig.m
cfl =i tmconfig.m
Server Program Structure File
server.pc tmconfig
Pre-Compiling gst
Proc iname = server Sdic —i demo.s
Server Library
sdic —¢ —i demo.s
Compile -0 tmax.sdl
server tmax.sdl

tmboot —s server

4

Tmax Server Program Configuration

Field Key File

tmax.fdl

4. Tmax Applications | 55

+ Server program
A developer written service routine that handles a client request.

If a SQL statement is used, it must be precompiled using a tool provided by the corresponding
database vendor.

* Tmax server library (libsvr.a / libsvr.so)

The server library provided by Tmax. It has server main(), tpsvrinit(), tpsvrdone(), and various
Tmax functions.

 Service table

A file that lists the names of services provided by each server. It is created by referring to the
Tmax configuration file.

The service table is used to search for the location of a corresponding service routine in a server
when a service is performed. It is provided by a system administrator. For more information,
refer to Tmax Administrator’s Guide.

* Structure binary table (SDLFILE)

If a structural buffer (STRUCT, X_C_TYPE, and X_COMMON) is used, a structure defined in the
<xxx.s> format is needed.

There are two types of structure files: standard communication type (structure_file_name_sdl.c)
and structure header file (structure_file_name_sdl.h). If a structure file is compiled using the sdlc
-c command, a binary table used to convert the types of structure members to those of standard
communication is created.

If a structure is not used, $TMAXDIR/lib/sdl.o must be compiled with an application server.
* Field buffer binary table (FDLFILE)

If a field buffer is used, a field buffer file defined in the format <xxxx.f> is needed. If the file is
compiled using the fdlc command, a binary table, which is used to match field keys and data, and
a header file (xxx_fdl.h), which is used to match field keys and field key names, are created. Unlike
an existing structure file, the field buffer binary table can reduce resource waste because only the
user desired fields can be operated and transferred. However, it can cause an opposite effect if
there are too few fields because data values and field key values are managed together.

+ Structure and standard buffer conversion/reversion program

To use a structure buffer in a server program, a structure and a standard buffer
conversion/reversion program (xxxx_sdl.c and xxxx_sdl.h) created with the sdlc command must
be compiled and linked together. If a structure is not used, TMAXDIR/lib/sdl.o must be linked.

56 | Getting Started Guide

4.4. System Configuration File

A system configuration file includes information necessary for the Tmax system. The Tmax
configuration file sets the configuration of the Tmax system and is written by a Tmax administrator.
This file is used to create a service table and start the Tmax system.

The configuration file consists of the following 8 sections.

Section Description Required /
Optional
DOMAIN section Defines a single independent Tmax system environment. Required
NODE section Defines an environment related to each node configuring Required
domains.
SVRGROUP section Defines properties related to server groups and databases. Required
SERVER section Defines properties related to servers. Required
SERVICE section Defines properties related to services. Required
GATEWAY section Defines properties related to gateways across domains. Optional
ROUTING section Defines properties related to data dependent routing. Optional
RQ section Defines properties related to reliable queues. Optional

* Names of sections start with an asterisk (*) (for example, * DOMAIN, *NODE, etc.)
* Names of a section and its child elements must start in the first space of a line.

+ Definitions of child elements are separated by a comma (,).

The configuration file is a general text file and compiled with the cfl command.

cfl -i Tmax Environment File Name

The following is an example of the Tmax configuration file. Values inside "< >" must be modified.

*DOMAIN

<resrc_name> SHMKEY = <UNIQUE IPCKEY>,
MAXUSER = <256>,
TPORTNO = <8999>

*NODE

<uname> TMAXDIR = <TMAX installed directory>
APPDIR = <APPLICATION directory>
PATHDIR = <PATH directory>

*SVRGROUP

<svg_name> NODENAME = <uname>,
DBNAME = <ORACLE>,
OPENINFO = "ORACLE_XA+Acc=P/tmaxsoft/tmaxsoft+SesTm=60"

4. Tmax Applications | 57

*SERVER

<svr_name> SVGNAME = <svg_name>,
MIN = <5>,
MAX = <70>

*SERVICE
<svc_name> SVRNAME = <svr_name>

0 For more information about each clause, refer to Tmax Administrator’s Guide.

4.5. API

To ease program development, a header file with defined API prototypes must be used. The APIs are
implemented in the client/server library. For more information about APIs, refer to Tmax Application
Development Guide and Tmax Reference Guide.

4.5.1. Tmax Standard API

X/0pen ATMI

The X/Open Application Transaction Monitor Interface (ATMI) API is provided as a standard of the
X/Open DTP model. It can be used as a method of communication between application programs
and TP-Monitor.

The functions defined in atmi.h are divided into functions related to a buffer, service request and
response, conversational mode, and service termination.

* Functions related to buffer allocation and release

Function Description

tpalloc() Allocates a buffer to send and receive data.
tprealloc() Changes the size of a buffer.

tpfree() Frees an allocated buffer.

tptypes() Provides information about the buffer size and type.

* Functions related to service request and response

Function Description

tpcall() Requests a service and waits for the reply.

58 | Getting Started Guide

Function Description

tpacall() Requests a service and then performs other tasks while waiting for the result
when tpgetrply() is called.

tpcancel() Cancels the response to a service request.

tpgetrply() Receives the response to tpacall().

* Functions related to the conversational mode

Function Description

tpconnect() Establishes a connection for sending and receiving messages in the
conversational mode.

tpdiscon() Forcefully terminates a connection to a service in the conversational mode.
tprecv() Receives a message in the conversational mode.
tpsend() Sends a message in the conversational mode.

* Function related to service termination

Function Description
tpreturn() Sends a response to a service request to a client and terminates the service
routine.

X/0pen TX API

The X/Open TX API provides communication methods for transactions between application programs
and TP-Monitor. The functions defined in tx.h are transaction management functions.

The following is a list of TX APIs.

* Functions related to transactions

Function Description

tx_begin() Starts a transaction.

tx_commit() Commits a transaction and saves the result.

tx_rollback() Rolls back a transaction.

tx_open() An internal function that starts a resource manager.
tx_close() An internal function that terminates a resource manager.

tx_set_transaction_tim Sets timeout for terminating a transaction.
eout()

tx_info() Returns information about a global transaction.

tx_set_commit_return() Sets when a global transaction is permitted.

4. Tmax Applications | 59

Function Description

tx_set_transaction_con Automatically starts the next transaction after the current transaction
trol() completes.

4.5.2. Non-standard API

Tmax ATMI

Tmax ATMI functions defined in tmaxapi.h are divided into functions related to unrequested
messages, RQ, error settings, timeout settings, etc. Defined APIs are non-standard interfaces and
developed to improve the developer’s productivity. It can be used as a method of communication
between application programs written by a developer and TP-Monitor.

The following is a list of non-standard APIs defined in tmaxapi.h.

* Functions related to unrequested data

Function Description

tpbroadcast() Sends unrequested data to clients registered in a system.
tpsetunsol() Specifies a function for handling unrequested data.
tpgetunsol() Receives unrequested data.

tpsetunsol_flag() Sets a flag for receiving unrequested data.

tpchkunsol() Checks whether unrequested data arrives.

* Functions related to errors

Function Description

tpstrerror() Outputs an error as a string.

Userlog() Logs an error in a buffer.

ulogsync() Saves the contents of 'ulog' in a memory buffer on a disk.

UserLog() Has the features of userlog() and ulogsync().

gettperrno() Returns an error number that occurs when the Tmax system is called.

gettpurcode() Returns the urcode set by a developer.

tperrordetail() Returns information about an error that occurs when the Tmax system
is called.

* Functions related to socket information

Function Description

tpgetpeer_ipaddr() Returns the IP address of a connected client.

60 | Getting Started Guide

Function Description

tpgetpeername() Returns the name of a connected client.

tpgetsockname() Returns the socket name of a connected client.

» Function related to block timeout
Function Description
tpset_timeout() Sets block timeout.
* Function related to failover
Function Description

tptobackup() Establishes a connection to a backup machine.

* Functions related to connection

Function Description
tpstart() Starts a connection to the Tmax system.
tpend() Terminates a connection to the Tmax system.

* Functions related to RQ

Function Description

tpenq() Saves a request of a clientin RQ.

tpdeq() Fetches data in RQ.

tpgstat() Requests statistics about data saved in RQ.
tpextsvcname() Requests a service name from data saved in RQ.

* Functions related to environment variables

Function Description

tmaxreadenv() Fetches the environment variables from the file.
tpputenv() Sets the environment variables.

tpgetenv() Returns the values of the environment variables.

* Functions related to a window operation

Function Description
WinTmaxStart() Connects to the Tmax system.
WinTmaxEnd() Disconnects from the Tmax system.

4. Tmax Applications | 61

Function

WinTmaxSetContext()
WinTmaxSend()
WinTmaxAcall()
WinTmaxAcall2()

¢ Other functions

Function

tpscmt()

tpgetlev()
tpchkauth()
tpgprio()
tpsprio()
tpsleep()
tp_sleepl()
tp_usleep()
tpschedule()
tpuschedule()
tpsvrinit()
tpsvrdone()
tpsvctimeout()

tmadmin()

Function

tpforward()

Function

tpstart()

tpend()

62 | Getting Started Guide

Description

Specifies a Window handle.
Sends data.
Asynchronous function for Windows.

Asynchronous function that handles data reception with a callback
function.

Description

Invalidate settings related to transaction control in the configuration
file.

Checks the transaction mode.

Checks whether certification is required.

Checks the priority of a service request.

Sets the priority of a service request.

Waits for a message for a specified amount of time.

Waits for data to arrive (in seconds).

Waits for data to arrive (in microseconds).

Allocates tasks in a queue to UCS so the tasks can be processed.
Waits a specified amount of time for data in a UCS server process.
Initializes a Tmax server process.

Calls a termination routine for a Tmax server process.

Shuts downs a UCS server process.

Manages a system as a type of a service call.

The following is a list of non-standard APIs defined in atmi.h.

* Function related to service termination

Description

Terminates its own service handling and transfers a client request to
another service routine.

* Functions related to client connection

Description
Connects a client application to Tmax.

Disconnects a client application from Tmax.

FDL API

FDL (Field Definition Language) is non-standard API developed to improve developer productivity.
FDL is associative-typed data that manages indexes called field keys and data together. APIs related
to a FIELD buffer are defined in fbuf.h.

Data is saved in a field key buffer, which is provided by the Tmax system. To operate the buffer, the
following functions are provided:

* Functions for mapping field keys

Function Description

fbget_fldkey() Returns the field key value of a file name.
fbget_fldname() Returns a field key name.

fbget_fldno() Fetches the field number from a field key.
fbget_fldtype() Fetches the type (integer) from a field key.
fbget_strfldtype() Fetches the pointer value for the type from a field key.

* Functions related to buffer allocation

Function Description

fbisfbuf() Checks whether the specified buffer is a field key buffer.
fbinit() Initializes the memory space allocated to a field key buffer.
fbcalcsize() Calculates the size of a field buffer.

fballoc() Dynamically allocates a field key buffer.

fbfree() Frees a field buffer.

fbget_fbsize() Returns the size of a field key buffer in bytes.
fbget_unused() Checks unused field buffer space.

fbget_used() Returns used field key buffer space in bytes.

fbrealloc() Adjusts the buffer size.

* Functions for accessing and modifying fields

Function Description

fbput() Adds a field key to a field buffer.

fbinsert() Specifies a field key and its location and saves the field value in a field
buffer.

fbchg_tu() Moves a specified field buffer before sending data.

fbdelete() Deletes the field data of a buffer.

fodelall() Deletes all field values.

4. Tmax Applications | 63

Function
fbdelall_tu()

fbget()
fbgetf()
fbget_tu()
fbnext_tu()

fbgetalloc_tu()

fbgetval_last_tu()

fbgetlast_tu()
fbgetnth()
fofldcount()
fbkeyoccur()
fbispres()
fbgetval()
fbgetvall_tu()
fbupdate()

fbgetlen()

¢ Functions for conversion

Function

fbtypecvt()
fbputt()
fbget_tut()

fbgetalloc_tut()

fbgetvalt()
fbgetvali()
fbgetvals()
fbgetvals_tu()
fbgetntht()

64 | Getting Started Guide

Description

Deletes all field data enumerated in a field key array (fieldkeyf[]).
Gets a field value in a buffer.

Gets the field value of a specified field key in a field buffer.

Gets the value of a specific field key in a specified location.

Gets the field values of a specific field key in a field buffer in order.

Internally allocates another buffer to save returned data and returns
the pointer of the allocated buffer.

Gets the occurrence of a specific field key of a field buffer and recent
data.

Gets the most recent entered data of a field specified in a field buffer.
Searches a specific field value.

Returns the number of fields included in a specific buffer.

Returns the field number specified in a field key.

Checks whether the requested data exists in a field buffer.

Returns the length of the requested data and a pointer to its location.
Returns the actual value of a field in the long type.

Updates the field value of a field key in a field buffer at a specified
location.

Returns the first occurrence value of a specified field key in a field
buffer.

Description

Converts a data type.
Attaches new data and its type into a field buffer.

Gets the field data of a specified location and specifies the field key
type.

Converts the returned data type into a defined data type and internally
allocates another buffer to save it.

Returns a pointer to the returned value.

Returns the field data of the integer type.

Returns the field data of the string type.

Returns the field data of the string type at a specified location.

Returns a converted value.

Function Description

fbchg_tut() Modifies the field key value from a specific starting point of a field
buffer.

* Function related to buffer operation

Function Description

fbbufop() Compares, copies, moves, and modifies the data of two field buffers.

¢ I/O-related function

Function Description

fbbufop_proj() Modifies a buffer corresponding to a field key.

fbread() Used together with the standard input/output library. Reads a field
buffer from a file.

fbwrite() Used together with the standard input/output library. Writes to a file.

fbprint() Standard input/output. Outputs buffer data.

fbfprint() Outputs the available data of a field buffer in a file string.

* Error-related functions

Function Description

fbstrerror() Gets the error message that occurs while operating a field buffer in a
string.

getfberrno() Returns an error number.

* Other functions

Function Description

fomake_fldkey() Automatically creates a new field key without recording in FDLFILE.
fbftos() Moves data saved in a field buffer to a C structure (stname).
fbstof() Moves data saved in a C structure to a field buffer mapped to a

structure file.

fbsnull() Checks whether a member variable of a C structure mapped to the
occurrence of the field key specified by a field buffer is NULL.

fbstelinit() Initializes the field buffer and member variables of a C structure as
NULL.
fbstinit() Initializes the C structure mapped to a field buffer as NULL.

4. Tmax Applications | 65

4.6. Error Message

4.6.1. X/Open DTP related Error

If an error occurs while using the standard interfaces provided by X/Open DTP and non-standard
interfaces provided by the Tmax system, an error value is saved to a global variable called tperrno. By
checking tperrno, a developer can handle the error.

The following is a list of tperrno error messages.

Error Message Description
(tperrno)

TPEBADDESC(2) Occurs when an invalid descriptor is used for an asynchronous or
conversational type.

TPEBLOCK(3) Occurs due to a network error.

TPEINVAL(4) Occurs when an invalid argument is entered.

TPELIMIT(5) Occurs when one or more various limit values provided by a system are
exceeded.

TPENOENT(6) Occurs when a service is not provided.

TPEOS(7) Occurs when a connection cannot be established due to a system error.

TPEPROTO(9) Occurs due to a protocol error.

TPESVCERR(10) Occurs when a buffer of the Tmax system is damaged because an application
program failed.

TPESVCFAIL(11) Occurs due to a level service error of an application program.

TPESYSTEM(12) Occurs due to a Tmax internal error (log message check).
TPETIME(13) Occurs due to transaction timeout (BLOCKTIME).

TPETRAN(14) Occurs when a transaction is cancelled due to a failure.
TPGOTSIG(15) Occurs when a signal occurs.

TPEITYPE(17) Occurs when an unregistered structure type or field key is used.
TPEOTYPE(18) Occurs due to buffer usage or a type error.

TPEEVENT(22) Occurs when an event occurs in the conversational mode.

TPEMATCH(23) Occurs when a proper service does not exist for the tpdeq() function of RQ.
TPENOREADY(24) Occurs when a server process is not ready.

TPESECURITY(25) Occurs due to a security error.

TPEQFULL(26) Occurs when the queue wait time of a server process exceeds timeout.
TPEQPURGE(27) Occurs when an item in a queue is deleted due to a queue purge.

TPECLOSE(28) Occurs when a connection to the Tmax system is released.

66 | Getting Started Guide

Error Message Description
(tperrno)

TPESVRDOWN(29) Occurs when a server process is terminated due to an application program

error.
TPEPRESVC(30) Occurs when an error occurs while a previous service is processing.
TPEMAXNO(31) Occurs when the number of concurrent users reaches the limit value.

For more information about errors and handling methods, refer to Tmax
0 Application Development Guide and Tmax Error Message Reference Guide.

4.6.2. FDL-related Error

A FDL interface related error value is saved to a global variable called fberrno. By checking fberrno, a
developer can handle the error.

The following is the list of fberror error messages:

Error Message Description

(fberror)

FBEBADFB(3) Occurs when an improper buffer (not a field key buffer) is used.

FBEINVAL(4) Occurs when an improper argument is used.

FBELIMIT(5) Occurs when one or more various limit values provided by a system are
exceeded.

FBENOENT(6) Occurs when a corresponding field key does not exist in a buffer.

FBEOS(7) Occurs when an error occurs in the OS.

FBEBADFLD(8) Occurs when an improper field key is used.

FBEPROTO(9) Occurs due to a protocol error.

FBENOSPACE(10) Occurs when there is insufficient buffer space.

FBEMALLOC(11) Occurs when an error occurs while allocating memory.

FBESYSTEM(12) Occurs when an error occurs in a system.

FBETYPE(13) Occurs when an error occurs due to a type.

FBEMATCH(14) Occurs when there is no matched value.

FBEBADSTRUCT(15) Occurs when an unregistered structure is used.

FBEMAXNO(19) Occurs when an error number that does not exist is used.

For more information about errors and handling methods, refer to Tmax FDL
ﬂ Reference Guide and Tmax Error Message Reference Guide.

4. Tmax Applications | 67

5. Examples

This chapter describes examples of Tmax programs developed in various environments.

5.1. Programs for Each Communication Type

This section describes examples of synchronous, asynchronous, and interactive programs.

5.1.1. Synchronous Communication

In the following example, a client copies a string to a STRING buffer and calls a service. The service
routine of a server receives the string, converts it to all upper case, and then returns the converted
string.

Program Files
+ Common program
File Description
sample.m Tmax configuration file.
* Client program
File Description

sync_cli.c Client program.

+ Server program

File Description
syncsvc.c Service program that converts a string to all upper case.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature Description

Tmax connection Basic connection (no client information).
Buffer type STRING.

Communication type Synchronous communication using tpcall().

68 | Getting Started Guide

+ Server program

Feature Description
Service TOUPPERSTR.
Database connection None.

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR = "/home/tmax/path",
TLOGDIR = "/home/tmax/log/tlog",
ULOGDIR = "/home/tmax/log/slog",
SLOGDIR = "/home/tmax/log/ulog"

*SVRGROUP

svgl NODENAME = tmax

*SERVER

syncsvce SVGNAME = svq1,
MIN = 1, MAX = 5,
CLOPT = " —e $(SVR).err —o $(SVR).out "

*SERVICE

TOUPPERSTR SVRNAME = syncsvc

Client Program

The following is an example.

<sync_cli.c>

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>

main(int argc,char *argv[])

{
char *sendbuf, *recvbuf;
long rlen;

if (argc != 2)

{
fprintf(stderr,"Usage: $ %s string \n",argv[0]);

5. Examples | 69

exit(1);

}

if (tpstart((TPSTART_T*)NULL) == -1)

{
fprintf(stderr,"Tpstart failed\n");
exit(1);

}

if ((sendbuf = tpalloc("STRING",NULL,0)) == NULL) {
fprintf(stderr,"Error allocation send buffer\n");
tpend();
exit(1);

}

if ((recvbuf = tpalloc("STRING",NULL,@)) == NULL) {
fprintf(stderr,"Error allocation recv buffer\n");
tpend();
exit(1);
}

strcepy(sendbuf ,argv[1 1) ;

if (tpcall("TOUPPERSTR",sendbuf,@,&sendbuf,&rlen, TPNOFLAGS) == -1)
{
fprintf(stderr,"Can’t send request to service TOUPPER->%s!\n",
tpstrerror(tperrno)) ;
tpfree(sendbuf) ;
tpfree(recvbuf) ;
tpend();
exit(1);
}
printf("Sent value:%s\n ",sendbuf);
printf("Returned value:%s\n ",recvbuf);
tpfree(sendbuf);
tpfree(recvbuf);
tpend();

Server program
The following is an example.

<syncsvc.c>

#include <stdio.h>
#include <usrinc/atmi.h>

TOUPPERSTR(TPSVCINFO *msg)
{

int i;

for (i = 0; i < msg->len ; i++)
msg->data[i] = toupper(msg->datalil);
msg->data[i] = \0’;

tpreturn(TPSUCCESS, @, msg->data, @, TPNOFLAGS);

70 | Getting Started Guide

5.1.2. Asynchronous Communication

In the following example, a client copies a string to a STRUCT buffer and calls a service. The service
routine of a server receives the string, converts it to upper or lower case, and then returns the
converted string. The client requests the TOUPPER service through asynchronous communication
and then calls the TOLOWER service through synchronous communication. The client receives the

TOLOWER service result first and then receives the TOUPPER service result.

Program Files

+ Common program

File
demo.s

sample.m

* Client program
File

async_cli.c

+ Server program

File
asyncsvc.c

Makefile

Program Feature

+ Client program

Feature

Tmax connection
Buffer type

Communication type

+ Server program

Feature

Service

Description

Defines a struct buffer.

Tmax configuration file.

Description

Client program.

Description

Service program converts a string to upper or lower case.

Tmax makefile that must be modified.

Description

Basic connection.
STRUCT.

Synchronous and asynchronous.

Description
TOUPPER, TOLOWER.

5. Examples | 71

Feature Description

Database connection None.

Communication type Synchronous and asynchronous.

Struct Buffer
The following example is a struct buffer used for asynchronous communication.

<demo.s>

struct strdata {
int flag;
char sdata[20];
b5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR = "/home/tmax/path"

*SVRGROUP

svgl NODENAME = tmax

*SERVER

asyncsvce SVGNAME = svg1, MIN = 1, MAX = 5

*SERVICE

TOUPPER SVRNAME = asyncsvc

TOLOWER SVRNAME = asyncsvc

Client Program

The following is an example.

<async_cli.c>

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>

72 | Getting Started Guide

#include "../sd1/demo.s"

main(int argc,char *argv[1)

{

struct strdata *sendbuf, *sendbufi;
long dlen,clen;
int cd;

if (arge != 3) {
fprintf(stderr, "Usage: $ %s string STRING\n", argv[@], arqv[1]);
exit(1) ;

}

if (tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "TPSTART_T failed\n");
exit(1) ;

}

sendbuf = (struct strdata *)tpalloc("STRUCT", "strdata", 0);
if (sendbuf == NULL) {
fprintf(stderr, "Error allocation send buffer\n");
tpend () ;
exit(1) ;
}

sendbuf1 = (struct strdata *)tpalloc("STRUCT", "strdata", 0);
if (sendbufl == NULL) {
fprintf(stderr, "Error allocation send1 buffer\n");
tpend();
exit(1) ;
}

strepy(sendbuf->sdata, argv[1]);
strcpy(sendbuf1->sdata, argv[2]);

if ((cd = tpacall("TOUPPER", (char *)sendbuf, @, TPNOFLAGS)) == -1)
{

0,

fprintf(stderr, "Toupper error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
if (tpcall("TOLOWER",(char *)sendbuf1,@,(char **)&sendbuf1, &dlen,
TPSIGRSTRT) == -1) {
fprintf(stderr, "Tolower error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
if (tpgetrply(&cd, (char **)&sendbuf, &clen, TPSIGRSTRT) == -1) {
fprintf(stderr, "Toupper getrply error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
printf("Return value %s\n %s\n", sendbuf -> sdata, sendbufl -> sdata);
tpfree((char *)sendbuf);
tpfree((char *)sendbuf1);
tpend() ;

5. Examples | 73

Server program

The following is an example.

<asyncsvc.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

TOUPPER(TPSVCINFO *msg)

{

}

int i = 0;
struct strdata *stdata;

stdata = (struct strdata *)msg -> data;

while (stdata->sdatal i] !'= \0’) {
stdata->sdatal i] = toupper(stdata->sdatal i]1);
i+t

}

tpreturn(TPSUCCESS, @, (char *)stdata, @, TPNOFLAGS);

TOLOWER(TPSVCINFO *msg)

{

int i = 0;
struct strdata *stdata;

stdata = (struct strdata *)msg -> data;

while (stdata->sdatal 1] !'= \@’) {
stdata->sdatal i] = tolower(stdata->sdatal i 1);
it++;

}

tpreturn(TPSUCCESS, @, (char *)stdata, @, TPNOFLAGS);

5.1.3. Interactive Communication

A client receives user input and sends a number through a STRING buffer. The service routine of a
server returns customer information with a number that is greater than the sent numberin a

database table.

The client sends the number along with a communication control to the server through interactive
communication. The server reads all database data through a cursor and sends data that meets the
condition to the client. The client can check that the data is successfully fetched through

74 | Getting Started Guide

TPEVSVCSUCC.

Program Files
+ Common program
File
demo.s
sample.m

mktable.sq]l

sel.sql

* Client program
File

conv_cli.c

* Server program

File
convsvc.pc

Makefile

Program Feature

+ Client program

Feature

Tmax connection
Buffer type

Communication type

+ Server program

Feature

Service

Database connection

Struct Buffer

Description

Defines a structure.
Tmax configuration file.
Script for creating a database table.

Script for outputting tables and data.

Description

Client program.

Description

Server program.

Tmax makefile that must be modified.

Description

Basic connection.

STRING for transmission and STRUCT for reception.

Interactive.

Description
MULTL

Oracle is used.

The following example is a struct buffer used for interactive communication.

5. Examples | 75

<demo.s>

struct sel o {

char seqno[10];
char corpno[10];
char compdate[8];

int totmon
float gquar

!

at;

float quamon;

Tmax Configuration File

The following is an example.

<sample.m>

* DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
* SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms
*SERVER
convsve SVGNAME = svg1, CONV =Y
*SERVICE
MULTI SVRNAME = convsvc

The following items are added.

Item
DBNAME

OPENINFO
TMSNAME
CONV

Description

Database name.
Oracle database connection information.
Name of the process that handles global transactions.

Interactive mode server.

Database Script

The following creates an Oracle table.

76 | Getting Started Guide

<mktable.sql>

sqlplus scott/tiger << EOF
create table multi_sel

(
seqno VARCHAR(10),
corpno VARCHAR(10),
compdate VARCHAR(8),
totmon NUMERIC(38),
guarat FLOAT,
guamon FLOAT

s

create unique index idx_tdb on multi_sel(segno);

EOF

The following outputs the Oracle table and data.

<sel.sql >

sqlplus scott/tiger << EOF
Desc multi_sel;

select * from multi_sel;
EOF

Client Program
The following is an example.

<conv_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

main(int argc, char *argv[])
{
struct sel_o *rcvbuf;
char *sndbuf;
long sndlen, rcvlen, revent;
int cd;

if (arge !=2) {
printf("Usage: client string\n");
exit(1);

}

/* connects to Tmax with tpstart() */

if (tpstart((TPSTART_T *) NULL) == -1) {
printf("tpstart failed\n");
exit(1);

5. Examples | 77

if ((sndbuf = tpalloc("STRING", NULL, 12)) == NULL) {
printf("tpalloc failed:sndbuf\n");
tpend();
exit(1);

}

if ((rcvbuf = (struct sel_o *)tpalloc("STRUCT", "sel_o", 0)) == NULL) {
printf("tpalloc failed:rcvbuf\n");
tpfree(sndbuf);
tpend();
exit(1);
}
strepy(sndbuf, argv[1]);

if ((cd = tpconnect ("MULTI", sndbuf, @, TPRECVONLY)) == -1){
printf("tpconnect failed:CONVER service, tperrno=%d\n", tperrno);
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);

}

/* dinteractive communication connection, The interaction control is sent
to a server. */
printf("tpconnect SUCESS \"MULTI\" service\n");
while (1) { /* receives multiple data */
printf("tprecv strat\n");
if(tprecv(ed, (char **)&rcvbuf, &rcvlen, TPNOTIME, &revent) < @) {
/* If ends with tpreturn() in a server */
if (revent == TPEV_SVCSUCC){
printf("all is completed\n");
break;
}
printf("tprecv failed, tperrno=%s, revent=%x\n",
tpstrerror(tperrno), revent);
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);
}
printf("seqno = %s\t\t corpno =%s\n", rcvbuf->seqno, rcvbuf->corpno);
printf("compdate = %s\t\t totmon =%d\n", rcvbuf->compdate, rcvbuf->totmon);
printf("quarat = %f\t\t quamon =%f\n\n\n", rcvbuf->quarat, rcvbuf->quamon) ;

+
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
printf("FINISH\n");

+

Server program

The following is an example.

<convsvc.pc>

78 | Getting Started Guide

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

EXEC SQL begin declare section; /* Oracle global variables declaration */
char seq[10];
struct sel_o *sndbuf;

EXEC SQL end declare section;

EXEC SQL include sqlca;

MULTI(TPSVCINFO *msg)

{
int i, cd;
long sndlen, revent;
memset(seq, @, 10);
strcpy(seq, msg->data);
if ((sndbuf = (struct sel_o *) tpalloc ("STRUCT", "sel_o", 0)) == NULL) {
printf("tpalloc failed:\n");
tpreturn (TPFAIL, -1, NULL, @, TPNOFLAGS);
}
/* declares a cursor for large amount of data */
EXEC SQL declare democursor cursor for
select *
from corp
where seqno > :seq;
EXEC SQL open democursor;
EXEC SQL whenever not found goto end_of_fetch;
if (sqlca.sqlcode !'= 0){
printf("oracle sqlerror=%s", sqlca.sqlerrm.sqlerrmc);
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}
/* sends data while there is no Oracle error */
while (sqlca.sqlcode == 0){
EXEC SQL fetch democursor into :sndbuf;
if (tpsend (msg->cd, (char *)sndbuf, @, TPNOTIME, &revent) == -1){
printf("tpsend failed, tperrno=%d, revent=%x\n", tperrno,
revent) ;
tpfree ((char *)sndbuf);
tpreturn (TPFAIL, -1, NULL, @, TPNOFLAGS);
}
}
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
end_of_fetch:
exec sql close democursor;
printf("tpreturn before");
tpreturn (TPSUCCESS, @, NULL, @, TPNOFLAGS);
}

5. Examples | 79

5.2. Global Transaction Programs

A global transaction is when multiple resource managers (databases) and physical entities participate
in processing one logical unit. Tmax regards all transactions as global transactions, and two-phase
commit (2PC) is used for data integrity.

A client receives user input and sends a unique number and data through a struct buffer. A server
updates any data that has the unique number and adds it to a table by calling a service that uses
another database. If an error occurs, the client can simultaneously roll back both databases because
the client specifies the whole process as a single transaction.

Client{
tpstart

tx_begin

tpeall TPSUCCESS

X _commit

tpend

SVC_A{ SVC_B {
: /".__-___-_‘-‘"‘-.\ P ..-"'"'_.___-_"""'\._‘\..
(UPDATE DB1) (UPDATE DB1)
\‘\""'--___.--""fl -“"‘"-—.___.—-"""—-

tpcall TPSUCCESS tpreturn

tpreturn

Connection to 2 Databases

Program Files

+ Common program

File
demo.s
sample.m

mktable.sql

* Client program
File
client.c

+ Server program

File
update.pc

80 | Getting Started Guide

Description

Struct buffer configuration file.
Tmax configuration file.

SQL script for creating a database table.

Description

Client program.

Description

Server program that executes UPDATE for a database.

File
insert.pc

Makefile

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Communication type

Transaction handling

+ Server program

Feature

Server program
Service

Database connection

Struct Buffer

Description

Server program that executes INSERT for a database.

Tmax makefile that must be modified.

Description

Basic connection.
STRUCT.
Synchronous communication using tpcall().

Transaction scope is specified by a client.

Description

2 server programs that use different databases.
UPDATE, INSERT.

2 types of Oracle databases.

The following example is a struct buffer used for global transactions.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

5. Examples | 81

tmax1 TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

tmax2 TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax1, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms

svg2 NODENAME = tmax2, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg2_tms

*SERVER

update SVGNAME=svg1

insert SVGNAME=svg2

*SERVICE

UPDATE SVRNAME=update

INSERT SVRNAME=1insert

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
drop table ACCOUNT;

create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char(1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)

ik

quit

82 | Getting Started Guide

EOF

Client Program

The following is an example.

<client.c >

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *rcvbuf;
int acnt_id, n, timeout;
long len;

if (arge !=2) {
fprintf(stderr, "Usage:%s account_id \n", argv[0]);

exit(1);
}
acnt_id = atoi(argv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail! tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart faill tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));

if (sndbuf == NULL) {

fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);

tpend();

exit(1);
}
rcvbuf = (char *)tpalloc("STRING", NULL, 0);
if (revbuf == NULL) {

fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);

tpend();

exit(1);
}
sndbuf->account_id = acnt_id;
sndbuf->branch_id = acnt_id;
strepy(sndbuf ->phone, TEMP_PHONE);

5. Examples | 83

strepy(sndbuf ->address, TEMP_ADDRESS);

tx_set_transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

n = tpcall("UPDATE", (char *)sndbuf, sizeof(struct input),
(char **)&rcvbuf, (long *)&len, TPNOFLAGS);

if (n<0) {
fprintf(stderr, "tpcall faill tperrno = %d\n", tperrno);
tpend();
exit(1);

}

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail! tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following example is a server program that executes UPDATE for a database.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

f#tdefine OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

UPDATE (TPSVCINFO *msq)

{
struct input *rcvbuf;
int ret;
long acnt_id, rcvlen;

84 | Getting Started Guide

char *send;

rcvbuf = (struct input *)(msg->data);
send = (char *)tpalloc("STRING", NULL, 9);
if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, 0, 0);
}
account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT
SET BRANCH_ID = :branch_id,
PHONE = :phone,
ADDRESS = :address,
SSN = :ssn
WHERE ACCOUNT_ID = :account_id;
if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403) {
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);
}
rcvbuf->account_id++;
ret = tpcall("INSERT", (char *)rcvbuf, @, (char **)&send, (long *)&rcvlen,
TPNOFLAGS);
if (ret < 0) {
fprintf(stderr, "tpcall fail tperrno = %d\n", tperrno);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);
}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

The following example is a server program that executes INSERT for a database.

<insert.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

f#idefine OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

INSERT(msg)

5. Examples | 85

TPSVCINFO *msg;
{
struct input *rcvbuf;
int ret;
long acnt_id;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, @);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", tpstrerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

/* Declare && Open Cursor for Fetch */

EXEC SQL INSERT INTO ACCOUNT (

ACCOUNT_ID,

BRANCH_ID,

SSN,

PHONE,

ADDRESS)

VALUES (

:account_id, :branch_id, :ssn, :phone, :address);

if (sqlca.sqlcode !'= @ && sqlca.sqlcode != 1403)

{
printf("insert failed sqlcode = %d\n", sqlca.sqlcode);

tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

5.3. Database Programs

This section describes several examples that illustrate the use of Oracle and Informix databases.

5.3.1. Oracle Insert Program

A client receives user input and calls a service through a struct buffer. A server receives the input and
adds it to a corresponding table. If an error occurs, a client can roll back the database by specifying
the process as a single transaction.

Program Files

+ Common program

86 | Getting Started Guide

File Description

demo.s Struct buffer configuration file.
sample.m Tmax configuration file.

mktable.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.

* Client program

File Description

oins_cli.c Client program.

* Server program

File Description
oinssvc.pc Oracle source of a service program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description
Service ORAINS.
Database connection Oracle database.

Struct Buffer

The following is an example.

<demo.s>

struct ktran {
int no;
char name[20];

5. Examples | 87

b5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN
resrc SHMKEY = 7799@, MAXUSER = 256
*NODE
tmax TMAXDIR = /home/tmax,
APPDIR = /home/tmax/appbin,
PATHDIR = /home/tmax/path
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms
*SERVER
oinssvc SVGNAME = svg1, MIN = 1, MAX = 5
*SERVICE
ORAINS SVRNAME = oinssvc

The following items are added.

Item Description
DBNAME Database name.

OPENINFO Oracle database connection information. CLOSEINFO does not need to be specified
for an Oracle database because It is called by tpsvrinfo().

TMSNAME Name of the process that handles automatic transactions that meet OPENINFO. The
service included in svg1 is handled as automatic transitions.

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
create table testdbl (
no number(7),
name char(30)

) &

88 | Getting Started Guide

EOF

The following outputs the Oracle table and data.

<sel.sql>

sqlpus scott/tiger << EOF
desc testdbl;

select * from testdbl;

select count (*) from testdbl;
EOF

Client Program
The following is an example.

<oins_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

main(int argc, char *argv[])

{
struct ktran *sndbuf, *rcvbuf;
long sndlen, rcvlen;
int cd;

if (arge != 3) {

printf("Usage: client no name\n");
exit(1);

}

printf("tpstart-start \n");

if(tpstart ((TPSTART_T *) NULL) == -1) {
printf("Tpstart failed\n");
exit(1);

}

printf("tpstart-ok \n");

if((sndbuf=(struct ktran *) tpalloc("STRUCT","ktran",@))==NULL) {
printf("tpalloc failed:sndbuf, tperrno=%d\n", tperrno);
tpend();
exit(1) ;

}

if((revbuf = (struct ktran *) tpalloc("STRUCT", "ktran", @0))== NULL) {
printf("tpalloc failed:rcvbuf, tperrno=%d\n", tperrno);
tpfree((char *)sndbuf);
tpend();
exit(1);

5. Examples | 89

sndbuf->no = atoi(argv[1]);
strcepy(sndbuf->name, argv[2]);
printf("tpcall-start \n");
tx_begin();

if(tpcall("ORAINS", (char *)sndbuf,@, (char **)&rcvbuf,&rcvlen, TPNOFLAGS)==-1)

{
printf("tpcall failed:0RA service, tperrno=%d", tperrno);
printf("sql code=%d\n", tpurcode);
tx_rollback();
tpfree ((char *)sndbuf);
tpfree ((char *)rcvbuf);
tpend();
exit(1);
}

printf("tpcall-success \n");
tx_commit();

tpfree ((char *)sndbuf);
tpfree ((char *)rcvbuf);
tpend();

Server program

The following is an example.

<oinssvc.pc>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

EXEC SQL begin declare section;
char name[20];
int no;

EXEC SQL end declare section;
EXEC SQL include sqlca;

ORAINS(TPSVCINFO *msq)
{
struct ktran *stdata;
stdata = (struct ktran *)msg->data;
strepy(name, stdata->name);
no = stdata->no;
printf("Ora service started\n");

/* inserts to a database */
EXEC SQL insert into testdb1(no, name) values(:no, :name);

if (sqlca.sqlcode != 0){

printf("oracle sqlerror=%s",sqlca.sqlerrm.sqlerrmc);
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);

90 | Getting Started Guide

tpreturn (TPSUCCESS, sqlca.sqlcode, stdata, @, TPNOFLAGS);

5.3.2. Oracle Select Program

A client receives user input and calls a service through a struct buffer. A server receives all
corresponding data and returns it using a structure array. If an error occurs, a client can roll back the
database by specifying the process as a single transaction.

Program Files

+ Common program

File
demo.s
sample.m
mktable.sql

sel.sql

+ Client program

File
oins_cli.c

cdata.c

+ Server program
File
oselsvc.pc

Makefile

Program Feature

* Client program

Feature

Tmax connection
Service
Buffer type

Communication type

Description

Struct buffer configuration file.
Tmax configuration file.
SQL script for creating a database table.

Script for outputting tables and data.

Description

Client program.

Function module used by a client.

Description

Oracle source of a service program.

Tmax makefile that must be modified.

Description

Basic connection.
ORASEL.
STRUCT.

Synchronous communication using tpcall().

5. Examples | 91

Feature Description

Transaction handling Transaction scope is specified by a client.

* Server program

Feature Description

Service ORASEL.

Database connection Oracle database.

Buffer usage Buffer size can be changed if necessary.

Struct Buffer

The following is an example.

<demo.s>

struct stru_his{
long ACCOUNT_ID ;
long TELLER_ID ;
long BRANCH_ID ;
long AMOUNT ;

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR ="/home/tmax",
APPDIR ="/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=600",
TMSNAME = svg1_tms
*SERVER
oselsvc SVGNAME = svg1, MIN = 1, MAX = 5
*SERVICE
ORASEL SVRNAME = oselsvc

92 | Getting Started Guide

The following items are added.

Item Description
DBNAME Database name.

OPENINFO Oracle database connection information. CLOSEINFO does not need to be specified
for an Oracle database. Available options are described in the following table.

TMSNAME Name of the process that handles transactions.

AUTOTRAN Corresponding service is automatically processed in transaction status.

The following options are available for OPENINFO.

Option Description

LogDir Records XA-related log in a specified location.
If unspecified, the <xa_NULLdate.trc> file is created in $ORACLE_HOME/rdbms/log or
a current directory.

DbgFl Level of the debug flag. 0x01 (basic level), 0x04 (OCI level), and other levels can be
used.

The following uses the LogDir and DbgFl options for OPENINFO.

OPENINFO="0Oracle_XA+Acc=P/account/password +SesTm=60+LogDir=/tmp+DbgF1=0x01"

é To avoid disk full issues, disalbe the dequg mode during development.

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
create table sel_his(
account_id number(6),
teller_id number(6),
branch_id number(6),
amount number(6)
)5
create unique index idx_tdb1 on sel_his(account_id);
EOF

The following outputs the Oracle table and data.

5. Examples | 93

<sel.sql>

sqlplus scott/tiger << EOF
desc sel_his;

select * from sel_his;

EOF

Client Program
The following is an example.

<oins_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "../sd1/demo.s"
#define NARRAY 10
#define NOTFOUND 1403

main(int argc,char *argv[])
{
struct stru_his *transf;
int i, j;
long urcode, nrecv, narray = NARRAY;
long account_id, teller_id, branch_id, amount;

if (arge 1= 2) {
fprintf(stderr,"Usage:$%s ACOUNT_ID !\n", argv[0]);
exit(0);

}

if (tpstart((TPSTART_T *) NULL) == -1) { /* connects to Tmax */
fprintf(stderr,"TPSTART_T(tpinfo) failed -> %s!\n",
tpstrerror(tperrno)) ;
exit(1) ;

}

/* creates a ¢ struct buffer */
transf = (struct stru_his *) tpalloc("STRUCT", "stru_his",0);
if (transf == (struct stru_his *)NULL) {
fprintf(stderr,"Tpalloc failed->%s!\n",
tpstrerror(tperrno)) ;
tpend();
exit(1);
}

memset(transf, 0x00, sizeof(struct stru_his));

account_id = atoi(argv[1]);
transf->ACCOUNT_ID = account_id;

/* sets transaction timeout */
tx_set_transaction_timeout(30);

/* starts global transactions */

94 | Getting Started Guide

if (tx_begin() < @) {
fprintf(stderr, "tx_begin() failed ->%s!\n",
tpstrerror(tperrno));
tpfree((char*)transf);
tpend();
exit(0) ;
}

if (tpcall("ORASEL",(char *)transf, @, (char **)&transf, &nrecv,
TPNOFLAGS)== -1){
/* request the"ORASEL" service with synchronous communication */
fprintf(stderr,"Tpcall(SELECT...)error->%s ! ",
tpstrerror(tperrno)) ;
tpfree((char *)transf);
/* cancels a transaction if failed */
tx_rollback();
tpend();
exit(0) ;
}
/* commits a transaction if successful */
if (tx_commit() == -1) {
fprintf(stderr, "tx_commit() failed ->%s!\n",
tpstrerror(tperrno)) ;
tpfree((char *)transf);
tpend();
exit(0) ;
}
/* Received data is an array of a structure. */
for (j =0 ; j < tpurcode ; j++) {
/* prints data selected by Oracle */
if (j == 0)
printf("%-12s%-10s%-10s%-10s\n",
"ACCOUNT_ID","TELLER_ID", "BRANCH_ID", "AMOUNT");
account_id=transf[j].ACCOUNT_ID;
teller_id=transf[j].TELLER_ID;
branch_id=(*(transf+j)).BRANCH_ID;
amount=transf[j].AMOUNT;
printf("%-12d %-10d %-10d %-10d\n", account_id,
teller_id,branch_id, amount);
}
/* if there is not selected data or it is the end */
if (urcode == NOTFOUND) {
printf("No records selected!\n");
tpfree((char *)transf);

tpend();
return 0;
}
tpfree((char *)transf);
tpend();
}

Server program
The following is an example.

<oselsvc.pc>

5. Examples | 95

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"
#idefine NARRAY 10
#tdefine TOOMANY 2112
#tdefine NOTFOUND 1403
EXEC SQL include sqlca.h;

EXEC SQL begin declare section;
long key, rowno= NARRAY;
long account_id[NARRAY],teller_id[NARRAY], branch_id[NARRAY],
amount[NARRAY] ;

EXEC SQL end declare section;

ORASEL(TPSVCINFO *msg)
{
struct stru_his *transf;
int i , lastno;
transf=(struct stru_his *) msg->data;

/* transfers contents of the msg buffer to a program variable */
key = transf->ACCOUNT_ID;

/* adjusts the size of the transf buffer */
if((transf=(struct stru_his *) tprealloc((char*)transf,
sizeof(struct stru_his) * NARRAY))==(struct stru_his*)NULL){
fprintf(stderr, "tprealloc error ->%s\n",
tpstrerror(tperrno));
tpreturn(TPFAIL, tperrno, NULL, @, TPNOFLAGS);
}
EXEC SQL select account_id, teller_id, branch_id, amount
into :account_id, :teller_id, :branch_id, :amount from sel_his
where account_id > :key
/* puts data that has account_id greater than the key value sent */
order by account_id; /* by a client to a global variable */

/* sql error check (excludes no data or too many data) */

if (sqlca.sqlcode!=0 && sqlca.sqlcode!=NOTFOUND && sqlca.sqlcode!=TOOMANY) {
fprintf(stderr,"SQL ERROR ->NO(%d):%s\n", sqlca.sqlcode,
sqlca.sqlerrm.sqlerrmec) ;
tpreturn(TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);

}

/* puts the number of access to lastno */
lastno = sqlca.sqlerrd[2];

/* too many selected data */
if (sqlca.sqlcode == TOOMANY)
lastno =rowno;

/* No records */
if (lastno == 0)
transf->ACCOUNT_ID = 0;

/* puts data selected by Oracle to a buffer to be sent */
for (1 =0 ; i< lastno; i++) {
transf[i].ACCOUNT_ID = account_id[i];
transf[i].TELLER_ID = teller_id[i];
transf[i].BRANCH_ID = branch_id[i];

96 | Getting Started Guide

transf[i].AMOUNT = amount[i];

}
tpreturn(TPSUCCESS, lastno, transf, i * sizeof(struct stru_his),
TPNOFLAGS);

5.3.3. Informix Insert Program

A client receives user input and calls a service through a struct buffer. A server receives the input and
adds it to a corresponding table. A client can roll back by specifying the process as a single

transaction when an error occurs.
Check the following before compiling Informix applications.
1. Unix environment (.profile, .login, and .cshrc)

Set the following items.

INFORMIXDIR=/home/informix

INFORMIXSERVER=tmax

ONCONFIG=onconfig

PATH=$INFORMIXDIR/bin: -
LD_LIBRARY_PATH=/home/informix/1ib:/home/informix/1lib/esql:

2. Makefile

Check the following operations and settings.

Server esql makefile

TARGET = <target filename>
APOBJS = $(TARGET).o
SDLFILE = info.s

LIBS = -lsvr -linfs

For Solaris, add -1nsl -1socket.

0BJS = $(APOBJS) $(SDLOBJ) $(SVCTOBI)
SDLOBJ = ${SDLFILE:.s=_sdl.o}
SpLC = ${SDLFILE:.s= sdl.c}

SVCTOBJ = $(TARGET) svctab.o

CFLAGS =-0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
Solaris 32bit, Compaq, Linux: CFLAGS = -0 -I$(INFORMIXDIR)/incl/esql
—I$(TMAXDIR)

Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

HP 32bit: CFLAGS = -Ae -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(INFORMIXDIR)/incl/esql
—-I$(TMAXDIR)

IBM 32bit: CFLAGS = -q32 -brtl -0 -I$(INFORMIXDIR)/inc1/esql -I$(TMAXDIR)

IBM 64bit: CFLAGS = -q64 -brtl -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

5. Examples | 97

INFLIBD = $(INFORMIXDIR)/1ib/esql

INFLIBDD = $(INFORMIXDIR)/1ib

INFLIBS = -lifsql -lifasf -lifgen -lifos -lifgls -lm -1d1 -lcrypt
$ (INFORMIXDIR)/1ib/esql/

checkapi.o -lifglx -lifxa

APPDIR = $(TMAXDIR)/appbin
SVCTDIR = $(TMAXDIR)/svct
TMAXLIBDIR = $(TMAXDIR)/1ib

#
.SUFFIXES : .ec .s .c .0

.ec.c :
esql -e $*.ec

#

server compile

#

all: $(TARGET)

$(TARGET) : $(0BJS)
$(CC) $(CFLAGS) -L$(TMAXLIBDIR) -L$(INFLIBD) -L$(INFLIBDD) -o $(TARGET)
$(0B1S) $(LIBS) $(INFLIBS)
mv $(TARGET) $(APPDIR)/.
rm -f $(0BJS)

$(APOBIS): $(TARGET).ec
esql -e -I$(TMAXDIR)/usrinc $(TARGET).ec
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
touch $(SVCTDIR)/$(TARGET) svctab.c
$(CC) $(CFLAGS) -c $(SVCTDIR)/$(TARGET) svctab.c

$(SDLOBJ):
$(TMAXDIR)/bin/sdlc -i ../sd1/$(SDLFILE)
$(CC) $(CFLAGS) -c ../sd1/$(SDLC)

#
clean:
-rm -f *.0 core $(TARGET) $(TARGET).lis

<TMS Makefile>

#
TARGET = info_tms

INFOLIBDIR = ${INFORMIXDIR}/1ib
INFOELIBDIR = ${INFORMIXDIR}/esql
INFOLIBD = ${INFORMIXDIR}/1lib/esql
INFOLIBS = -lifsql -lifasf -lifgen -lifos -lifgls -1m -1dl -lcrypt
/opt/informix/1ib/esql/checkapi.o
-lifglx -lifxa
For Solaris, add -1nsl -1socket -laio -lelf

98 | Getting Started Guide

CFLAGS =-0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
Solaris 32bit, Compag, Linux: CFLAGS = -0 -I§(INFORMIXDIR)/incl/esql
—-I$(TMAXDIR)
Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
HP 32bit: CFLAGS = -Ae -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(INFORMIXDIR)/incl/esql
-I$(TMAXDIR)
-q32 -brtl -0 -I$(INFORMIXDIR)/inc1/esql -I$(TMAXDIR
-q64 -brtl -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR

IBM 32bit: CFLAGS
IBM 64bit: CFLAGS

TMAXLIBDIR = $(TMAXDIR)/1ib
TMAXLIBS = -1tms -linfs
CC = /opt/SUNWspro/bin/cc : solaris only

$(TARGET): $(APOBJ)
$(CC) $(CFLAGS) -0 $(TARGET) -L$(TMAXLIBDIR) -L$(INFOLIBD)
-L$(INFOLIBDIR) -L

$(INFOELIBDIR) $(INFOLIBS) $(TMAXLIBS)
mv $(TARGET) $(TMAXDIR)/appbin

#

clean:
-rm -f *.o core $(TARGET)

Program Files

+ Common program

File Description

demo.s Struct buffer configuration file.

sample.m Tmax configuration file.

mkdb.sql SQL script for creating a database. XA mode is supported when a database is

created in logging mode.

mktable.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.
info.s SDLFILE.

* Client program

File Description

client.c Client program.

* Server program

File Description
tdbsvr.ec Server program.
Makefile Modifies the Makefile provided by Tmax.

5. Examples | 99

Program Feature

* Client program

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description
Service INSERT.
Database connection Informix database.

Struct Buffer
The following is an example.

<demo.s>

struct info {
char seq[8];
char data®1[128];
char data®@2[128];
char data®@3[128];
¥

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR ="/home/tmax", A
APPDIR ="/home/tmax/appbin”,
PATHDIR ="/home/tmax/path"

*SVRGROUP

svgl NODENAME = tmax,

DBNAME = INFORMIX,
OPENINFO = "stores7",

100 | Getting Started Guide

CLOSEINFO = "",
TMSNAME = info_tms

*SERVER

tdbsvr SVGNAME = svg1, MIN =1, MAX = 5
*SERVICE

INSERT SVRNAME = tdbsvr

The following items are added.

Item Description
DBNAME Database name.
OPENINFO, CLOSEINFO Informix database connection and disconnection information.

tpsvrinfo() and tpsvrdone() use the information.

TMSNAME Name of the process that handles transactions. Automatic
transactions that become available due to OPENINFO are handled.
The corresponding service included in svg1 is handled in the
automatic transaction state.

Database Script

The following creates an Informix table.

<mktable.sql>

dbaccess << EOF
create database stores7 with buffered log;
grant connect to public;

database stores7;

drop table testdb1;

create table testdbl (
seq VARCHAR(8) ,
data01 VARCHAR(120) ,
data0? VARCHAR(120) ,
data03 VARCHAR(120)

) lock mode row;

create unique index idx_tdb1 on testdb1(seq);
EOF

The following outputs the Informix table and data.

<sel.sql>

dbaccess << EOF
database stores7;
select * from testdbl;

5. Examples | 101

EOF

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "info.s"
main(int arge, char **argv)
{

struct info *transf;

char data[256];

long nrecv;

/* connects to Tmax */

if ((tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "tpstart(TPINFO...) failed ->%s!\n",
tpstrerror(tperrno)) ;
exit(1) ;

}

/* allocates buffer memory to be used in an application program */
if ((transf=(struct info *)tpalloc ("STRUCT","info",@))==(struct info *)NULL){
fprintf(stderr, "tpalloc(struct info, ...) failed ->%s!\n",
tpstrerror(tperrno)) ;
tpend();
exit(1) ;
}

/* fills the data fields to be transferred */
strepy(transf->seq, "000001");
strepy(transf->data@1, "Hello");
strepy(transf->data@2, "World");
strepy(transf->data@3, "1234");

/* sets transaction timeout * /
tx_set_transaction_timeout (30);

/* informs of transaction starts */
if (tx_begin() < @) {
fprintf(stderr, "tx_begin() failed ->%s!\n",
tpstrerror(tperrno)) ;
tpfree ((char *)transf);
tpend(); exit(9);
}

/* calls a service */
if (tpcall("INSERT",(char*) transf,@, (char **)&transf,&nrecv, TPNOFLAGS)==-1){
fprintf(stderr,"tpcall(struct info, ...)
failed ->%s!\n",tpstrerror(tperrno)) ;
tx_rollback ();
tpfree ((char *)transf),

102 | Getting Started Guide

tpend();
exit(0);
}

/* Transactions are complete. */
if (tx_commit () < @) {
fprintf(stderr, "tx_commit() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree ((char *)transf);
tpend();
exit(0);
}

tpfree ((char *)transf);
/* disconnects from Tmax */
tpend() ;

Server program
The following is an example.

< tdbsvr.ec>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include "info.s"

EXEC SQL include sqlca.h;

/* a service name */

INSERT(TPSVCINFO *msg)

{
/* declares a buffer type for the program */
struct info *INFO;

/* declares a buffer type for SQL statements */
EXEC SQL begin declare section;

varchar seq[8],buf@1[128],buf@2[128],buf03[128];
EXEC SQL end declare section;

/* receives data in a structure format from the message buffer */
INFO = (struct info *)msg -> data;

/* copies data received in a structure format to a database buffer */
strcpy(seq, INFO->seq);

strepy(buf@1, INFO->data1);

strepy(buf@2, INFO->datad?2);

strepy(buf@3, INFO->data@3);

/* performs an Insert SQL statement */

EXEC SQL insert into testdbl (seq,datad1,datad2,datab3)
values(:seq, :buf@1, :buf@2, :buf@3);
/* if an error occurs */

if (sqlca.sqlcode ! = 0) {

5. Examples | 103

/* informs Insert is failed */

printf("SQL error => %d !" ,sqlca.sqlcode);

tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}

/* when Insert successfully completes */
tpreturn (TPSUCCESS, @, NULL, @, TPNOFLAGS);

5.3.4. Informix Select Program

A client receives user input and calls a service through a struct buffer. A server receives all
corresponding data and returns it using a structure array. If an error occurs, a client can roll back the
database by specifying the process as a single transaction.

Program Files

+ Common program

File Description

acct.s SDLFILE.

sample.m Tmax configuration file.

mkdb.sq| SQL script for creating a database.
mktables.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.

* Client program

File Description
client.c Client program.
cdate.c Function module used by client.c.

* Server program

File Description
sel_acct.ec Informix source of a service program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

104 | Getting Started Guide

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description

Service SEL_ACCT.

Database connection Informix database.

Buffer usage A buffer can be resized if necessary.

Struct Buffer

The following is an example.

<acct.s>

struct stru_acct {
int ACCOUNT_ID;
char PHONE[20];
char ADDRESS[80];
i

Tmax Configuration File

The following is an example.

<sample.m>
*DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR ="/home/tmax",
APPDIR ="/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = INFORMIX,
OPENINFO = "stores7",
CLOSEINFO = "",
TMSNAME = info_tms
*SERVER
SEL_ACCT SVGNAME = svg1, MIN = 1, MAX = 5

5. Examples | 105

*SERVICE
SEL_ACCT SVRNAME = sel_acct

The following items are added.

Item Description
DBNAME Database name.
OPENINFO, CLOSEINFO Informix database connection and disconnection information.

tpsvrinfo() and tpsvrdone() use the information.

TMSNAME Name of the process that handles transactions. Automatic
transactions appointed by OPENINFO are handled. The
corresponding service included in svg1 is handled in automatic
transaction status.

Database Script

The following creates an Informix table.

<mkdb.sql>

dbaccess << EOF
create database stores7 with buffered log;
grant connect to public;

database stores7;
drop table ACCOUNT;

create table ACCOUNT (
account_id INTEGER,
phone VARCHAR(20),
address VARCHAR(80)
) lock mode row;

create unique index idx_tdb1 on ACCOUNT(account_id);
EOF
The following outputs the Informix table and data.

<sel.sql>

dbaccess << EOF
database stores7;
select * from ACCOUNT;
EOF

106 | Getting Started Guide

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <time.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "acct.s"
#define NOTFOUND 1403

void htime(char *, int *);

main(int argc, char *argv[1)

{
struct stru_acct *transf;
float tps;
int i, j, loop, cnt_data = @, secl, sec2;
long urcode, nrecv, narray;
char ts[30], te[30], phone[20], address[80];
int account_id, key;

if(arge = 2) {
fprintf(stderr,"Usage:$%sLOOP (NARRAY = 30) !\n", arqv[0]);
exit(0) ;

}

/* repeats the loop as many as times a user wants */
loop = atoi(argv[1]);

/* connects to Tmax */

if (tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "tpstart(tpinfo) failed ->%s!\n",
tpstrerror(tperrno));
exit(1) ;

}

/* secl = start time */
htime(ts,&sec1); key=0;

/* allocates a message buffer */
for(i = 0; i < loop; i++) {
if ((transf=(struct stru_acct *)tpalloc("STRUCT","stru_acct",0))
==(struct stru_acct *)NULL) {
fprintf(stderr,"Tpalloc(STRUCT..)failed->%s!\n" ,
tpstrerror(tperrno)) ;
tpend(); exit(1);
}
transf -> ACCOUNT_ID = key;

/* time-out value= 30 */
tx_set_transaction_timeout(30) ;

if (tx_begin() < @) { /* starts transactions */
fprintf(stderr, "tx_begin() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree((char*)transf);

5. Examples | 107

tpend();
exit(0);
}

/* calls a select service */
if (tpcall("SEL_ACCT", (char *)transf, @, (char **)&transf, &nrecv,
TPNOFLAGS)== -1) {
/* service error: the message buffer is freed, the transaction is
cancelled, and the connection is terminated */
fprintf(stderr,"Tpcall(SELECT...)error->%s! " ,
tpstrerror(tperrno)) ;
tpfree ((char *)transf);
tx_rollback () ;
tpend() ;
exit (1) ;
}

urcode = tpurcode;

/* The service is successfully completed.
The actual resource is changed as a result of the transaction */
if (tx_commit() < 0) {

fprintf(stderr, "tx_commit() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree((char *)transf);
tpend();
exit(0);

}

/* if data is selected */
if (urcode !'= NOTFOUND) {
narray =urcode;
/* the last record of selected data */
key=transf[narray-1].ACCOUNT_ID;
/* outputs results to a user as many as the number of selected data */
for (j =0 ; j <narray ; j++) {
if (j==0)
printf("%-10s%-14s%s\n", "ACCOUNT_ID", "PHONE","ADDRESS") ;
account_id = transf[j].ACCOUNT_ID;
strepy(phone, transf[j].PHONE);
strepy(address, transf[j].ADDRESS);
printf("%-10d %-14s %s\n", account_id, phone, address);
}/* for2 end */

/* increases the number of results */
cnt_data += j;

/* message buffer free */
tpfree ((char *)transf);
if(urcode == NOTFOUND) {
printf("No records selected!\n");
break ;

}
}/* for1 end */

/* message buffer free */
tpfree ((char *)transf);

/* disconnects from Tmax */
tpend ();

/* sec2 = end time */

108 | Getting Started Guide

htime(te,&sec2);

/* calculates processing time for each data */
printf("TOT.COUNT = %d\n", cnt_data);
printf("Start time = %s\n", ts);
printf("End time = %s\n", te);
if ((sec2-sec1) ! = 0)
tps = (float) cnt_data / (sec2 - secl);
else
tps = cnt_data;
printf("Interval = %d secs ==> %10.2f T/S\n", sec2-secl,tps);

}

htime(char *cdate, int *sec)
{
long time(), timef, pt;
char ct[20], *ap;
struct tm *localtime(), *tmp;

pt = time(&timef);

*sec = pt;

tmp = localtime(&timef);
ap = asctime(tmp);

sscanf(ap, "%*s%*s%*s%s",ct);
sprintf(cdate, "%02d. %02d. %02d %s", tmp->tm_year, ++tmp->tm_mon,
tmp->tm_mday, ct);

Server program

The following is an example.

<sel_acct.pc>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "acct.s"
#define NFETCH 5

f#define NOTFOUND 100

EXEC SQL include sqlca.h;

EXEC SQL begin declare section;
long account_id, key;

varchar phone[20], address[80];
EXEC SQL end declare section;

SEL_ACCT(TPSVCINFO *msg)
{
int i , j , nfetch;
int return_code;
struct stru_acct *ACCT_V;

/* receives client data */
ACCT_V = (struct stru_acct *) msg->data;

5. Examples | 109

/* moves an accound ID value to be selected to the key */
key = ACCT_V->ACCOUNT_ID;

/* reallocates the size of the client buffer */

if ((ACCT_V = (struct stru_acct *)tprealloc((char *)ACCT_V,
sizeof(struct stru_acct)*NFETCH)) == (struct stru_acct *)NULL) {
fprintf(stderr, "tprealloc error =%s\n", tpstrerror(tperrno));
tpreturn (TPFAIL, tperrno, NULL, @, TPNOFLAGS);

}

/* initializes a buffer */
ACCT_V->ACCOUNT_ID = 0;
strcpy(ACCT_V->PHONE," ") ;
strepy(ACCT_V->ADDRESS," ") ;

/* extracts phone and address fields from the ACCOUNT table */
EXEC SQL declare CUR_1 cursor for
select account_id,phone,address
into :account_id, :pfone, :address
from ACCOUNT
where account_id > :key;/* if an account ID is larger than
a field key */

/* cursor open */
EXEC SQL open CUR_1;
/* cursor open error */
if (sqlca.sqlcode ! = 0) {
printf("open cursor error !\n");
tpreturn(TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}

nfetch=0 ;
return_code = NOTFOUND;

/* cursor open success */

while (sqlca.sqlcode == 0) {
/* fetches data from the location a cursor points one at a time */
EXEC SQL fetch CUR_1;

/* fetch error */
if (sqlca.sqlcode ! = @) {
if (sqlca.sqlcode == NOTFOUND)
break ;
break ;

}

ACCT_V[nfetch].ACCOUNT_ID = account_id;
strepy(ACCT_V[nfetch].PHONE, phone);
strepy(ACCT_V[nfetch].ADDRESS, address);

/* increases the number of selected data */
nfetch++;
return_code = nfetch

/* exits from "while"

if data is selected as many as the number of NFETCH */
if (nfetch > NFETCH) {

nfetch = NFETCH;

110 | Getting Started Guide

return_code = nfetch;

break ;

}
}

/* cursor close */
EXEC SQL close CUR_1;

/* returns the result and its data to a client */
tpreturn (TPSUCCESS, return_code, (char *)ACCT_V,
sizeof(struct stru_acct)*nfetch, TPNOFLAGS);

5.3.5. DB2 Program

A client receives user input, saves EMPNO to a STRING buffer, and calls a service. A server receives all
the data and adds it to the table. If an error occurs, a client can roll back the database by specifying
the process as a single transaction.

Program Files

+ Common program

File
sample.m

Create.ers

* Client program
File

clidb2tx.c

+ Server program

File
svr_db2.sqc
Makefile

Program Feature

* Client program

Feature

Tmax connection

Buffer type

Description

Tmax configuration file.

SQL script for creating a database table.

Description

Client program.

Description

DB2 source of a service program.

Makefile for compiling TMS and the server program.

Description

Basic connection.

STRING.

5. Examples | 111

Feature Description
Communication type Synchronous communication using tpcall().

Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description
Service XASERVICE2.
Database connection DB2 database.

Considerations before the DB2 integration test

Check the following when integrating to DB2.

1. DB2 client engine (32-bit or 64-bit).

2. DB2 client version.

3. Set the XAOPTION item in the SVRGROUP section of the Tmax configuration file.
> When the DB2 client version is 8.0 or previous

= When the DB2 client engine is 32-bit

XAOPTION = "DYNAMIC"

= When the DB2 client engine is 64-bit and OS is Unix or Linux

XAOPTION = "DYNAMIC XASWITCH32"

= When the DB2 client engine is 64-bit and OS is Windows

XAOPTION = "DYNAMIC"

> When the DB2 client version is 9.0 or later (regardless of the DB2 client engine and OS)

Do not set XAOPTION.

4. Link appropriate libraries when compiling TMS and the server program.
> When the DB2 client version is 8.0 or previous

= When the DB2 client engine is 32-bit

-1db2s or $(TMAXDIR)/1ib/1ibdb2s.a

112 | Getting Started Guide

= When the DB2 client engine is 64-bit and OS is Unix or Linux

-1db2_64s or $(TMAXDIR)/1ib64/1ibdb2_64s.a

= When the DB2 client engine is 64-bit and OS is Windows

-1db2s or $(TMAXDIR)/1ib/1ibdb2s.a

> When the DB2 client version is 9.0 or later (regardless of the DB2 client engine and OS)

-1db2s_static or $(TMAXDIR)/1ib/1ibdb2s static.a

When the DB2 client version is 9.0 or later, you can link the library used for 8.0 or
ﬂ previous versions for dynamic registration. However, it is not recommended.

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
tmax1 SHMKEY = 71990, MINCLH = 1, MAXCLH = 3,
TPORTNO = 7789, BLOCKTIME = 30,
MAXCPC = 150
*NODE
phk TMAXDIR = "/home/tmaxha/tmax",
APPDIR = "/home/tmaxha/tmax/appbin",
PATHDIR = "/home/tmaxha/tmax/path",
TLOGDIR = "/home/tmaxha/tmax/log/tlog",
ULOGDIR = "/home/tmaxha/tmax/log/ulog",
SLOGDIR = "/home/tmaxha/tmax/1log/slog"
*SVRGROUP
xa_svg_db2 NODENAME = "phk",
DBNAME = IBMDB2,
XAOPTION = "DYNAMIC XASWITCH32",
XAOPTION = "DYNAMIC",
OPENINFO = "db=test,uid=tmaxha, pwd=ha0115",
TMSNAME = tms_db2,
RESTART=N
*SERVER
svr_db2 SVGNAME = xa_svg_db2
*SERVICE
XASERVICE? SVRNAME = svr_db2

5. Examples | 113

The following items are added.

Item Description

DBNAME Database name.

OPENINFO DB2 database connection information.

TMSNAME Name of the process that handles transactions that meet OPENINFO.

Database Script

The following creates a DB2 table.

#'db2start' execution
$ db2start

Creating a database named TPTEST
$ db2 "CREATE DATABASE TPTEST"

Connecting to the TPTEST databse
$ db2 "CONNECT TO TPTEST"

Creating a table named EMP
$ db2 -vf create.ers -t

<create.ers>
CREATE TABLE EMP (

EMPNO DECIMAL(8) NOT NULL,
ENAME VARCHAR(16),

JoB VARCHAR(16),

SAL DECIMAL(8),

HIREDATE DECIMAL(8),

XID CHAR(32)

)

Checking the table creation
$ db2 "LIST TABLES"

The following shows the DB2 table and sample data.

$ db2 "DESCRIBE TABLE EMP"

Column Type Type

name schema name Length Scale Nulls
EMPNO SYSIBM DECIMAL 8 0 No
ENAME SYSIBM VARCHAR 16 0 Yes
JoB SYSIBM VARCHAR 16 0 Yes
SAL SYSIBM DECIMAL 8 0 Yes
HIREDATE SYSIBM DECIMAL 8 0 Yes
XID SYSIBM CHARACTER 32 0 Yes

6 record(s) selected.

114 | Getting Started Guide

Client Program

The following is an example.

<clidb2tx.c>

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <usrinc/atmi.h>

int main(int argc, char *argv[])

{

char *sndbuf, *rcvbuf;
long rcvlen;
int ret;

if ((ret = tmaxreadenv("tmax.env","TMAX")) == -1){
printf("tmax read env failed.[%s]\n", tpstrerror(tperrno));
exit(1);

}

if (tpstart((TPSTART_T *)NULL) == -1){
printf("tpstart failed.[%s]\n", tpstrerror(tperrno));
exit(1);

}

if ((sndbuf = (char *)tpalloc("STRING", NULL, @)) == NULL) {
printf("sendbuf alloc failed! [%s]\n", tpstrerror(tperrno));
tpend();
exit(1);

}

if ((rcvbuf = (char *)tpalloc("STRING", NULL, @)) == NULL) {
printf("recvbuf alloc failed! [%s]\n", tpstrerror(tperrno));
tpfree(sndbuf);
tpend();
exit(1);

}

strepy(sndbuf, argv[1]);

ret = tx_begin();
if (ret < 0) {
printf("tx_begin is failed.[%s]\n", tpstrerror(tperrno));
resource_free(sndbuf, rcvbuf);
exit(1);
} else
printf("tx_begin success.\n");

if (tpcall("XASERVICE2", sndbuf, strlen(sndbuf), &rcvbuf, &rcvlen, @) == -1){
printf("Can't send request to service XASERVICE2.[%s]\n", tpstrerror(tperrno));
ret = tx_rollback();
if (ret < 0)

printf("tx_rollback is failed. [%s]\n", tpstrerror(tperrno));

resource_free(&sndbuf, &rcvbuf);

5. Examples | 115

exit(1);
} else
printf("XASERVCE2 success.\n");

ret = tx_commit();
if (ret < 0) {

printf("tx_commit is failed. [%s]\n", tpstrerror(tperrno));

ret = tx_rollback();

if (ret < 0)

printf("tx_rollback is failed. [%s]\n", tpstrerror(tperrno));

} else

printf("tx_commit success.\n");
resource_free(sndbuf, rcvbuf);

return 0;
}
resource_free(char* sndbuf, char *rcvbuf)
{
if (revbuf != NULL)
tpfree((char*)rcvbuf);
if (sndbuf != NULL)
tpfree((char*)sndbuf);
tpend();
}

Server program

The following is an example.

<svr_db2.sqc>

#include <stdio.h>
#include <usrinc/atmi.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL begin declare section;
sqlint32 h_empno;
sqlint32 h_count;

EXEC SQL end declare section;

XASERVICE2(TPSVCINFO *msg)
{

char *res_msg;
int h_count=0;

h_empno = atoi(msg->data);
printf("h_empno = %d \n", h_empno);

EXEC SQL
INSERT into EMP (EMPNO) VALUES (:h_empno);
if (sqlca.sqlcode != 0) {
printf("insertion is failed : sqlcode[%d]%d\n", sqlca.sqlcode, sqlca.sqlstate);

116 | Getting Started Guide

tpreturn(TPFAIL, -1, @, 0, 0);
} else

EXEC SQL SELECT COUNT(*)
INTO :h_count
FROM emp
WHERE empno = :h_empno;
if (sqlca.sqlcode != 0) {
printf("insertion is failed : sqlcode[%d]%d\n", sqlca.sqlcode, sqlca.sqlstate);
tpreturn(TPFAIL, -1, @, 0, 0);
} else
printf("insertion is success. selcnt(%d) \n", h_count);

tpreturn(TPSUCCESS, @, @, 0, 0);

Server Makefile

The following is an example.

Server makefile for DB2
Linux 64bit

DB2LIBDIR = $(DB2_HOME)/1ib

DB2LIBS = -1db2
DB = TEST

DB2USER = tmaxha

DB2PASS = ha0115

TARGET = $(COMP_TARGET)

APOB]S = $(TARGET).o
APOB]S2 = utilemb.o
NSDLOBJ = $(TMAXDIR)/1ib64/sdl.0

#0BJS = $(APOBJS) $(AP0OB]S2) $(SVCTOBJ)
0B3S = $(APOBIS) $(SVCTOBI)
SVCTOBJ = $(TARGET)_ svctab.o

#CFLAGS = -m64 -0 -I$(TMAXDIR) -I$(DB2_HOME)/include
CFLAGS -0 -I$(TMAXDIR) -I$(DB2_HOME)/include
LDFLAGS

TMAXAPPDIR = $(TMAXDIR)/appbin
TMAXSVCTDIR = $(TMAXDIR)/svct

TMAXLIBDIR = $(TMAXDIR)/1ib64

TMAXLIBS = -1svr -1db2s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 32bit or DB2
Client 64bit & Windows)

#TMAXLIBS = -lsvr -1db2_64s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 64bit &
Linux/Unix)

#TMAXLIBS = -1svr -1db2s_static #static XAOPTION=none (DB2 Client v9.0(above))

#

.SUFFIXES : .c

5. Examples | 117

$(CC) $(CFLAGS) $(LDFLAGS) -c $<

#

server compile
#

all: $(TARGET)

$(TARGET): $(0BJS)

$(CC) $(CFLAGS) $(LDFLAGS) -L$(TMAXLIBDIR) -o $(TARGET) -L$(DB2LIBDIR) $(DB2LIBS) $(OBIS)
$(TMAXLIBS) $(NSDLOBJ)

mv $(TARGET) $(TMAXAPPDIR)

rm -f $(0BIS)

$(APOBIS): $(TARGET).sqc
db2 connect to $(DB) user $(DB2USER) using $(DB2PASS)
db2 prep $(TARGET).sqc bindfile
db2 bind $(TARGET).bnd
db2 connect reset
db2 terminate
$(CC) $(CFLAGS) $(LDFLAGS) -c $(TARGET).c

$(SVCTOB]):
cp -f $(TMAXSVCTDIR)/$(TARGET) svctab.c .
touch ./$(TARGET) svctab.c
$(CC) $(CFLAGS) -c ./$(TARGET)_ svctab.c

#

clean:
:-rm -f *.0 core $(TMAXAPPDIR)/$(TARGET) $(TARGET).bnd

TMS Makefile

The following is an example.

TMS Makefile for DB2
Linux 64bit

TARGET = tms_db2

APOB] = dumy.o

APPDIR = $(TMAXDIR)/appbin

TMAXLIBD= $(TMAXDIR)/1ib64

TMAXLIBS = -1svr -1db2s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 32bit or DB2
Client 64bit & Windows)

#TMAXLIBS = -1svr -1db2_64s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 64bit &
Linux/Unix)

HTMAXLIBS = -1svr -1db2s_static #static XAOPTION=none (DB2 Client v9.0(above))

DB2PATH = $(DB2_HOME)
DB2LIBDIR= $(DB2PATH)/1ib
DB2LIB = -1db2

CFLAGS
LDFLAGS
SYSLIBS

118 | Getting Started Guide

all: $(TARGET)

$(TARGET): $(APOBJ)

$(CC) $(CFLAGS) $(LDFLAGS) -o $(TARGET) -L$(TMAXLIBD) $(TMAXLIBS) $(APOBJ]) -L$(DB2LIBDIR)
$(DB2LIB) $(SYSLIBS)

mv $(TARGET) $(APPDIR)/.

$(AP0OBJ):
$(CC) $(CFLAGS) -c dumy.c
#
clean:
-rm -f *.0 core $(APPDIR)/$(TARGET)

5.4. Database Integration Programs

This section describes actual programming that you can use when developing applications. A
database can be integrated with homogeneous or heterogeneous databases.

5.4.1. Synchronous Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in synchronous
mode.

Client{ SVC_A { SVC_B {

tpstart P N
(UPDATE DB1) (UPDATE DB1)
tx_begin ~— e

tpaall TPSUCCESS tpreturn

tpaall TPSUCCESS

tpreturn
tx_commit

tpend

Synchronous Mode Flow (Homogeneous Database)

Program Files

+ Common program

5. Examples | 119

File
demo.s
sample.m
tmax.env

mktable.sql

* Client program

File

client.c

* Server program

Description
SDLFILE.

Tmax configuration file.
Configuration file.

SQL script for creating a database table.

Description

Client program.

File Description
update.pc, insert.pc Server program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Subtype

Transaction

+ Server program

Description

Connection with the NULL parameter.
STRUCT.

SDL file must be created by using sdlc to compile an input
structure file.

Transaction is specified by a client.

Feature Description
The number of services INSERT service is requested from the UPDATE service.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the Tmax configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit
Database Oracle 8.0.5

120 | Getting Started Guide

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];
i

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

tmax TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svg1

insert SVGNAME=svg1

*SERVICE

UPDATE SVRNAME=update

INSERT SVRNAME=1insert

Configuration File

The following is an example.

<tmax.env>

[tmax]
TMAX_HOST _ADDR=192.168.1.39

5. Examples | 121

TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sd1/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script

The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!
drop table ACCOUNT;
create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char(1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
ik
quit

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *revbuf;
int acnt_id, n, timeout;
long len;

if (arge 1= 2) {

fprintf(stderr, "Usage:%s account_id \n", arqv[0]);
exit(1);

122 | Getting Started Guide

acnt_id = atoi(arqv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail! tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail! tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", °
sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();
exit(1);
}

rcvbuf = (char *)tpalloc("STRING", NULL, 0);

if (rcevbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acnt_id;
sndbuf->branch_id = acnt_id;
strepy(sndbuf ->phone, TEMP_PHONE);
strepy(sndbuf ->address, TEMP_ADDRESS);

tx_set _transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

n = tpcall("UPDATE", (char *)sndbuf, sizeof(struct input),
(char **)&rcvbuf, (long *)&len, TPNOFLAGS);
if (n<0) {
fprintf(stderr, "tpcall fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
by

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail! tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}

printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);

5. Examples | 123

tpfree((char *)rcvbuf);
tpend();

Server program

The following example is a server program that performs UPDATE in a database.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

UPDATE(TPSVCINFO *msg)

{
struct input *rcvbuf;
int ret;
long acnt_id, rcvlen;
char *send;

rcvbuf = (struct input *)(msg->data);
send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, 0);

}

account_id = rcvbuf->account_id;

branch_id = rcvbuf->branch_id;

The following example is a server program that performs INSERT in a database.

<insert.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

124 | Getting Started Guide

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

INSERT(msg)
TPSVCINFO *msg;
{
struct input *rcvbuf;
int ret;
long acnt_id;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", tpstrerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

/* Declare && Open Cursor for Fetch */
EXEC SQL INSERT INTO ACCOUNT (
ACCOUNT_ID,
BRANCH_ID,
SSN,
PHONE,
ADDRESS)
VALUES (:account_id, :branch_id, :ssn, :phone, :address);

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403)

{
printf("insert failed sqlcode = %d\n", sqlca.sqlcode);

tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strcpy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

5.4.2. Synchronous Mode (Heterogeneous Database)

The following shows a program flow when accessing a heterogeneous database in synchronous
mode.

5. Examples | 125

Client{ SVC_A {

tpstart —

(UPDATE |
DBl —— _

.

tx_begin
TPSUCCESS
tpaall TPSUCCESS tpaall

tx_commit tpreturn

tpend

SVC_B {
> ""H_'_.___‘_‘_Hﬁ‘-"\
(UPDATE |

DB2

tpreturn

Synchronous mode Flow (Heterogeneous Database)

Program Files

+ Common program

File Description

demo.s SDLFILE.

sample.m Tmax configuration file.

tmax.env Configuration file.

mktable.sql SQL script for creating a database table.

* Client program

File Description

client.c Client program.

+ Server program

File Description

update.pc, Server program.

insert.pc

Makefile Tmax makefile that must be modified.

A The client and server programs are the same as in Synchronous Mode
0‘ (Homogeneous Database). For more information about environment settings for

multiple nodes, refer to Tmax Administrator’s Guide.

126 | Getting Started Guide

Program Feature

* Client program

Feature Description

Tmax connection Connection with the NULL parameter.

Buffer type STRUCT.

Subtype SDL file must be created by using sdlc to compile an input

structure file.

Transaction Transaction is explicitly specified by a client.

* Server program

Feature Description
The number of services INSERT service is requested from the UPDATE service.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the Tmax configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit, SunOS 5.8 32-bit
Database Oracle 8.0.5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN
res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60
*NODE
tmax TMAXDIR="/user/ tmax ",
APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"
tmax2 TMAXDIR="/user/ tmax ",

APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

5. Examples | 127

*SVRGROUP

svgl NODENAME = tmax1, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

svg2 NODENAME = tmax2, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg2_tms

*SERVER

update SVGNAME=svqg1
insert SVGNAME=svg2
*SERVICE

UPDATE SVRNAME=update
INSERT SVRNAME=1insert

Configuration File

The following is an example.

<tmax.env>

[tmax1]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sd1l/tmax.sdl
TMAX_CONNECT_TIMEOUT=5

5.4.3. Asynchronous Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in asynchronous
mode.

128 | Getting Started Guide

Client

Client{
tpstart

tx_begin

tpacall
__._,..-'—'___‘—'--..._“__\

(" ACTION

"“--..._‘_______,_...--"'
tpgetrply

tx_commit

tpend

., o

TPSUCCESS

Server

SVC_A {

1U PDATE D Br

tpreturn

}

Asynchronous Mode Flow (Homogeneous Database)

Program Files
+ Common program
File
demo.s
sample.m

tmax.env

mktable.sql

+ Client program
File
client.c

* Server program

File
update.pc
Makefile

Program Feature

* Client program

Description
SDLFILE.

Tmax configuration file.

Configuration file.

SQL script for creating a database table.

Description

Client program.

Description

Server program.

Tmax makefile that must be modified.

5. Examples | 129

Feature Description

Tmax connection Connection with the NULL parameter.
Buffer type STRUCT.
Subtype SDL file must be created by using sdlc to compile an input

structure file.

Transaction Transaction is specified by a client.

+ Server program

Feature Description
The number of services INSERT service is requested.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the system configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit
Database Oracle 8.0.5

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60
*NODE

tmax TMAXDIR="/user/ tmax ",

130 | Getting Started Guide

APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svqg1

*SERVICE

UPDATE SVRNAME=update

Configuration File
The following is an example.

<tmax.env>

[tmax]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sdl/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script

The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!
drop table ACCOUNT;
create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char (1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
e
quit

5. Examples | 131

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *rcvbuf;
int acnt_id, n, cd, timeout;
long len;

if (arge !=2) {
fprintf(stderr, "Usage:%s account_id \n", argv[0]);

exit(1);
}
acnt_id = atoi(argv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv faill tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail! tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();
exit(1);
}

rcvbuf = (char *)tpalloc("STRING", NULL, 0);

if (revbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acnt_id;

132 | Getting Started Guide

sndbuf->branch_id = acnt_id;
strepy(sndbuf->phone, TEMP_PHONE);
strepy(sndbuf->address, TEMP_ADDRESS);
tx_set_transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

cd = tpacall("UPDATE", (char *)sndbuf, sizeof(struct input), TPNOFLAGS);

if (cd < 0) {
fprintf(stderr, "tpacall fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
}
n = tpgetrply(&cd, (char **)&rcvbuf, (long *)&len, TPNOFLAGS);
if (n<0) {
fprintf(stderr, "tpgetrply fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
}

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit faill tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following is an example.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

5. Examples | 133

UPDATE(TPSVCINFO *msg)

{
struct input *rcvbuf;
int ret, cd;
long acnt_id, rcvlen;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;

branch_id = rcvbuf->branch_id;

strepy(phone, rcvbuf->phone);

strepy(address, rcvbuf->address);

strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT

SET BRANCH_ID = :branch_id,
PHONE = :phone,

ADDRESS = :address,

SSN = :ssn

WHERE ACCOUNT_ID = :account_id;

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403) {
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

5.4.4. Interactive Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in interactive mode.

134 | Getting Started Guide

Client{
tpstart

TPSENDONLY while (true)
tx_begin]
tPCﬂﬂﬂECt . Tprecv
TPRECVONLY
while (true) ' tpsend

D E

- -
tprecv
TPSUCCESS

tprecv }

tpreturn

X commit

tpend

Interactive Mode Flow (Homogeneous Database)

Program Files

+ Common program

File Description

demo.s SDLFILE.

sample.m Tmax configuration file.

tmax.env Configuration file.

mktable.sql SQL script for creating a database table.

* Client program

File Description

client.c Client program.

+ Server program

5. Examples | 135

File
update.pc
Makefile

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Subtype

Transaction

+ Server program

Feature

The number of services

Database connection

Program Environment

Classification

System

Database

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

136 | Getting Started Guide

Description

Server program.

Tmax makefile that must be modified.

Description

Connection with the NULL parameter.
STRUCT.

SDL file must be created by using sdlc to compile an input
structure file. (necessary to run an application)

Transaction is specified by a client.

Description

UPDATE service is requested.

Oracle database is specified. Database information is specified in
the SYRGROUP section of the Tmax configuration file.

Description
SunOS 5.7 32-bit
Oracle 8.0.5

Tmax Configuration File

The following is an example.

*DOMAIN
res SHMKEY=8800@, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

tmax TMAXDIR="/user/ tmax ",
APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svg1, CONV=YES

*SERVICE

UPDATE SVRNAME= update

Configuration File

The following is an example.

<tmax.env>

[tmax]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=88830
SDLFILE=/user/tmax/sample/sd1/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script
The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!

drop table ACCOUNT;

create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,

5. Examples | 137

BALANCE number,

ACCT_TYPE char(1),

LAST_NAME char(21),

FIRST_NAME char(21),

MID_INIT char(1),

PHONE char(15),

ADDRESS char(61),

CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
ik
quit

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2115"
#define TEMP_ADDRESS "Korea"

void main(int argc, char *argv[])
{
struct input *sndbuf;
char *revbuf;
int acntid, timeout;
long revent, rcvlen;
int cd, n;

if (arge 1= 2) {
fprintf(stderr, "Usage:%s acntid\n", argv[0]);
exit(1);

}

acntid = atoi(argv[1]);
timeout = 5;
n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail tperrno = %s\n", tperrno);
exit(1);

}

printf("tpstart ok!\n");
sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();

138 | Getting Started Guide

exit(1);
}

rcvbuf = (char *)tpalloc("CARRAY", NULL, 0);

if (revbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acntid;
sndbuf->branch_id = acntid;
strepy(sndbuf->phone, TEMP_PHONE);
strepy(sndbuf->address, TEMP_ADDRESS);

tx_set _transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail tx error = %d\n", n);
printf("tx begin ok!\n");

cd = tpconnect("UPDATE", (char *)sndbuf, @, TPSENDONLY);

if (ed < 0) {
fprintf(stderr, "tpconnect fail tperrno = %d\n", tperrno);
tpend();
exit(1);

}

while (1) {
n = tpsend(cd, (char *)sndbuf, sizeof(struct input), TPRECVONLY,
&revent);
if (n<0) {
fprintf(stderr, "tpsend fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);
}
printf("tpsend ok\n");

n = tprecv(cd, (char **)&rcvbuf, (long *)&rcvlen, TPNOTIME, &revent);
if (n < 0 & revent != TPEV_SENDONLY) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);
I3
printf("tprecv ok\n");
sndbuf->account_id++;

if (revent != TPEV_SENDONLY)
break;
}
n = tprecv(cd, (char **)&rcvbuf, (long *)&rcvlen, TPNOTIME, &revent);
if (n < 0 & revent != TPEV_SVCSUCC) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);

5. Examples | 139

printf("rcvbuf = [%s]\n", rcvbuf);

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail tx error = %d\n", n);
tx_rollback();
tpend();
exit(1);
}
printf("tx commit ok!\n");
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following is an example.

<update.pc>

#include
#include
#include
#include

<stdio.h>
<ctype.h>
<usrinc/atmi.h>
"../sd1/demo.s"

void _db_work();

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;

int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];

EXEC SQL END DECLARE SECTION;

struct input *rcvbuf;

UPDATE(TPSVCINFO *msg)

{

int ret, count;

long acnt_id;

long revent, rcvlen, flag;
char *send;

rcvbuf = (struct input *)tpalloc("STRUCT", "input", 0);
send = (char *)tpalloc("CARRAY", NULL, 0);

count = 1;
flag = 0;

while (1) {

140 | Getting Started Guide

}

ret = tprecv(msg->cd, (char **)&rcvbuf, &rcvlen, TPNOTIME, &revent);
if (ret < 0 && revent != TPEV_SENDONLY) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tpreturn(TPFAIL, -1, (char *)rcvbuf, @, TPNOFLAGS);

}
printf("tprecv ok!\n");

if (count == 10) {
flag &= ~TPRECVONLY;
flag |= TPNOTIME;

}

else
flag |= TPRECVONLY;

ret = tpsend(msg->cd, (char *)send, strlen(send), flag, &revent);
if (ret < 0) {
fprintf(stderr, "tpsend fail revent = 0x%08x\n", revent);
tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);
}
printf("tpsend ok!\n");
_db_work();

/* break after 10 iterations */
if (count == 10)
break;

count++;

}

strepy(send, OKMSG);
printf("tpreturn ok!\n");
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

void _db_work() {

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT
SET BRANCH_ID = :branch_id,
PHONE = :phone,
ADDRESS = :address,
SSN = :ssn
WHERE ACCOUNT_ID = :account_id;

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403)

{
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);

5. Examples | 141

5.5. Programs Using TIP

Tmax Information Provider (TIP) is a function process that handles TIPSVC. The following features can
be performed using TIP.

+ System environment information check: static environment information of a system can be
checked.

+ System statistical information check: status of each process can be checked while a system is
operating.

+ System operation management: processes are started or terminated.

5.5.1. TIP Structure

The TIP server has the SYS_SVR server type and is included in the TIP server group. The TIP server
receives a request from a client or server, transfers the request to CLH/TMM, and then returns the
result to the requester. The TIP server uses field keys to handle the service. The client or server saves
data to be requested to a field buffer, sends a request, and then receives the result with the field
buffer.

* CHLOG section (log level change)

CHLOG is the section in which the log levels of TMM, CLH, TMS, and SVR are changed. CHLOG
performs the same action as chlog in tmadmin.

When the TIP service is called, TIPSVC is called after the following are set in the field buffer.

Item Description
TIP_OPERATION (string) GET.

TIP_SEGMENT (string) ADMINISTRATION.
TIP_SECTION (string) CHLOG.
TIP_MODULE (int) Module to dynamically change log. Options are:

s TIP_TMM

* TIP_CLH

* TIP_TMS

* TIP_SVR
TIP_FLAGS (int) Flags. Options are:

* TIP_VFLAG
+ TIP_GFLGA
* TIP_NFLAG
TIP_SVRNAME (string) Server name. Set only when TIP_FLAGS is TIP_VFLAG.

142 | Getting Started Guide

Item Description

TIP_SVGNAME (string) Server group name. Set only when TIP_FLAGS is TIP_GFLAG.
TIP_NODENAME (string) Node name. Set only when TIP_FLAGS is TIP_NFLAG.
TIP_LOGLVL (string) Log level. Value must be in lowercase letters. The result value is set
in TIP_ERROR. Options are:

+ compact

* basic

+ detail

+ debug1

+ debug2

* debug3

* debug4
TIP_ERROR (int) Error value. Options are:

+ TIPESVCFAIL: corresponding service was not handled

successfully
+ TIPEOS: memory allocation failed

* TIPEBADFLD: value of TIP_MODULE is not set

* CHTRC section

TMAX_TRACE of TMS and SPR are specified to modify the trace log options in the CHTRC section.
CHTRC performs the same action as chtrc in tmadmin.

When the TIP service is called, TIPSVC is called after setting the following in a field buffer.

Item Description
TIP_OPERATION (string) GET.

TIP_SEGMENT (string) ADMINISTRATION.
TIP_SECTION (string) CHTRC.
TIP_FLAGS (int) Flags. Options are:
+ TIP_PFLAG
* TIP_VFLAG
* TIP_GFLAG
* TIP_NFLAG
TIP_SPRI (int) Sets spri. Set only when TIP_FLAGS is TIP_PFLAG.
TIP_SVGNAME (string) Server group name. Set only when TIP_FLAGS is TIP_GFLAG.

TIP_NODENAME (string) Node name. Set only when TIP_FLAGS is TIP_NFLAG.

5. Examples | 143

Item
TIP_SPEC (string)

TIP_ERROR (int)

Description

Filter spec, receiver spec, and trigger spec. The result value is set in
TIP_ERROR.

Error value. Options are:

* TIPESVCFAIL: corresponding service was not successfully
handled

+ TIPEOS: memory allocation is failed

* TIPEBADFLD: value of TIP_MODULE is not set

The following must be included in requests to TIPSVC.

* Operation (TIP_OPERATION)

Set Value
GET

SET

* Segment (TIP_SEGMENT)

Description

To check statistical information and static environment information
of a system or to operate and manage a system (BOOT/DOWN).

To change system settings. Currently, only GET is supported.

Used to determine which function to execute. The following can be set in the TIP_SEGMENT field.

Set Value
CONFIGURATION

STATISTICS
ADMINISTRATION

» Section (TIP_SECTION)

Description

Checks static configuration information of a system.
Checks statistical information while a system is operating.

Checks system operation and management (BOOT/DOWN).

When TIP_SECTION is set, the following values can be set.

Set Value
CONFIGURATION

STATISTICS

ADMINISTRATION

+ Command (TIP_CMD)

Description

DOMAIN, NODE, SVRGROUP, SERVER, SERVICE, ROUTING, RQ, and
GATEWAY

NODE, TPROC, SPR, SERVICE, RQ, TMGW, NTMGW, TMS, TMMS,
CLHS, and SERVER (SVR)

BOOT, DOWN, CHLOG, and CHTRC

Used only when TIP_SECTION is ADMINISTRATION.

144 | Getting Started Guide

Set Value Description
TIP_BOOT Starts the Tmax system.

TIP_DOWN Terminates the Tmax system.

5.5.2. TIP Usage

The following describes how to use TIP and check an error.

TIP Usage

* Environment setting

A user does not need to write a service because the TIP server is a function process provided by
Tmax. However, a user must register the TIP server in a configuration file. The following example
is setting an environment.

*DOMAIN
res ..., TIPSVC = TIPSVC

*NODE
tmaxs1

*SVRGROUP
tsvg ..., SVGTYPE = TIP

*SERVER
TIP SVGNAME = tsvg, SVRTYPE = SYS_SVR

o TIPSVC is registered in the DOMAIN section. If unregistered, TIPSVC is registered by default.
o ATIP server group (SVGTYPE=TIP) is registered in the SYRGROUP section.
o ATIP server (SVRTYPE=SYS_SVR) is registered in the SERVER section.

+ System access

A user must set .tpadmin in the usrname property of the TPSTART_T structure when accessing the
Tmax system. usrname is set only when TIP_SEGMENT is ADMINISTRATION. If usrname is set
incorrectly, the TIPEAUTH error is set in the TIP_ERROR field.

strepy(tpinfo->usrname, ".tpadmin");

« Buffer allocation

A client or a server program must allocate a field key buffer for a request because the TIP server
uses field keys to handle a service.

+ TIP request items

5. Examples | 145

Item
TIP_OPERATION

TIP_SEGMENT
TIP_SECTION
TIP_CMD
TIP_NODENAME

* TIPSVC request

Description

Changes and checks system environment information.
Checks information for system operation and management.
Detailed property settings in SEGMENT.

Set only when TIP_SEGMENT is ADMINISTRATION.

Set only for multiple nodes. If only a single node exists,
TIP_NODENAME is set to a local node by default. If it is incorrectly
set, the TPEINVAL error occurs.

After the required properties for TIP are set, set the configured field buffer to sndbuf and use
tpcall or tpacall to send the TIPSVC request. Both client and server can request a service, and
transactions are not supported.

* Result reception

The service result is saved in a reception field key buffer.

Error Check

* If successfully handled

The TIP_ERROR property of a reception field key buffer is set to 0.

« If an error occurs

Error
TIP_STATUS

TIP_BADFIELD
TIP_ERROR

Description

Detailed error information set in TIP_ERROR can be checked.
Field that caused the error can be checked.

Value greater than 0 is set in TIP_ERROR of a reception field key
buffer. It can be checked in /usrinc/tip.h.

The following are the error values that can be set in TIP_ERROR.

Set Value
TIPNOERROR

TIPEBADFLD

TIPEIMPL
TIPEAUTH
TIPEOS

146 | Getting Started Guide

Description
Error did not occur.

Invalid field key issued. In general, TIPEBADFLD is set when a field
key not compiled by the fdlc utility.

Unavailable feature is requested.
Service not allowed under current privileges.

OS or system error caused by a memory allocation failure,
connection to Tmax system failed, or unstable network status.

Set Value Description

TIPENOENT Accessed nonexistent property.
TIPESVCFAIL tpreturn() is called to TPFAIL due to a TIP service routine error.

5.5.3. TIP Usage Example
The following examples use TIP.

Configuration File

The following example uses a single node.

<cfg.m>
*DOMAIN
res SHMKEY=78850, MAXUSER=200, MINCLH=1, MAXCLH=5,
TPORTNO=8850, BLOCKTIME=60, TXTIME=50, RACPORT=3355

*NODE

tmaxh4 TMAXDIR="/datal/starbj81/tmax",
APPDIR="/datal/starbj81/tmax/appbin",
PATHDIR ="/datal/starbj81/tmax/path",
TLOGDIR ="/datal/starbj81/tmax/log/tlog",
ULOGDIR="/data1/starbj81/tmax/1log/ulog",
SLOGDIR="/datal1/starbj81/tmax/1log/slog"

*SVRGROUP

tsvg NODENAME = "tmaxh4", SVGTYPE=TIP

svgl NODENAME = "tmaxh4"

*SERVER

TIP SVGNAME=tsvg, SVRTYPE=SYS_SVR, MIN=1, MAX=1

svr SVGNAME=svg1, MIN=1

*SERVICE

TOUPPER SVRNAME=svr

The following example uses multiple nodes.

<cfg.m>
*DOMAIN
tmax SHMKEY=98850,
TPORTNO=8850,
BLOCKTIME=60,
RACPORT=3355,
MAXUSER=10
*NODE
Tmaxh4 TMAXDIR="/datal/starbj81/tmax",

APPDIR="/datal/starbj81/tmax/appbin",

5. Examples | 147

tmaxh?2

*SVRGROUP
tsvg

svgl
svg2

*SERVER
TIP
svr

*SERVICE
TOUPPER

*ROUTING
rout1

PATHDIR = "/datal/starbj81/tmax/path",
TLOGDIR = "/datal/starbj81/tmax/1log/tlog",
ULOGDIR="/data1/starbj81/tmax/1log/ulog",
SLOGDIR="/data1/starbj81/tmax/1log/slog"

TMAXDIR="/data1/starbj81/tmax",
APPDIR="/datal/starbj81/tmax/appbin",
PATHDIR = "/datal/starbj81/tmax/path",
TLOGDIR = "/datal/starbj81/tmax/log/tlog",
ULOGDIR="/datal/starbj81/tmax/1log/ulog",
SLOGDIR="/data1/starbj81/tmax/1log/slog"

NODENAME = "tmaxh4", SVGTYPE=TIP

NODENAME
NODENAME

"tmaxh4", COUSIN = "svg2"
"tmaxh2"

SVGNAME=tsvg, SVRTYPE=SYS_SVR, MIN=1, MAX=1
SVGNAME=svg1, MIN=1, MAX=5

SVRNAME=svr, ROUTING = "rout1"

FIELD="STRING", RANGES = "'bbbbbbb'-'cccccce'

svg2

Field Key Table

The following is an example.

<tip.f>

#

commo
#

name

*base 1600000
TIP_OPERATION
TIP_SEGMENT
TIP_SECTION
TIP_NODE
TIP_OCCURS
TIP_FLAGS
TIP_CURSOR
TIP_SESTM
TIP_ERROR
TIP_STATE
TIP_MORE
TIP_BADFIELD
TIP_CMD
TIP_CLID
TIP_MSG

n field

number type flags comments
1

0 string
1 string
2 string
3 string
4 int
5 int
6 string
7 int
8 int
9 int
10 int
1 string
12 string
13 int
14 string

148 | Getting Started Guide

1 osvgl, *

#

DOMAIN section fields
#

name number
*base 16000100

TIP_NAME 0
TIP_SHMKEY 1
TIP_MINCLH 2
TIP_MAXCLH 3
TIP_MAXUSER 4
TIP_TPORTNO 5
TIP_RACPORT 6
TIP_MAXSACALL 7
TIP_MAXCACALL 8
TIP_MAXCONV_NODE 9
TIP_MAXCONV_SERVER 10
TIP_CMTRET 11
TIP_BLOCKTIME 12
TIP_TXTIME 13
TIP_IDLETIME 14
TIP_CLICHKINT 15
TIP_NLIVEINQ 16
TIP_SECURITY 17
TIP_OWNER 18
TIP_CPC 19
#TIP_LOGINSVC 20
#TIP_LOGOUTSVC 21
TIP_NCLHCHKTIME 22
TIP_DOMAINID 23
TIP_IPCPERM 24
TIP_MAXNODE 25
TIP_MAXSVG 26
TIP_MAXSVR 27
TIP_MAXSVC 28
TIP_MAXSPR 29
TIP_MAXTMS 30
TIP_MAXCPC 31
TIP_MAXROUT 32
TIP_MAXROUTSVG 33
TIP_MAXRQ 34
TIP_MAXGW 35
TIP_MAXCOUSIN 36
TIP_MAXCOUSINSVG 37
TIP_MAXBACKUP 38
TIP_MAXBACKUPSVG 39
TIP_MAXTOTALSVG 40
TIP_MAXPROD 41
TIP_MAXFUNC 42
TIP_TXPENDINGTIME 43
TIP_NO 44
TIP_TIPSVC 45
TIP_NODECOUNT 46
TIP_SVGCOUNT 47
TIP_SVRCOUNT 48
TIP_SVCCOUNT 49
TIP_COUSIN_COUNT
TIP_BACKUP_COUNT
TIP_ROUT_COUNT 52

type

string
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
string
string
int
string
string
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
string
int
int
int
int

50

51

int

flags

int
int

5. Examples | 149

TIP_STYPE 53
TIP_VERSION 54
TIP_EXPDATE 55
TIP_DOMAINCOUNT 56
TIP_RSVG_GCOUNT 57
TIP_RSVG_COUNT 58
TIP_CSVG_GCOUNT 59
TIP_CSVG_COUNT 60
TIP_BSVG_GCOUNT 61
TIP_BSVG_COUNT 62
TIP_PROD_COUNT 63
TIP_FUNC_COUNT 64
TIP_SHMSIZE 65
TIP_CRYPT 66
TIP_DOMAIN_TMMLOGLVL 67
TIP_DOMAIN_CLHLOGLVL 68
TIP_DOMAIN_TMSLOGLVL 69
TIP_DOMAIN_LOGLVL 70
TIP_DOMAIN_MAXTHREAD 71

#

NODE section fields

#

name number type
*base 16000200

#TIP_NAME 0 string
TIP_DOMAINNAME 1 string
#TIP_SHMKEY 2 int
#TIP_MINCLH 3 int
#TIP_MAXCLH 4 int
TIP_CLHQTIMEOUT 5 int
#TIP_IDLETIME 6 int
#TIP_CLICHKINT 7 int
#TIP_TPORTNO 8 int
#TIP_TPORTNO2 9 int
#TIP_TPORTNO3 10 int
#TIP_TPORTNO4 11 int
#TIP_TPORTNO5 12 int
#TIP_RACPORT 13 int
#TIP_TMAXPORT 14 string
TIP_CMPRPORT 15 string
TIP_CMPRSIZE 16 int
#TIP_MAXUSER 17 int
TIP_TMAXDIR 18 string
TIP_TMAXHOME 19 string
TIP_APPDIR 20 string
TIP_PATHDIR 21 string
TIP_TLOGDIR 22 string
TIP_SLOGDIR 23 string
TIP_ULOGDIR 24 string
TIP_ENVFILE 25 string
#TIP_LOGINSVC 26 string
#TIP_LOGOUTSVC 27 string
TIP_IP 28 string
#TIP_PEER 29 string
TIP_TMMOPT 30 string
TIP_CLHOPT 31 string
#TIP_IPCPERM 32 int
#TIP_MAXSVG 33 int

150 | Getting Started Guide

string
string
string
int
int
int
int
int
int
int
int
int
int
string
string
string
string
string
int

flags

comments

#TIP_MAXSVR 34 int

#TIP_MAXSPR 35 int
HTIP_MAXTMS 36 int
#TIP_MAXCPC 37 int
TIP_MAXGWSVR 38 int
TIP_MAXRQSVR 39 int
TIP_MAXGWCPC 40 int
TIP_MAXRQCPC 41 int
TIP_CPORTNO 42 int
TIP_REALSVR 43 string
TIP_RSCPC 44 int
TIP_AUTOBACKUP 45 int
TIP_HOSTNAME 46 string
TIP_NODETYPE 47 int

TIP_CPU 48 int
#TIP_MAXRSTART 49 int
#TIP_GPERIOD 50 int
#TIP_RESTART 51 int

TIP_CURCLH 49 int
TIP_LIVECTIME 50 string
TIP_NODE_TMMLOGLVL 51 string
TIP_NODE_CLHLOGLVL 52 string
TIP_NODE_TMSLOGLVL 58 string
TIP_NODE_LOGLVL 54 string
TIP_NODE_MAXTHREAD 55 int
TIP_EXTPORT 56 int
TIP_EXTCLHPORT 57 int
TIP_MSGSIZEWARN 58 int
TIP_MSGSIZEMAX 59 int

#

SVRGROUP section fields

#

name number type flags comments
*base 16000300

#TIP_NAME 0 string
#TIP_NODENAME 1 string
TIP_SVGTYPE 2 string
#TIP_PRODNAME 3 string
TIP_COUSIN 4 string
TIP_BACKUP 5 string
TIP_LOAD 6 int
#TIP_APPDIR 7 string
#TIP_ULOGDIR 8 string
TIP_DBNAME 9 string
TIP_OPENINFO 10 string
TIP_CLOSEINFO 11 string
TIP_MINTMS 12 int
HTIP_MAXTMS 13 int
TIP_TMSNAME 14 string
#TIP_SECURITY 15 string
#TIP_OWNER 16 string
#TIP_ENVFILE 17 string
#TIP_CPC 18 int
TIP_XAOPTION 19 string
TIP_SVG_TMSTYPE 20 string
TIP_SVG_TMSOPT 21 string
TIP_SVG_TMSTHREADS 22 int

5. Examples | 151

TIP_SVG_TMSLOGLVL 23
TIP_SVG_LOGLVL 24
TIP_NODENAME 25

#

SERVER section fields
#

name number type
*base 16000350

#TIP_NAME 0 string
TIP_SVGNAME 1 string
#TIP_NODENAME 2 string
TIP_CLOPT 3 string
TIP_SEQ 4 int
TIP_MIN 5 int
TIP_MAX 6 int
#TIP_ULOGDIR 7 string
TIP_CONV 8 int
TIP_MAXQCOUNT 9 int
TIP_ASQCOUNT 10 int
TIP_MAXRSTART 11 int
TIP_GPERIOD 12 int
TIP_RESTART 13 int
TIP_SVRTYPE 14 string
#TIP_CPC 15
TIP_SCHEDULE 16 int
#TIP_MINTHR 17 int
#TIP_MAXTHR 18 int
TIP_TARGET 19 string
TIP_DEPEND 20 string
TIP_CASCADE 21 int
TIP_PROCNAME 22 string
TIP_LIFESPAN 23 string
TIP_DDRI 24 string
TIP_CURSVR 25 int
TIP_SVGNO 26 int
TIP_SVR_LOGLVL 27 string
#

SERVICE section fields
#

name number type
*base 16000400

#TIP_NAME 0 string
TIP_SVRNAME 1 string
TIP_PRI 2 int
TIP_SVCTIME 3 int
TIP_ROUTING 4 string
TIP_EXPORT 5 int
TIP_AUTOTRAN 6 int

#

ROUTING section fields
#

name number type
*base 16000425

#TIP_NAME 0 string
TIP_FLDTYPE 1 string

152 | Getting Started Guide

string
string
string

flags

int

flags

flags

comments

comments

comments

TIP_RANGES 2 string
TIP_SUBTYPE 3 string
TIP_ELEMENT 4 string
TIP_BUFTYPE 5 string
TIP_OFFSET 6 int
TIP_FLDLEN 7 int
#TIP_FLDOFFSET 8 int

#

RQ section fields

#

name number type
*base 16000450

HTIP_NAME 0 string
#TIP_SVGNAME 1 string
TIP_PRESVC 2 string
TIP_QSIZE 3 int
TIP_FILEPATH 4 string
TIP_BOOT 5 string
TIP_FSYNC 6 int
TIP_BUFFERING 7 int
#TIP_ENQSVC 8 int
#TIP_FAILINTERVAL 9 int
#TIP_FAILRETRY 10 int
#TIP_FAILSVC 11 string
#TIP_AFTERSVC 12 string
#

GATEWAY section fields
#

name number
*base 16000500

#TIP_NAME 0
TIP_GWTYPE 1
TIP_PORTNO 2
#TIP_CPC

TIP_RGWADDR 4
TIP_RGWPORTNO 5
#TIP_BACKUP 6
#TIP_NODENAME 7
TIP_KEY 8
TIP_BACKUP_RGWADDR 9
TIP_BACKUP_RGWPORTNO 10
TIP_TIMEOUT 11
TIP_DIRECTION 12
TIP_MAXINRGW 13
TIP_GWOWNER 15
TIP_RGWOWNER 16
TIP_RGWPASSWD 17
TIP_PTIMEOUT 18
TIP_PTIMEINT 19

#

FUNCTION section fields
#

name number

*base 16000550

type

flags

type

string
string
int

3
string
int
string
string
string
string
int
int
string
int
string
string
string
int
int

flags

comments

flags

int

comments

comments

5. Examples | 153

#TIP_NAME 0 string
#TIP_SVRNAME 1 string
TIP_FQSTART 2 int
TIP_FQEND 3 int
TIP_ENTRY 4 string

#

STATISTICS segment fields
#

name number type flags
*base 16000600

#TIP_NAME 0 string
TIP_STATUS 1 string
TIP_STIME 2 string
TIP_TTIME 3 int
TIP_SVC_STIME 4 int
TIP_COUNT 5 int
#TIP_NO 6 int
TIP_NUM_FREE 7 int
TIP_NUM_REPLY 8 int
TIP_NUM_FAIL 9 int
TIP_NUM_REQ 10 int
TIP_ENQ_REQS 11 int
TIP_DEQ_REQS 12 int
TIP_ENQ_REPLYS 13 int
TIP_DEQ_REPLYS 14 int
TIP_CLHNO 15 int
TIP_SVR_NAME 16 string
TIP_SVC_NAME 17 string
TIP_AVERAGE 18 float
TIP_QCOUNT 19 int
TIP_CQCOUNT 20 int
TIP_QAVERAGE 21 float
TIP_MINTIME 22 float
TIP_MAXTIME 23 float
TIP_FAIL_COUNT 24 int
TIP_ERROR_COUNT 25 int
TIP_PID 26 int
TIP_TOTAL_COUNT 27 int
TIP_TOTAL_SVCFAIL_COUNT 28 int
TIP_TOTAL_ERROR_COUNT 29 int
TIP_TOTAL_AVG 30 float
TIP_TOTAL_RUNNING_COUNT 31 int
TIP_TMS_NAME 32 string
TIP_SVG_NAME 33 string
TIP_SPRI 34 int
TIP_TI_THRI 35 int
TIP_TI_AVG 36 float
TIP_TI XID 37 string
TIP_TI_XA_STATUS 38 string
TIP_GW_NAME 39 string
TIP_GW_NO 49 int
TIP_GW_HOSTN 41 string
TIP_GW_CTYPE 42 string
TIP_GW_CTYPE2 43 string
TIP_GW_IPADDR 44 string
TIP_GW_PORT 45 int
TIP_GW_STATUS 46 string

154 | Getting Started Guide

comments

#

#

#

name
*base 16

TIP_IPADDR

TIP_USRN
TIP_MODU
TIP_LOGL
TIP_SPEC

#

#

#

name
TIP_BOOT
TIP_BOOT

#

#

#

name
*base 16
TIP_EXTR
TIP_SVRI
TIP_QPCO
TIP_EMCO
TIP_SVR_

ADMIN segment fi

number
000650

AME
LE
VL

BN e

boot time

number
TIME_SEC
TIME_MSEC

EXTRA flag field

number
000700
A_OPTION

1
UNT 2
UNT 3
STATUS 4

elds

type

string
string
int

string
string

type
5
6

S

type

0

int
int
int
string

flags

flags
int
int

flags

int

comments

comments

comments

5.5.4. Program for Checking System Environment Information

The following example is a client program that checks system environment information.

#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#fdefine
#define
#define

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tip.h>

SEC_DOMAIN
SEC_NODE
SEC_SVGROUP
SEC_SERVER
SEC_SERVICE
SEC_ROUTING
SEC_RQ
SEC_GATEWAY

0 ~NOoO Ul s WN =

main(int argc, char *argv[])

{

FBUF *sndbuf, *rcvbuf;

TPSTART_T *tpinf
int i, n, sect

0;

!

5. Examples | 155

long rcvlen;
char nodename[NAMELEN];
int pid, count = @;

if (arge != 3) {
printf("Usage: %s section nodename\n", argv[0]);
printf("section:\n");
printf("\t1: domain\n");
printf("\t2: node\n");
printf("\t3: svrgroup\n");
printf("\t4: server\n");
printf("\t5: service\n");
printf("\t6: routing\n");
printf("\t7: rq\n");
printf("\t8: gateway\n");
exit(1);

}

if (lisdigit(argv[3][0])) {
printf("fork count must be a digit\n");
exit(1);

}

count = atoi(argv[3]);

sect = atoi(argv[1]);

if (sect < SEC_DOMAIN || sect > SEC_GATEWAY) {
printf("out of section [%d - %d]\n", SEC_DOMAIN, SEC_GATEWAY);
exit(1);

}

strncpy(nodename, argv[2], sizeof(nodename) - 1);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);

if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);

}

strepy(tpinfo->usrname, ".tpadmin");

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail [%s]\n", tpstrerror(tperrno));
exit(1);

by

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

156 | Getting Started Guide

n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "CONFIGURATION", @);
switch (sect) {
case SEC_DOMAIN:
n = fbput(sndbuf, TIP_SECTION, "DOMAIN", 0);
break;
case SEC_NODE:
n = fbput(sndbuf, TIP_SECTION, "NODE", 0);
break;
case SEC_SVGROUP:
n = fbput(sndbuf, TIP_SECTION, "SVGROUP", @);
break;
case SEC_SERVER:
n = fbput(sndbuf, TIP_SECTION, "SERVER", 0);
break;
case SEC_SERVICE:
n = fbput(sndbuf, TIP_SECTION, "SERVICE", 0);
break;
case SEC_ROUTING:
n = fbput(sndbuf, TIP_SECTION, "ROUTING", @);
break;
case SEC_RQ:
n = fbput(sndbuf, TIP_SECTION, "RQ", 0);
break;
case SEC_GATEWAY:
n = fbput(sndbuf, TIP_SECTION, "GATEWAY", 0);
break;

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);

n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf, &rcvlen,
TPNOFLAGS);

if (n<0) {
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
fbprint(rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);

#if 1
fbprint(recvbuf);
#endif
tpfree((char *)sndbuf);

tpfree((char *)rcvbuf);
tpend();

[Result]

The following is the result (Domain Conf) of the previous program.

5. Examples | 157

$ client 1 tmaxh4
fkey = 217326601, fname

TIP_ERROR, type = int, value = @

fkey = 485762214, fname = TIP_CRYPT, type = string, value = NO
fkey = 485762215, fname = TIP_DOMAIN_TMMLOGLVL, type = string, value = DEBUG1

fkey = 485762216, fname = TIP_DOMAIN_CLHLOGLVL, type = string, value = DEBUG2
fkey = 485762217, fname = TIP_DOMAIN_TMSLOGLVL, type = string, value = DEBUG3
fkey = 485762218, fname = TIP_DOMAIN_LOGLVL, type = string, value = DEBUG4
fkey = 217326763, fname = TIP_DOMAIN_MAXTHREAD, type = int, value = 128

5.5.5. Program for Checking System Statistical Information

The following example is a program that checks system statistics.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <usrinc/atmi.h>
#include <usrinc/fbuf.h>
#include <usrinc/tip.h>

#fdefine SEC_NODE
#define SEC_TPROC
#define SEC_SPR
#define SEC_SERVICE
#define SEC_RQ
#fdefine SEC_TMS
#define SEC_TMMS
#define SEC_CLHS
#define SEC_SERVER 9

0 ~NOoO U s WN =

fidefine NODE_NAME_SIZE 32

main(int argc, char *argv[])

{
FBUF *sndbuf, *rcvbuf;
TPSTART_T *tpinfo;
int 1, n, sect;
long rcvlen;
char nodename[NODE_NAME_SIZE];
int stat;

if (arge 1= 3) {
printf("Usage: %s section node\n", argv[0]);
printf("section:\n");
printf("\t1: node\n");
printf("\t2: tproc\n");
printf("\t3: spr\n");
printf("\t4: service\n");
printf("\t5: rq\n");
printf("\t6: tms\n");
printf("\t7: tmms\n");
printf("\t8: clhs\n");
printf("\t9: server\n");
exit(1);

158 | Getting Started Guide

}

sect = atoi(argv[1]);

if (sect < SEC_NODE || sect > SEC_SERVER) {
printf("out of section [%d - %d]\n",SEC_NODE, SEC_SERVER);
exit(1);

}

memset(nodename, 0x00, NODE_NAME_SIZE);
strncpy(nodename, argv[2], NODE_NAME_SIZE - 1);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}
strepy(tpinfo->dompwd, "xamt123");

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "STATISTICS", 0);
switch (sect) {
case SEC_NODE:
n = fbput(sndbuf, TIP_SECTION, "NODE", @);
break;
case SEC_TPROC:
n = fbput(sndbuf, TIP_SECTION, "TPROC", 0);
break;
case SEC_SPR:
n = fbput(sndbuf, TIP_SECTION, "SPR", 0);
break;
case SEC_SERVICE:
n = fbput(sndbuf, TIP_SECTION, "SERVICE", 0);
break;
case SEC_RQ:
n = fbput(sndbuf, TIP_SECTION, "RQ", 0);
break;

5. Examples | 159

[Result]

case SEC_TMS:
stat = 1;
n = fbput(sndbuf,
n = fbput(sndbuf,

break;

case SEC_TMMS:
n = fbput(sndbuf,

break;

case SEC_CLHS:
n = fbput(sndbuf,

break;
case SEC_SERVER:
n = fbput(sndbuf, TIP_SECTION, "SERVER", 0);
break;

TIP_SECTION, "TMS", 0);
TIP_EXTRA_OPTION, (char *)&stat, 0);

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);

TIP_SECTION, "TMMS", 0);

TIP_SECTION, "CLHS", @);

n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf,
&rcvlen, TPNOFLAGS);

if (n<0) {
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
fbprint(revbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();
exit(1);
}
fbprint(rcvbuf);

tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();

The following is the result (TMS STATISTICS) of the previous program.

$ client 3000 1 2

fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey

160 | Getting Started Guide

217326601,
485762680,
485762681,
2173272126,
485762649,
217327197,
351544938,
217327212,
2173271227,
351544956,
485762685,
485762686,

fname
fname
fname
fname
fname
fname
fname
fname
fname
fname
fname
fname

TIP_ERROR, type = int, value =
string, value
string, value

TIP_TMS_NAME, type
TIP_SVG_NAME, type

TIP_SPRI, type = int, value = 0
string, value

TIP_STATUS, type =

TIP_COUNT, type = int, value =
float, value

TIP_AVERAGE, type =
TIP_CQCOUNT, type =
TIP_TI_THRI, type =
TIP_TI_AVG, type =

int, value
int, value

0

0

- 1l

tms_ora?
xal

RUN

0.000000

float, value = 0.000000

TIP_TI_XID, type = string, value = 00000013664
TIP_TI_XA_STATUS, type = string, value = COMMIT

5.5.6. Program for Starting and Terminating a Server Process

Example 1

The following program starts and terminates a server process.

<cli.c>

#include
#include
#include
#include
#include
#include
#include
#include

#define

main(int

{

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tmaxapi.h>
<usrinc/tip.h>

NODE_NAME_SIZE 32
argc, char *argv[])

FBUF *sndbuf, *rcvbuf;

TPSTART_T *tpinfo;

int i, n, type, clid, count, flags;
long rcvlen;

char svrname[TMAX_NAME SIZE];

char svgname[TMAX_NAME_SIZE];

char nodename[NODE_NAME_SIZE];

int pid, forkent;

if (arge !=6) {

printf("Usage: %s type svrname count nodename forkent\n", argv[0]);

printf("type 1: BOOT, 2: DOWN, 3: DISCON\n");
exit(1);
}

type = atoi(argv[1]);

if ((type !'= 1) & (type != 2) && (type != 3)) {
printf("couldn't support such a type %d\n", type);
exit(1);

}

if (strlen(argv[2]) >= TMAX_NAME_SIZE) {
printf("too large name [%s]\n", argv[1]);
exit(1);

by

strepy(svrname, argv[2]);

count = atoi(argv[3]);

flags = 0;

strncpy(nodename, argv[4], NODE_NAME_SIZE - 1);
forkent = atoi(argv[5]);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

5. Examples | 161

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0@);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}

strepy(tpinfo->usrname, ".tpadmin");

for (i = 1; i < forkent; i++) {
if ((pid = fork()) < 0)
exit(1);
else if (pid == 0)
break;

}

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);

tpend();
exit(1);
}
n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "ADMINISTRATION", 0);

if (type == 1)

n = fbput(sndbuf, TIP_CMD, "BOOT", 0);
else if (type == 2)

n = fbput(sndbuf, TIP_CMD, "DOWN", 0);
else

n

fbput(sndbuf, TIP_CMD, "DISCON", 0);

if (type == 3) {
clid = count; /* at type 3 */
flags |= TIP_SFLAG;

n = fbput(sndbuf, TIP_CLID, (char *)&clid, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags, 0);
} else {

flags |= TIP_SFLAG;

n = fbput(sndbuf, TIP_SVRNAME, svrname, 0);

n = fbput(sndbuf, TIP_COUNT, (char *)&count, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags, 0);

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);
n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf,

&rcvlen, TPNOFLAGS);
if (n<0) {

162 | Getting Started Guide

printf("tpcall failed! errno = %d[%s]\n", tperrno, tpstrerror(tperrno));
fbprint(rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);
}

fbprint(rcvbuf);
tpfree((char *)sndbuf);

tpfree((char *)rcvbuf);
tpend();

Example 2

The following program changes the log level of a server named 'vr23_stat_ins' to debug4.

#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
int case

#define

main(int

{

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tmaxapi.h>
<usrinc/tip.h>
"../fdl/tip_fdl.h"

NFLAG 32

GFLAG 8

VFLAG 1024

_chlog(int, char *[], FBUF *);
NODE_NAME_SIZE 32

argc, char *argv[])

FBUF *sndbuf, *rcvbuf;
TPSTART_T *tpinfo;

in

t i, ret, n, type, clid, count, flags = 0;

long rcvlen;

ch
ch
ch
in

if

ar svrname[TMAX_NAME_SIZE];
ar svgname[TMAX_NAME_SIZE];
ar nodename[NODE_NAME_SIZE];
t pid, forkent;

(arge < 6) {

printf("Usage: %s svgname svrname nodename [chlogmodule] [flags]
[loglvl]\n", argv[@]);

printf("chlogmodule 1: TIP_TMM, 2: TIP_CLH, 4: TIP_TMS, 8: TIP_SVR\n");

printf("flags 1: NFLAGS, 2: GFLAGS, 3: VFLAGS\n");

printf("loglvl : 1: compact, 2: basic, 3: detail, 4: debugl,

5: debug2, 6: debug3, 7: debug4\n");
exit(1);

5. Examples | 163

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}
strepy(tpinfo->usrname, ".tpadmin");
strepy(svgname, argv[1]);
strepy(svrname, argv[2]);
strncpy(nodename, argv[3], NODE_NAME_SIZE - 1);

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((revbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

ret = case_chlog(argc, argv, sndbuf);

= fbput(sndbuf, TIP_OPERATION, "GET", 0);

= fbput(sndbuf, TIP_SEGMENT, "ADMINISTRATION", 0);
= fbput(sndbuf, TIP_CMD, "CHLOG", 0);

= fbput(sndbuf, TIP_NODENAME, nodename, 0);

= fbput(sndbuf, TIP_SVGNAME, svgname , 0);

= fbput(sndbuf, TIP_SVRNAME, svrname, 0);

n=tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf, &rcvlen, TPNOFLAGS);
if (n<0) {
printf("tpcall failed! errno = %d[%s]\n", tperrno,
tpstrerror(tperrno));
fbprint(recvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();
exit(1);
}
fbprint(recvbuf);

tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

164 | Getting Started Guide

int case_chlog(int argc2, char *argv2[], FBUF *sndbuf)

{
int chlogmdl, loglvl, flags, n=0;
char cloglvl[TMAX_NAME_SIZE];
const int true = 1, false = 0;
chlogmdl = atoi(argv2[4]);
if((chlogmdl != 1) && (chlogmdl !'= 2) && (chlogmdl != 4) &&
(chlogmdl != 8)
{
printf("couldn't support such a chlogmdl\n");
exit(1);
}
flags = atoi(argv2[5]);
if((flags != NFLAG) && (flags != GFLAG) && (flags != VFLAG))
{
printf("couldn't support such a flags\n");
exit(1);
}
loglvl = atoi(argv2[6]);
if((loglvl < 1) || (loglvl > 7))
{
printf("couldn't support such a loglvl\n");
exit(1);
}
switch (loglvl)
{
case 1 :
strepy(cloglvl, "compact");
break;
case 2 :
strcpy(cloglvl, "basic");
break;
case 3 :
strepy(cloglvl, "detail");
break;
case 4 :
strepy(cloglvl, "debugl");
break;
case 5 :
strcpy(cloglvl, "debug2");
break;
case 6 :
strepy(cloglvl, "debug3");
break;
case 7 :
strepy(cloglvl, "debugd");
break;
}
n = fbput(sndbuf, TIP_MODULE, (char *)&chlogmdl, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags , 0);
n = fbput(sndbuf, TIP_LOGLVL, cloglvl , @);
return 1;
+

5. Examples | 165

[Result] (TIP_SVR, => DEBUG4)

$ client xal svr23_stat_ins $HOSTNAME 8 1024 7
fkey = 217326601, fname = TIP_ERROR, type = int, value = 0
>>> tmadmin (cfg -v)

loglvl = DEBUG4

5.6. Local Recursive Calls

When tpcall() is executed in a server, the recursive service call feature is added. Only tpcall() can make
recursive calls through the multicontexting technique in a server. The recursion depth is limited to 8
to prevent an infinite loop.

) To use a local recursive call, -D_MCONTEXT must be added to CFLAGS when a
” server program is compiled and the libsvrmc.so server library must be used
instead of libsvr.so.

Server program

The following is an example.
#include <stdio.h>
#include <stdlib.h>

#include <string.h>
#include <usrinc/atmi.h>

SVC15004_1(TPSVCINFO *msg)

{
int i;
char *rcvbuf;
long rcvlen;
if ((rcvbuf = (char *)tpalloc("STRING", NULL, @)) == NULL)
printf("rcvbuf tpalloc fail[%s]\n",tpstrerror(tperrno));
if (tpcall("SVC15004_2", msg->data, @, &rcvbuf, &rcvlen, @) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, 0, 0, 0);
}
strcat(revbuf, " Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}

SVC15004_2(TPSVCINFO *msg)
{

166 | Getting Started Guide

int i;
char *revbuf;
long rcvlen;

if ((revbuf = (char *)tpalloc("STRING", NULL, 0)) == NULL)
printf("rcvbuf tpalloc fail \n");

}
if (tpcall("SVC15004_3", msg->data, @, &rcvbuf, &rcvlen, @) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, 0, 0, 0);
}
strcat(rcvbuf, " _Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}
SVC15004_3(TPSVCINFO *msg)
{
int i;
char *revbuf;
long rcvlen;
if ((revbuf = (char *)tpalloc("STRING", NULL, 0)) == NULL)
printf("rcvbuf tpalloc fail \n");
if (tpcall("SVC15004_4", msg->data, @, &rcvbuf, &rcvlen, 0) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, @, 0, 0);
}
strcat(recvbuf, "_Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}
Makefile

The following is an example.

<Makefile.c.mc>

Server makefile

TARGET = $(COMP_TARGET)
APOB]S = $(TARGET).o

NSDLOB] = $(TMAXDIR)/1ib64/sdl.0

LIBS = -lsvrmc -1nodb

0BJS = $(APOBIS) $(SVCTOBI)

SVCTOBJ = $(TARGET) svctab.o

CFLAGS = -0 -Ae -w +DSblended +DD64 -D_HP -I$(TMAXDIR) -D_MCONTEXT

5. Examples | 167

APPDIR = $(TMAXDIR)/appbin
SVCTDIR = $(TMAXDIR)/svct
LIBDIR = $(TMAXDIR)/1ib64

#
.SUFFIXES : .c

$(CC) $(CFLAGS) -c $<

#
server compile
#

$(TARGET): $(0BIS)
$(CC) $(CFLAGS) -L$(LIBDIR) -0 $(TARGET) $(0BIS) $(LIBS) $(NSDLOBJ)
mv $(TARGET) $(APPDIR)/.
rm -f $(0B1S)

$(APOBJS): $(TARGET).c
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
cp -f $(SVCTDIR)/$(TARGET) svctab.c .
touch ./$(TARGET) svctab.c
$(CC) $(CFLAGS) -c ./$(TARGET)_ svctab.c

#

clean:
-rm -f *.0 core $(APPDIR)/$(TARGET)

168 | Getting Started Guide

6. Guide Organization

This chapter presents a list of all Tmax guides and describes each guide.

6.1. Overview

A user who is unfamiliar with Tmax can find it difficult to find a desired guide due the sheer number
of available product guides.

For example, to develop a program using a 4GL language, such as Delphi, in the environment where
Tmax is used, a developer must know the flow of the corresponding program and the APIs to be
used. But, it is difficult to determine a guide to refer to. For the user’'s convenience, this chapter
shows a list of all Tmax guides and describes each of them and their relationship.

It is recommended for a user who uses Tmax for the first time to carefully read this chapter. This
chapter is helpful in understanding the overall organization of guides even though it is not directly
related to actual product usage.

6.2. Guide Organization and Description
The list of all Tmax guides is as follows:

No Guide Name

—_

Tmax Getting Started Guide

Tmax Installation Guide

Tmax Administrator’s Guide

Tmax Application Development Guide
Tmax Error Message Reference Guide
Tmax Reference Guide

Tmax JTmaxServer Guide

Tmax FDL Reference Guide

O 00 N oo U~ W N

Tmax Host-link Guide (SNA LU 0, SNA LU 6.2)

—_
o

Tmax WebtAsync User Guide

—_
—_

Tmax Webt)JCA User Guide

—_
N

Tmax JTC User Guide

—_
w

Tmax HMS User Guide

o

Tmax WebT User Guide

—_
Ul

Tmax COBOL User Guide

—_
(o)}

Tmax Gateway Guide (SERIAL)

6. Guide Organization | 169

No Guide Name
17 Tmax Gateway Guide (TCP/IP)

18 Tmax Gateway Guide (TCP/IP Thread)
19 Tmax Gateway Guide (TCP/IP Service)
20 Tmax Gateway Guide (WebService)

21 Tmax Gateway Guide (X.25)

22 Tmax Programming Guide (4GL)

23 Tmax Programming Guide (Dynamic Library)
24 Tmax Programming Guide (RCA)

25 Tmax Programming Guide (RPC)

26 Tmax Programming Guide (RQ)

27 Tmax Programming Guide (SQ)

28 Tmax Programming Guide (UCS)

29 Tmax Programming Guide (MultipleRM)
30 Tmax XA Library & XA Gateway Guide
31 Tmax WebAdmin User Guide

32 TmaxGrid User Guide

33 Tmax TChache Guide

34 Tmax Deployment User Guide

Tmax provides 34 guides. Refer to the following to search specific contents:
* Tmax Getting Started Guide
This guide. It describes the basic concepts of Tmax and its configuration.
* Tmax Installation Guide
Describes how to install Tmax.
* Tmax Administrator’'s Guide
Describes the environment setting file for using Tmax and how to operate the system.

o Descriptions of environment variables and how to set them

o

How to set an configuration file and the sections for each environment

o

How to start and terminate a system

o

How to use the administration tool, search for information, and operate and manage the
Tmax system

* Tmax Application Development Guide

170 | Getting Started Guide

Describes basic information about program development for users who want to develop
programs using Tmax.
o Concepts, configuration, and features of applications that use Tmax

> Flows, characteristics, development environments, and compilation methods of client
programs

> Flows, characteristics, development environments, and compilation methods of server
programs

o Communication types of clients and servers

o Buffer types and management methods used for the communication types of clients and
servers

o Characteristics and management methods of transactions

> Flows, implementation methods, and examples of programs in multi-thread environments
o The security system provided by Tmax and its characteristics for each step

> APIs that can be used in a client and their usage

> APIs that can be used in a server and their usage

o Examples of applications in various environments

o How to handle and debug errors that occur in Tmax

o Examples of a Tmax environment setting file and Makefile

* Tmax Error Message Reference Guide
Describes errors that may occur while using Tmax and how to handle those errors.

o The structure of a Tmax error message
o Descriptions of common error messages and how to handle them
> Descriptions of error messages by module and how to handle them
* Tmax Reference Guide
Describes the concepts of commands, their usage, and examples for users who want to develop
an application program using Tmax. It also explains functions used for connection and
communication between clients and servers, their usage, and examples.
o Concepts, usage, and examples of commands
o Descriptions, usage, and examples of functions
o Descriptions of errors and how to handle them
* Tmax JTmaxServer Guide

Describes methods for configuring and setting an environment, APIs, and examples for
developers who want to use JTmaxServer.

¢ Tmax FDL Reference Guide

6. Guide Organization | 171

Describes how to utilize all features of FDL with definitions of Tmax FDL functions and examples.

> Concepts of FDL, a description of a field buffer, and FDL table creation
> Usage and examples of FDL functions

* Tmax Host-link Guide (SNA LUO, SNA LU6.2)
Describes how to develop Host-link, which links Tmax and hosts.

o Concepts, architecture, and features of Host-link and how to start and terminate it

> Management methods for INBOUND and OUTBOUND sessions

o

INBOUND and OUTBOUND services

o

Problems that may occur while using Host-link and how to solve them

> Environment setting methods, status monitoring APIs, error codes, user functions, and a list
of files used in Host-link

* Tmax WebtAsync User Guide
Describes WebTAsync the Java library for asynchronous inbound/outbound communication with

the Tmax Async Java Gateway. It also explains the concept of WebTAsyn, inbound/outbound, and
provides examples.

* Tmax JCA User Guide
Describes how to develop a program using WebTJCA for developers who use Tmax WebTJCA.

o Concepts of JCA, WebTJCA, and JCA's architecture

> WebT]JCA APIs used for CCI, transactions, logging, and asynchronous and conversational
communication

o WebTJCA inbound communication
o Examples of using WebT]JCA in WebLogic and JEUS6
* Tmax JTC User Guide
Describes how to develop a program using JTC (JEUS-Tuxedo Connector), which can be used by
accessing JEUS and Tuxedo, and is included in the WebT library.
> Environment settings for accessing JEUS and Tuxedo
> Usage and examples of JTC classes and functions
o Methods for setting Tuxedo and WebT logs
* Tmax HMS User Guide

Describes the following for users and administrators who want to use HMS in Tmax.

o Concepts and architecture of HMS and the concepts necessary for programming
> How to set HMS in a configuration file and examples

o The usage and examples of HMS API functions and how to build, start, terminate, and

172 | Getting Started Guide

manage HMS
o Environment settings for using HMS, program examples, and the compilation method
* Tmax WebT User Guide

Describes how to develop client programs using the JEUS WebT API to use services of Tmax
through the web.

> The features of WebT and the concepts and components of WebTConnectionPool and the
WebT-Server system

o How to set the environment for WebT and JMax

> Usage and examples of WebT API for various situations

* Tmax COBOL User Guide
Describes how to develop a Tmax server program using COBOL.
> How to create and compile a Tmax configuration file, create a service table, and start an
engine
> How to develop, start, and test a server program, and examples of programs and Makefiles

> How to use FDL in a server program, how to develop a global transaction program, and how
to use TPSVRINIT/TPSVRDONE

> Usage and examples of COBOL commands and functions
« Tmax Gateway Guide (SERIAL)
Describes the SERIAL (RS232) Gateway, which acts as an interface when a Tmax server and a non-
Tmax server use serial communication.
o Concepts and operation of the SERIAL Gateway
o Service types of the SERIAL Gateway
> How to set an environment to use the SERIAL Gateway
o Examples of programs using the SERIAL Gateway
* Tmax Gateway Guide (TCP-IP)
Describes the TCP/IP Gateway, which acts as an interface for a Tmax server and a non-Tmax
server.
o Concepts and operation of the TCP/IP Gateway
o Service types of the TCP/IP Gateway
> How to set an environment to use the TCP/IP Gateway
o Examples of programs using the TCP/IP Gateway
* Tmax Gateway Guide (TCP-IP Service)

Describes the TCP/IP Service Gateway, which acts as an interface when a Tmax server and a non-
Tmax server use TCP/IP communication.

6. Guide Organization | 173

o

Concepts and operation of the TCP/IP Service Gateway

o

Service types of the TCP/IP Service Gateway

> How to set an environment to use the TCP/IP Service Gateway

o

APIs for using the TCP/IP Service Gateway
o Examples of programs using the TCP/IP Service Gateway

* Tmax Gateway Guide (TCP-IP Thread)

Describes the TCP/IP Thread Gateway, which acts as an interface between non-Tmax clients and
Tmax.

o Concepts and processes of the TCP/IP Thread Gateway

o

Types of the TCP/IP Thread Gateway

o

How to set an environment to use the TCP/IP Thread Gateway

o

User API functions for using the TCP/IP Thread Gateway
o Examples of programs using the TCP/IP Thread Gateway
* Tmax Gateway Guide (WebService)
Describes the WebService Gateway, which is the gateway server provided for using a Tmax
service as a web service without any modifications.
o Concepts of a web service and an introduction to the WebService Gateway
> How to set an environment to use the WebService Gateway
> How to use and manage the WebService Gateway

* Tmax Gateway Guide (X.25)
Describes the X.25 Gateway, which acts as an interface for a Tmax server and a non-Tmax server.

o Concepts and operation of the X.25 Gateway

o Service types of the X.25 Gateway

o How to set an environment to use the X.25 Gateway
o Examples of programs using the X.25 Gateway

* Tmax Programming Guide (4GL)
Describes how to develop Tmax applications using 4GL languages.
> How to develop a program using Power Builder, usage and examples of functions, and

examples developed applications

> How to develop a program using Visual Basic, usage and examples of functions, and
examples of developed applications

> How to develop a program using Delphi, usage and examples of functions, and examples of
developed applications

> How to develop a program using Visual Basic .net, usage and examples of functions, and

174 | Getting Started Guide

examples of developed applications

> How to develop a program using C# .net, usage and examples of functions, and examples of
developed applications

> How to develop a program using ASP, usage and examples of functions, and examples of
developed applications

« Tmax Programming Guide (Dynamic Library)
Describes how to develop a program using Tmax TDL (Tmax Dynamic Library).

o Concepts, characteristics, and components of TDL
o Environment settings for using TCDL and Tmax
o TDL commands and usage and examples of TDL API
* Tmax Programming Guide (RCA)
Describes how to install and set an environment for the RCA module. The RCA module enables

existing communication programs and PDAs that cannot use the Tmax client library to connect to
the Tmax system.

o Basic concepts, structure, and characteristics of RCA

o

How to integrate RCA with the Tmax system

o

Environment variables for using RCA

o

Files provided by each platform and how to set them in the Tmax configuration file
> Notices, examples, and error messages needed to program RCAH
* Tmax Programming Guide (RPC)
Describes the basic functions, features, and components of RPC (Remote Procedure Call), a Tmax
program model.
o Basic concepts, types, and constraints of RPC
o RPC components

* Tmax Programming Guide (RQ)
Describes the concepts and usage of RQ (Reliable Queue) in Tmax.

o Definitions, concepts, and characteristics of RQ
o System configuration for RQ and related APIs
o Environment settings for using RQ, and how to manage status information

* Tmax Programming Guide (SQ)
Describes the concepts and usage of SQ (Session Queue) in Tmax.

o Definitions, concepts, and characteristics of SQ

o System configuration for SQ and related APIs

6. Guide Organization | 175

o Environment settings for using SQ, and how to manage status information
o Examples that illustrate the use of SQ

* Tmax Programming Guide (UCS)
Describes the concepts and usage of Tmax UCS, a server process.

> A basic description and a process flow

> UCS program configuration, environment settings, the compilation method, usage of
functions, and program examples

o RDP program configuration, environment settings, the compilation method, and program
examples

« Tmax Programming Guide (MultipleRM)
Describes the concepts, features, and characteristics of Tmax Multiple RM, a Tmax server process.

o A basic description of Multiple RM
- How to set an environment, how to use a server, and program examples

« Tmax XA Library and XA Gateway Guide
Describes the usage of the XA library and the XA gateway.
* Tmax WebAdmin User Guide
Describes the concepts of WebAdmin, the tool for managing Tmax, and how to install and use it.

> The basic concepts and constraints of WebAdmin

> How to install, start, and operate WebAdmin

o

Features and usage of each menu

o

Descriptions of messages in WebAdmin
* TmaxGrid User Guide
Introduces TmaxGrid that synchronizes in-memory data in a multi-node environment, and
describes how to use it.
o Introduction to TmaxGrid

o Environment configuration, APIs, and program examples

* Tmax TCache Guide
Describes the basic concepts and usage of Tmax TCache.

o Introduction to TCache
o TCache tool usage
o TCache API usage

o TCache synchronization method

176 | Getting Started Guide

* Tmax Deployment User Guide

Describes Tmax Deployment that deploys server applications, resource files, and configuration
files.

o

Introduction to Tmax Deployment

> Deployment configuration

o

Deployment operation

> Usage example

6. Guide Organization | 177

	Getting Started Guide
	Contents
	Glossary
	1. Introduction to TP-Monitor
	1.1. Overview
	1.2. Middleware
	1.3. TP-Monitor

	2. Introduction to Tmax
	2.1. Overview
	2.2. Architecture of Tmax
	2.2.1. System Configuration
	2.2.2. TIM
	2.2.3. Socket Communication

	2.3. Features of Tmax
	2.3.1. Process Management
	2.3.2. Distributed Transaction
	2.3.3. Load Balancing
	2.3.4. Failure Handling
	2.3.5. Naming Service
	2.3.6. Process Control
	2.3.7. RQ Feature
	2.3.8. Security Feature
	2.3.9. System and Resource Management
	2.3.10. Multiple Domains and Various Gateway Services
	2.3.11. Various Client Agents
	2.3.12. Various Communication Methods
	2.3.13. Various Development Methods
	2.3.14. Reliable Message Transfer

	2.4. Characteristics of Tmax
	2.5. Issues on the Tmax Adoption
	2.5.1. System Environment
	2.5.2. Issues

	3. Introduction to WebT
	3.1. Overview
	3.2. WebTConnectionPool
	3.3. WebT-Server System

	4. Tmax Applications
	4.1. Application Configuration
	4.2. Buffer Types
	4.3. Client/Server Program
	4.3.1. Client Program
	4.3.2. Server Program

	4.4. System Configuration File
	4.5. API
	4.5.1. Tmax Standard API
	4.5.2. Non-standard API

	4.6. Error Message
	4.6.1. X/Open DTP related Error
	4.6.2. FDL-related Error

	5. Examples
	5.1. Programs for Each Communication Type
	5.1.1. Synchronous Communication
	5.1.2. Asynchronous Communication
	5.1.3. Interactive Communication

	5.2. Global Transaction Programs
	5.3. Database Programs
	5.3.1. Oracle Insert Program
	5.3.2. Oracle Select Program
	5.3.3. Informix Insert Program
	5.3.4. Informix Select Program
	5.3.5. DB2 Program

	5.4. Database Integration Programs
	5.4.1. Synchronous Mode (Homogeneous Database)
	5.4.2. Synchronous Mode (Heterogeneous Database)
	5.4.3. Asynchronous Mode (Homogeneous Database)
	5.4.4. Interactive Mode (Homogeneous Database)

	5.5. Programs Using TIP
	5.5.1. TIP Structure
	5.5.2. TIP Usage
	5.5.3. TIP Usage Example
	5.5.4. Program for Checking System Environment Information
	5.5.5. Program for Checking System Statistical Information
	5.5.6. Program for Starting and Terminating a Server Process

	5.6. Local Recursive Calls

	6. Guide Organization
	6.1. Overview
	6.2. Guide Organization and Description

