Application Development Guide

Tmax 6

TMAYSOF T

Copyright

Copyright 2018. TmaxSoft Co., Ltd. All Rights Reserved.

Restricted Rights Legend

All TmaxSoft Software (Tmax®) and documents are protected by copyright laws and international
convention. TmaxSoft software and documents are made available under the terms of the TmaxSoft
License Agreement and this document may only be distributed or copied in accordance with the
terms of this agreement. No part of this document may be transmitted, copied, deployed, or
reproduced in any form or by any means, electronic, mechanical, or optical, without the prior written
consent of TmaxSoft Co., Ltd. Nothing in this software document and agreement constitutes a
transfer of intellectual property rights regardless of whether or not such rights are registered) or any
rights to TmaxSoft trademarks, logos, or any other brand features.

This document is for information purposes only. The company assumes no direct or indirect
responsibilities for the contents of this document, and does not guarantee that the information
contained in this document satisfies certain legal or commercial conditions. The information
contained in this document is subject to change without prior notice due to product upgrades or
updates. The company assumes no liability for any errors in this document.

Trademarks

Tmax®, Tmax WebtoB® and JEUS® are registered trademarks of TmaxSoft Co., Ltd. Other products,
titles or services may be registered trademarks of their respective companies.

Open Source Software Notice

Some modules or files of this product are subject to the terms of the following licenses: openssl-
0.9.7.m, zlib-1.1.4, expat-2.0.0, netsnmp, DCE1.0, pthread, google-diff-match-patch, libevent, getopt.

Detailed Information related to the license can be found in the following directory:
${INSTALL_PATH}/license/oss_licenses

Document History

Product Version Guide Version Date Remarks
Tmax 6 2.1.1 2018-06-11 -

Contents

1. Introduction to Tmax Applications
1.1. Overview
1.2. Structure
1.3. Characteristics
2. Client Programs
2.1. Characteristics and Components
2.2. Development Environments and Tools
2.3. Program Flow
2.4. Compiling a Program
2.5. Starting and Terminating a Process
2.5.1. sdlc
2.5.2.fdlc
3. Server Programs
3.1. Characteristics and Components
3.1.1.TCS
3.1.2. UCS
3.2. Development Environments and Tools
3.3. Program Flow
3.3.1.TCS
3.3.2.UCS
3.4. Compiling a Program
3.4.1. Compiling a TCS Server Program
3.4.2. UCS
3.5. Creating and Terminating a Process
4. Communication Mode
4.1. Overview
4.2. Synchronous Communication
4.3. Asynchronous Communication

4.4, Interactive Communication

4.4.1. Events Related to Interactive Communication

5. Buffer Types
5.1. Overview
5.2. Buffer Types
5.3. Managing a Buffer
5.3.1. Struct Buffers
5.3.2. Field Buffers
6. Transactions

6.1. Overview

(o) TN O2 BN U2 BN U2 BN \S I

11
12
13
15
15
16
17
19
19
20
21
24
24
28
29
31
31
31
32
33
35
37
37
37
38
39
39
41
41

6.2. Distributed Transaction 41

6.2.1. XA Mode 45
6.2.2. Non-XA Mode 46
6.3. Transaction Errors 47
6.3.1. TX Error 48
6.3.2. XA Error 48

7. Multithreading and Multicontexting 49
7.1. Overview 49
7.2. Client Program 49
7.2.1. Program Flow 49
7.2.2. Implementation 51
7.2.3. Program Example 52
7.3. Server Program 58
7.3.1. Overview 58
7.3.2. Program Flow 59
7.3.3. Implementation 62
7.3.4. Service Processing Program Example 64
7.3.5. Context-Sharing Program Example 66
8. Security System 70
8.1. Overview 70
8.2. Level 1 Security (System Access Control) 70
8.3. Level 2 (User Authentication) 71
8.4. Level 3 (Service Access Control) 72
9. Client API 75
9.1. Overview 75
9.2. Connection and Disconnection 78
9.2.1. tpstart 78
9.2.2. tpend 81
9.3. Synchronous Communication 83
9.3.1. tpcall 83
9.4. Asynchronous Communication 87
9.4.1. tpacall 87
9.4.2. tpgetrply 90
9.4.3. tpcancel 93
9.5. Interactive Communication 95
9.5.1. tpconnect 95
9.5.2. tpsend 98
9.5.3. tprecv 101
9.5.4. tpdiscon 105
9.6. Unsolicited Message Processing 107

9.6.1. tpsetunsol 107

9.6.2. tpgetunsol 109

9.7. Timeout Change 112
9.7.1. tpset_timeout 112
9.7.2. tpsetsvctimeout 113

9.8. Buffer Management 114
9.8.1. tpalloc 115
9.8.2. tprealloc 117
9.8.3. tpfree 118
9.8.4. tptypes 120

9.9. Transaction Management 121
9.9.1. tx_begin 121
9.9.2. tx_commit 123
9.9.3. tx_info 125
9.9.4. tx_rollback 127
9.9.5. tx_set_transaction_timeout 129
9.9.6. tx_set_transaction_control 131
9.9.7. tx_set_commit_return 133

9.10. RQ System 136
9.10.1. tpenq 136
9.10.2. tpdeq 139
9.10.3. tpgstat 141
9.10.4. tpextsvcname 143

9.11. Functions using Events 145
9.11.1. tpsubscribe 145
9.11.2. tpunsubscribe 146
9.11.3. tppost 147

9.12. Broadcast and Multicast 149
9.12.1. tpbroadcast 149

9.13. Environment Program 151
9.13.1. WinTmaxAcall 152
9.13.2. WinTmaxAcall2 156
9.13.3. WinTmaxStart 160
9.13.4. WinTmaxEnd 161
9.13.5. WinTmaxSetContext 162
9.13.6. WinTmaxSend 164

9.14. Multithread and Multicontext 168
9.14.1. tpgetctxt 168
9.14.2. tpsetctxt 170

10. Server API 174

10.1. TCS 174

10.1.1. tpreturn 177

10.1.2. tpforward
10.1.3. tpsvrinit
10.1.4. tpsvrdone
10.1.5. tpsvrthrinit
10.1.6. tpsvrthrdone
10.1.7. tpgetctxt
10.1.8. tpsetctxt
10.1.9. tpsendtocli
10.1.10. tpgetclid
10.1.11. tpchkclid

10.2. UCS
10.2.1. tpschedule
10.2.2. tpuschedule
10.2.3. tpsetfd
10.2.4. tpissetfd
10.2.5. tpclrfd
10.2.6. tpsavectx
10.2.7. tpgetctx
10.2.8. tpcancelctx
10.2.9. tprelay
10.2.10. tpregcb
10.2.11. tpunregcb

11. Error Handling

11.1. Overview

11.2. API Level Error Processing
11.2.1. tpstrerror

11.3. System Level Error Processing
11.3.1. Uunixerr
11.3.2. Uunix_err
11.3.3. Ustrerror
11.3.4. tmaxoserrno

11.4. Debug
11.4.1. Debug CLH
11.4.2. Debug Library

12. Examples

12.1. Programs for Each Communication Type
12.1.1. Synchronous Communication
12.1.2. Asynchronous Communication
12.1.3. Interactive Communication

12.2. Global Transaction Programs

12.3. Database Programs

181
183
185
186
189
189
189
190
192
193
194
196
197
199
201
203
205
207
208
209
211
212
214
214
214
214
215
215
216
216
217
218
218
218
220
220
220
223
226
232
238

12.3.1. Oracle Insert Program 238

12.3.2. Oracle Select Program 243
12.3.3. Informix Insert Program 249
12.3.4. Informix Select Program 256
12.3.5. DB2 Program 263
12.4. Database Integration Programs 271
12.4.1. Synchronous Mode (Homogeneous Database) 271
12.4.2. Synchronous Mode (Heterogeneous Database) 277
12.4.3. Asynchronous Mode (Homogeneous Database) 280
12.4.4. Interactive Mode (Homogeneous Database) 286
12.5. Programs Using TIP 294
12.5.1. TIP Structure 294
12.5.2. TIP Usage 297
12.5.3. TIP Usage Example 299
12.5.4. Program for Checking System Environment Information 307
12.5.5. Program for Checking System Statistical Information 310
12.5.6. Program for Starting and Terminating a Server Process 313
12.6. Local Recursive Calls 318
Appendix A: Configuring Tmax 321
A.1. Configuration File 321
A.1.1. DOMAIN Section 322
A.1.2. NODE Section 322
A.1.3. SVRGROUP Section 323
A.1.4. SERVER Section 324
A.1.5. SERVICE Section 324

A.2. Makefile 325

1. Introduction to Tmax Applications

This chapter gives an overview of Tmax application programs and describes their structure and
characteristics.

1.1. Overview

Tmax application programs are client/server programs developed in an open environment that uses
Tmax as middleware. The emergence of high-performance PCs and the development of
programming technologies have brought about changes from central computing to client/server
environments, where task processing is divided between clients and servers. Client/server computing
has enabled efficient utilization of resources including the use of high-performance PCs, the scaling
down of servers, and the expansion of hardware options.

The client/server environment, however, still has the following problems:

*+ Developers must have in-depth knowledge of hardware, operating systems, and network
protocols.

* Anincrease in the number of users or the amount of data sharply decreases computing speed.

* Excessive network traffic decreases computing speed.

A distributed environment creates problems related to process management, communication,
security, and error handling.

Tmax application programs remedy the drawbacks of client/server programs while maintaining their
benefits. Application programs based on Tmax as middleware are used to manage communication
programs, processes, and transactions. Tmax functions are divided into server library (libsvr.a) and
client library (libcli.a) functions that handle buffers, communication, and transactions. These
functions comply with the X/Open Data Transaction Processing (DTP) model, which is the
international standard for distributed processing.

1.2. Structure

A Tmax application program consists of a client program and a server program. It requires an
environment configuration to use Tmax.

+ Client program

Client programs request services on behalf of users, receive results from a server, and return the
results to users in the user-specified format. These programs require the UNIX configuration file
(for example, the .profile file). The UNIX configuration file is used to configure the information,
such as the address and port number, necessary for clients to connect to Tmax. Client programs
refer to relevant binary files when connecting to Tmax and use struct buffers or field buffers with
environment variables in the user configuration file.

+ Server program

1. Introduction to Tmax Applications | 1

Server programs receive requests from clients, control access to system resources, process client
requests, and return the results to clients.

Server programs consist of the main() task, which is provided and managed by Tmax, and service
routines developed by developers. Service routines and service tables created with Tmax utilities
are compiled together. If a struct buffer is used, a conversion routine created with a Tmax utility

must be run.

Tmax application servers need server programs and the Tmax configuration file. The Tmax
configuration file defines the entire system environment of resources and is written by the
administrator. The configuration file is referenced when the Tmax server and server programs
are launched. The configuration file is also referenced when service tables are created.

The following figure shows the structure of a Tmax application program.

Client Server

Client Program SEW%rrgEP;ﬁatlﬂn
Tmax client module

Windows, UNIX, etc.

Tmax Application Program

For more information about client/server programs, refer to Client Programs and
0 Server Programs.

1.3. Characteristics

Unlike a UNIX program, a Tmax application offers the following features:
+ Compliance with the X/Open Distributed Transaction Processing (DTP) model

Routines that control the network use Tmax functions, which comply with the international
standard. Programs developed in other middleware that comply with the X/Open DTP model are
compatible with Tmax.

* Programs require only service routines that handle client requests.

Clients must develop programs using general C language syntax, which includes main(). Server
programs only require request-processing routines, which do not include main().

* Service requests can be issued in one of three communication modes.

2 | Application Development Guide

Synchronous, asynchronous, and interactive communication modes are supported. With these
modes, developers can easily develop programs without deep knowledge of communication
networks.

The following are descriptions of each mode.

Communication Mode Description

Synchronous Waits for a response after requesting a service request (tpcall).
Communication

Asynchronous After requesting a service (tpacall), other tasks are executed until a
Communication response (tpgetrply) is received.

Conversational Sends (tpsend) and receives (tprecv) messages repeatedly after the
Communication initial connection is made (tpconnect).

For more information about communication modes, refer to Communication

ﬁ Mode.

+ Seven types of buffers can be used.

Tmax supports seven types of buffers for requesting a service. In general, developers find it
difficult to guarantee data integrity for data communication between different types of devices.
That is because different types of hardware and operating systems support different lengths for a
certain type of data and methods of allocating data to the memory. Such differences in
processing data may cause a value contained in a message to be recognized as another. To avoid
this problem, data must be converted into a standard format so that the data can be recognized
to hold the same value regardless of what hardware or operating system is used.

Because Tmax supports various buffers, developers can easily develop programs without deep
knowledge of machines, operating systems, and networks. Tmax enhances system performance
and reduces network load by providing various buffers including the structure type and the string

type.

6 For more information about buffers, refer to Buffer Types.

* Program development is simple.

o Developers can develop programs without deep knowledge of hardware and communication
networks.

o Clients can request services without knowing the address of the server that handles the
request.

o Clients can request services only with a name.

 Transaction integrity is guaranteed.

If the range of transactions is set in a program, Tmax guarantees transaction integrity with two-

1. Introduction to Tmax Applications | 3

phase commit (2PC).

2PC handles transactions in twp phases (prepare phase and commit phase)
0 when multiple databases are integrated. For more information, refer to
Transactions.

4 | Application Development Guide

2. Client Programs

This chapter describes client program characteristics, components, flow, and development
environment.

2.1. Characteristics and Components

Tmax provides functions for the communication network and buffer management, which enable
easy development of application programs. These functions are offered as a library and compiled
together with application programs. Developers can develop client programs without knowing the
origin of services and servers.

Once a client program is written, you need to compile it and create an executable file. In order to
compile a client program, the following are required: a client program written by developers, the
Tmax client library, a structure file (if a struct buffer is used), and a field table definition file (if a field
key buffer is used).

A client program consists of the following components:
* Client program
A client program written by developers.
+ Client library

A library (libcli.a / libcli.so) provided by Tmax. It consists of function object codes used for
developing client programs.

 Structure file (.s)

A structure file of <filename.s> is required to use structures (STRUCT, X_C_TYPE, or X_COMMON)
in a client program. The struct file is precompiled by the sdlc command to create a binary file. The
binary file contains information required to convert each struct data into a standard data type.
This is used to send/receive data in standard format when a client program is run.

* Field key file (.f)

A field definition file of <filename.f> is required when a field key buffer is used. When the file is
compiled by the fdlc command, the field key buffer file creates <field key buffer name_fdl.h>
through key mapping and is used as a program. Unlike conventional structure files, users are
allowed to modify the field values selectively to prevent resource waste. However, overhead is
inevitable during key mapping.

2.2. Development Environments and Tools

Tmax provides the following environment and tools for developing client programs:

2. Client Programs | 5

* Environment
UNIX, Windows NT, Windows 95/98/2000, Windows 3.1, and MS-DOS.
* Tools

ANSI C, VC++, BC++, VB, VB .Net, C#, Delphi, PowerBuilder, and Embedded VC.

For more information about program development using development tools,
ﬂ refer to Tmax Programming Guide (4GL).

2.3. Program Flow

A client program passes a request from a user to a server, and returns the results from the server to
the user.

The following are the steps for writing a client program.

main()

{
Allocate a buffer for tpstart.
Initialize a buffer for tpstart.

Connect to Tmax.

Allocate a buffer for data transmission and reception

while {
Input user requests into the transmit message buffer.
Send the transmit message buffer to a server (service request).
Receive a response from the server with the receive message buffer.
Show the receive message buffer to users.

}

Deallocate the transmit/receive message buffer.

Disconnect from Tmax.

The following shows the flow of a client program.

6 | Application Development Guide

Tmax Client Application Binary

Int tmaxreadenv(); Checks the Tmax Connection

Requests a socket connection to the
Tmax System

Uses dynamic memory allocation to

allocate a buffer in order to send and
receive messages

't"t tp'l:f"(:; ort () Receives the response after requesting
pacall(). tpgetrply() a service (application logic) from Tmax

int tpfree(); Releases a buffer
int tpend(); Disconnects from the Tmax System

Client Program Flow

The following shows the process of each function in a client program.

Tmax System

svr2
(TOUPPER)
© Tmaxreadenv();

| Otpstart(); '
E e > Application Serve

; - =ﬂ_!é¢é.;}"; L o8 N Process
pplication Server
Process
O tpend();

11'k7 Required when

Process of Functions in a Client Program

¢ For more information about functions related to communication networks and
a‘ buffer management for application development, refer to Client API or Tmax
Reference Guide.

The following describes the major functions of a client program.

* Functions for Tmax communication environment

2. Client Programs | 7

Function Description

tmaxreadenv Defines Tmax environment variables that are referenced when executing a Tmax
client program in a file.

When you want a client program to call a specific API, you just need to specify its
name and path. When the client program is run, it references the file pointer of
the specified file and parses it. The parsed file contains Tmax environment
variables TMAX_HOST_ADDR and TMAX_HOST_PORT, which are loaded to
memory secured on the execution of the client program. The variables are
referenced when the associated API functions are called.

* Functions for connecting/disconnecting a client to/from a server

Function Description

tpstart Requests a socket connection through the client listener (CLL) and informs of an
accepted connection to the client handler (CLH). TMAX_HOST_ADDR and
TMAX_HOST_PORT are used to call tpstart().

tpend Terminates a socket connection by using CLL.

* Functions for allocating and releasing a buffer

Function Description

tpalloc Dynamically allocates the buffer used for passing data between the client and the
server through Tmax. The buffer size must be calculated to store data and
allocate it. Dynamically allocated memory must be returned with an explicit
command.

tpfree Releases memory that was dynamically allocated by using tpalloc(). If the memory
is not returned, garbage (memory leakage) is created.

* Functions for synchronous communication

Function Description

tpcall Sends a service request and data to CLH, which checks the requested service, and
transfers it to the server process. The client waits until it receives a response for

the request.
* Functions for asynchronous communication

Function Description

tpacall Sends a service request and transmitted data to CLH, which checks the requested
service, and transfers it to a server application process.

The client executes the next logic immediately after calling tpacall() without
waiting for a reply.

8 | Application Development Guide

Function Description

tpgetrply Requests reply data from CLH by using the value of tpcall() parameter (cd). If the
response data for the corresponding client exists, the data is immediately sent to

the client.

According to the value in the flags parameter, tpgetrply waits until it receives the
reply data, or sends a reception error to a client.

2.4. Compiling a Program

Compile a client program to create an object file.

The following shows the process of compiling a client program by using a struct buffer or field buffer.

Application Program Tmax Client library Structure buffer
" sdlc -c -i demo.s
Compile -0 tmax.sdl
L) L)

Client Executable File

Execute

Compiling a Client Program Using a Struct Buffer

2. Client Programs | 9

FIELD buffer

demo.f

fdlc -c -i demo.f
-0 tmax.fdl

Y

Application Program Tmax Client library
Compile
L)
Client Executable File -
Execute

demo.fdl

Compiling a Client Program Using a Field Buffer

The following are the steps for compiling a client program.

1. Create a UNIX configuration file.

Set the environment variables needed to connect to Tmax (.profile, .login, and .cshrc).

TMAX_HOST_ADDR
TMAX_HOST_PORT

Tmax address (=IP Address)
Port number (default : 8888)

2. Write a client program (client.c).

Develop a program that requests a service from a server and receives a reply from the server.

3. Compile the client program with the libraries (libcli.a / libcli.so).

4. Compile the structure header file if you are using a struct buffer. A dummy structure is required if
you are using a STRUCT, X_C_TYPE, or X_COMMON buffer. Compile the header file with sdlc to
convert it to a standard communication type. The sdl file must be created to execute the client

program.

If you are using a field buffer, compile the field key file with fdlc.

The following is an example of a Makefile for a Tmax client program.

TARGET
APOBJS

<clientname>
$(TARGET) .0

TMAXLIBD = $(TMAXDIR)/1ib

#TMAXLIBS is different according to 0S.

10 | Application Development Guide

#Solaris : TMAXLIBS = -1lsocket -1nsl -lcli
#Compac, HP, IBM, Linux : TMAXLIBS= -1lcli

TMAXLIBS = -1lcli

#CFLAGS is different according to 0S.

#Solaris 32bit, Compaq, Linux: CFLAGS = -0 -I$(TMAXDIR)
#Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(TMAXDIR)

#HP 32bit: CFLAGS = -Ae -0 -I$(TMAXDIR)

#HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(TMAXDIR)
#IBM 32bit: CFLAGS = -q32 -brtl -0 -I$(TMAXDIR

#IBM 64bit: CFLAGS = -qb64 -brtl -0 -I$(TMAXDIR

CFLAGS = -0 -I$(TMAXDIR)

#
.SUFFIXES : .c

$(CC) $(CFLAGS) -c $<

#
client compile
#

$(TARGET): $(APOBIS)
$(CC) $(CFLAGS) -L$(TMAXLIBD) -o $(TARGET) $(APOBIS) $(TMAXLIBS)

#
clean:
-rm -f *.0 core $(TARGET)

The sample program provided by Tmax executes "make" using the shell script named "compile". To
use the shell script, type the following into a command prompt. In "compile", enter the client
program name without the file extension.

compile ¢ cli (=>client program name without its extension)

2.5. Starting and Terminating a Process

To connect to Tmax, you must set environment variables.

Because a client program gets necessary information from environment variables when connecting
to Tmax, TMAX_HOST_ADDR and TMAX_HOST_PORT must be defined in the UNIX shell configuration
file (.cshrc (C), .profile (korn), and .bash_profile (bash)). To handle potential failures, you can define
TMAX_BACKUP_ADDR and TMAX_BACKUP_PORT. To handle potential network failures, you can define
TMAX_CONNECT_TIMEOUT.

After Tmax environment variables are set in the UNIX configuration file, you can create client
processes. You can start and terminate the client processes in the same way you start and terminate
other executable files.

2. Client Programs | 11

The following describes each environment variable.

Environment Variable

TMAX_HOST_ADDR

TMAX_HOST_PORT

TMAX_BACKUP_ADDR

TMAX_BACKUP_PORT
TMAX_CONNECT_TIMEOUT

SDLFILE
FDLFILE

Description

IP of the server where Tmax is installed. This variable is very
important because connections are reset internally if the service
requested by a client is not provided by the machine where the client
connected to initially.

If the client requests for a transaction processing, the Tmax server
that was initially connected to takes over the transaction and
oversees 2PC. Therefore, the host address must be set to the server
with the most frequently requested services in order to decrease
network traffic and reduce response time.

Port of the server where Tmax is installed. If TPORTNO is not defined
in the Tmax configuration file, the default value (8888) is used.

IP of a backup server. When a client issues a request, a connection is
established to a server specified by TMAX_HOST_ADDR. If the server
is unavailable, another connection is established to the server
specified by TMAX_BACKUP_ADDR. If TMAX_BACKUP_ADDR is not
specified, the request fails.

Tmax server port number specified by TMAX_BACKUP_ADDR.
This value is set to handle network failures. A client waits for a

connection until this timeout period expires.

If a connection is not established during this timeout period, tpstart()
fails. If a network error occurs, tperrono is set to TPETIME.

If TMAX_BACKUP_ADDR and TMAX_BACKUP_PORT are specified,
tpstart() attempts to connect through the backup host for the
timeout period.

Required for client programs using the struct buffer.

Required for client programs using the field buffer.

For more information about the sdlc and fdlc commands, refer to Tmax Reference

ﬂ Guide.

2.5.1. sdlc

The SDLFILE environment variable must be set for a client program that uses the struct buffer. This
variable must define the SDL file created by compiling a structure file used in a client program with
sdlc. The client can communicate with Tmax server if the SDLFILE contains the structure file during

structure communication.

12 | Application Development Guide

The following command is used to compile the structure file.

$ sdlc -c -i Structure file name [-o sdl file name] [-h Header file name]

Option Description

-i structure file name Name of the structure file to compile. One or more file can be defined
regardless of the extension. An asterisk (*) can be used as a wild card
for any file name.

In a structure file, one or more structures must be defined using the
"structure name{... };" format.

[-0 sdl file name] Name of SDL file to create. It is set to the SDLFILE variable.

[-h header file name] Creates the structure information in a header file format. If the [-h]
option is omitted, <name_sdl.h> is created.

If [-0] option is omitted, the following default SDL file is created.

« If there is only one structure file, the created file name is <structure file name without
extension.sdl>.

In the following case, the file is named <demo.sdl>.

sdlc -c -i demo.s

« If there are multiple structure files, the created file name is <the first structure file name without
extension.sdl>.

In the following case, the file is named <stra.sdl>.

sdlc -c -i stra.s bana.s orage.s

If the current directory contains a.s, b.s, and c.s files, the file is named <a.sdI>.

sdlc -c¢ -i *.s

2.5.2. fdic

The FDLFILE environment variable must be set for a client program using the field buffer. This
variable must define the FDL file created by compiling a field buffer file used in a client program with
fdlc. The client can communicate with Tmax server if the FDLFILE contains the field information
during field buffer communication.

2. Client Programs | 13

The field buffer file can be compiled with the following command:

$ fdlc -c -i Field buffer file name [-o fdl File name] [-h Header file name]

Option Description
-i field buffer file name Name of a field buffer file to compile.
[-o fdl file name] Name of FDL file to create. It is set to the FDLFILE variable. If the [-0]

option is omitted, <tmax.fdl> is created by default.

[-h header file name] Create the structure information into a header file format. If the [-h]
option is omitted, <name_fdl.h> is created.

14 | Application Development Guide

3. Server Programs

This chapter describes server program characteristics, components, flow, and development
environment.

3.1. Characteristics and Components

Server programs process user requests and return the results to the client.
Tmax server programs have the following characteristics:

* Program development is simple and quick because programmers only have to develop a service
routine.

*+ A server is composed of one or more services. It can act as a client and issue service requests to
another server. Also, a server can make another server manage clients by sending the clients'
information and results.

+ Because Tmax functions support communication and data conversion, developers do not need to
develop the UNIX internal system and protocols. This allows developers to create programs
without deep knowledge of network programming.

+ In XA mode, developers can ignore database handling because the Tmax routine handles tasks
related to connecting to and disconnecting from a database.

A Tmax application server program consists of main(), which is provided by Tmax, and a service
routine you develop. Server programs are created using Tmax functions, which are provided in the
form of a library file (libsvr.a and libsvr.so) and are compiled together with application server
programs. The methods for developing and configuring server programs differ according to the
processes supported in Tmax.

The following are the server processes supported in Tmax.

| -
I_._, ReqUGSI / @\
Y
Receive / Already
requested result booting
= :
Iiri\:' Receive unrequested result ~ Specific period
M ‘\
Terminate
| _4| Receive \i-...
] requested result
P

Tmax Server Processes

¢ Tmax Control Server (TCS)

Processes client requests.

3. Server Programs | 15

» User Control Server (UCS)

TCS is a typical processing type, but UCS is an active processing type. UCS sends data to clients
constantly without client requests.

o Realtime Data Processor (RDP)

An improvement of the UCS type process intended for special purposes.

3.1 .1 L] TCS
TCS type server programs consists of the following components:
* Server program

A service routine written by developers. It is used to process client requests. If SQL statements
are used, it must be precompiled using a vendor-specific tool.

* Tmax server library (libsvr.a / libsvr.so)

A library provided by Tmax. It includes server main(), tpsvrinit(), tpsvrdone(), and other Tmax
functions.

 Service table

A file that lists service names provided by each server. It is created by referring to the Tmax
configuration file. The service table is used to find the location of a service routine in a server
when services are executed. It is provided by the system administrator.

The following are the steps for creating a service table.

1. Refer to the binary Tmax configuration file (for example, tmconfig) to use the gst (generate
service table) command.

gst [-f binary configuration file]

When you execute the gst command, a service table is created in the svct directory with the
name "server name_ svctab.c" for each server registered in the SERVER clause of the Tmax
configuration file. By referencing the SERVICE clause, the service table lists the services
provided by each server.

2. The Tmax configuration binary file (tmconfig) is created by using the ¢fl command to compile
the sample.m file written by the system administrator about the entire system.

$cfl [-i Tmax configuration file]

16 | Application Development Guide

For more information about cfl and service tables, refer to Tmax
ﬂ Administrator’s Guide.

+ Struct binary table (SDLFILE)

If you want to use struct buffers (STRUCT, X_C_TYPE, and X_COMMON), a structure file in the
<xxxx.s> form is required. There are two structure files: the standard communication type
(structure file name_sdl.c) and the structure header file (structure file name_sdl.h).

Structure files are compiled with the sdlc -c command to create a binary table. The table is used
to convert structure type data to/from the standard communication type data.

* Field buffer binary table (FDLFILE)
If you want to use field buffers, a field buffer file in the <xxxx.f> form is required.

Field buffer files are compiled with the fdlc command to create a binary table file and a header
file. The binary table file matches a field key to data, while the header file (xxxx_fdl.h) matches a
field key to a field key name. Unlike conventional structure files, you can specify which fields are
to change in order to prevent resource waste. However, it might waste resources if you are using
an insufficient number of fields because data values and field key values are managed together.

* Structure-standard buffer conversion/reversion program

To use a struct buffer in a server program, you must compile the structure-standard buffer
conversion/reversion program (xxxx_sdl.c and xxxx_sdl.h) and link it to the server program. If you
are not using a structure, link TMAXDIR/lib/sdl.o to the server program.

3.1.2. UCS
UCS type server programs consists of the following components:
* main() routine
Handles database connections, disconnections, and command line options.
* Service routine
Processes client requests.

The following is how a service routine is declared.

<Service Name>(TPSVCINFQ *msq)

3. Server Programs | 17

Item Description

Service Name Up to 63 characters including the NULL character. Do not start with an
underscore (_) because names starting with an underscore are
internally defined in Tmax.

msg A service routine receives the TPSVCINFO structure as a parameter and
handles the corresponding tasks.

* usermain() routine

The usermain() routine handles its own tasks when there are no special messages such as a
service request or control message. At a specific time, the routine receives commands to control
or to execute a service from TMM or CLH. The routine is generally written as an infinite loop
because when usermain() ends, the corresponding server process also ends. In the loop, you
must use one or more scheduling APIs to handle client service requests or TMM and CLH control
messages.

usermain() can receive command line parameters. These parameters are set in CLOPT of the
SERVER clause in the Tmax system environment file. The parameters are the same as the values
passed to tpsvrinit(). When usermain() ends, the main() routine executes the tpsvrdone() routine
and is terminated.

int usermain(int argc, char *argv[])

{
while(1) {
tpschedule(-1);
}
return 0;
}

When UCS type server programs do not have a service routine, server processes have similar
characteristics as daemon processes.

The following is how a TOUPPER service routine is declared.

TOUPPER(TPSVCINFO *msq)

For more information about the SERVER section, refer to Tmax Administrator’s

ﬂ Guide.

18 | Application Development Guide

3.2. Development Environments and Tools

Tmax application server programs can run on all UNIX environments, independent of hardware. You

can use vi, the UNIX standard editor, to develop server programs.

3.3. Program Flow

The flow of TCS type Tmax server programs is different from the flow of UCS type Tmax server
programs. For TCS type server programs, which are the general server programs, all tasks are
handled in the service routine. But, for UCS type server programs, various services, which are difficult
to implement conventionally, can be provided by using the service routine and usermain(). A server
program is divided into the main() routine provided by Tmax and the service routine developed by

users.
main(}{ Starts a process to execute SIGHUP
SIGHUP
. tpsvrinit()
main() tpsvrinit() - Processes command line parameters.
provided by - Generally used to connect to a non-XA mode DB
Tmax - (tmboot) is executed only once when the Tmax server starts
while(){
(1) == While(1)
(2) - (1) Checks pipes for request services.
(£}) == (2) Retrieves a request fram a pipe.
(4) - (3) Sends the request to the service routine.
(4) Receives the control again from the service routine.
}
tpsvrdone()
tpsvrdune[) - Disconnects from a non-XA mode DB
} - (tmdown) is executed only once when the Tmax server shuts down.
.]
User Service Routine { Service Routine
developed (1) Receives the control from a server.
fi (2) Processes the request.
routine (3) Returmns the control to the server.

Server Program’s Flow

* main() routine

The main() routine processes command line arguments. It connects to or disconnects from the
database, allocates buffers that are used in the service routine, and calls the service routines that

process client requests.

» Service routine

The service routine processes client requests. Client requests are first received by the TPSVCINFO
structure that holds request-related information in the main() program. The buffer requested by
clients resides in the TPSVCINFO — DATA structure. The data from the TPSVCINFO — DATA structure
is accepted and processed by service routines. After the data is processed, a service routine sends
the results to the client program or issues a service processing request to other servers.

3. Server Programs | 19

For more information about functions used in a service routine, refer to Tmax
o Reference Guide or Tmax Programming Guide (UCS).

3.3.1. TCS

TCS has the typical three-tier server process. Tmax system receives requested results and returns the
results to clients by scheduling client requests to the appropriate process. Developers only have to
develop service routines because Tmax provides main() for TCS type service programs. TCS type
programs are developed using specified service names as functions.

The following shows a main() routine and a service routine in TCS.

main(}{
sigaction()
main()
provided by
Tmax

tpsvrinit()

while(}{

select()

}

tpsvrdone()

main() Routine

- Managed by the Tmax System

- Processes signals and executes the initialization and termination
routines.

- Processes control commands by exchanging messages
with CLH and TMM

- If a client service is requested, allocates the TPSVCINFO structure
and delivers it to the service routine

tpsvrinit()
- Generally used to connect to a non-XA mode DB.
- (tmboot) is executed only once when the Tmax server starts.

tpsvrdone()

- Disconnects from a non-XA mode DB.
- (tmdown) is executed only once when the Tmax server shuts down.

User
developed
routine

Service Routine

- A user developed service routine.

- Receives the TPSVCINFO structure from main() to execute
a service.

- If the service completes, returns to main().

Service Routine (TPSVCINFO *msg){

TCS type Server Program’s Flow

* main() routine

A command line is used to enter the main() routine arguments. It connects to or disconnects
from the database, allocates and manages TPSVCINFO struct buffers used in the service routine,
waits for messages sent by CLH and TMM, and calls the service routines that process client
requests.

» Service routine

The service routine processes client requests. It receives the TPSVCINFO structure, which includes
service requests of clients and necessary information from main(), and returns the results to
clients.

The following shows a TCS type program.

20 | Application Development Guide

SDLTOUPPER(TPSVCINFO *msg)

{
struct kstrdata *stdata;
stdata = (struct kstrdata *)msg->data;
for (i = 0; i < stdata->len; i++)
stdata->sdata[i] = toupper(stdata->sdatali]);
tpreturn(TPSUCCESS, @, (char *)stdata, sizeof(struct kstrdata), TPNOFLAGS);
}
3.3.2. UCS

Compared to TCS, which only processes requests from clients, UCS can provide services without
client requests. UCS supports TCS to quickly provide services with more features. A UCS program
consists of usermain() and a service routine.

The following show a main() routine and a service routine in UCS.

main(){ main() routine
tpsvrinit() - Managed bgr.Tmax System L)
main() - Processes signals and executes the initialization and
. . termination routines
provided by usermain()
Tmax
tpsvrdone()
Service ROLI']HE(TPSVC'N FO *msg){ Service Routine
- A user developed service routine
- Different from TCS, it is not necessary for the UCS process.
tpreturn()

User } usermain()

developed - This routine is executed when there are no messages

routine usermain(){ in CLH and TMM.
- Like a general service routine, other services can be called and

f communication using sockets is possible.
while(true){ - Processes messages on behalf of the TCS type main() routine.
tpschedule()

tpschedule()
- APl that processes messages sent from CLH and TMM in Usermain().
- Must exist.

UCS Type Server Program’s Flow

* main() routine

The UCS type main() routine is similar to the TCS type main() routine, but UCS type main() routine
has an additional usermain() routine.

* Service routine

The UCS type service routine is the same as the TCS type service routine. UCS type processes
must be linked to the UCS library (libsvrucs.a).

3. Server Programs | 21

* usermain() routine

The UCS type usermain() routine independently processes repeated tasks when there are no
other commands. When CLH or TMM sends commands, they are processed by using scheduling
API. To terminate UCS type processes with the tmdown command, you must use tpschedule() in
the loop.

The following shows a usermain() function.

int usermain(int argc, char *argv[])

{

while (1) /* infinte loop */
{
clid = tpgetclid();
ret = tpsendtocli(clid, sndbuf, slen, TPNOFLAGS);
if (ret < 0)
{

error processing routine

}

tpschedule(10); /* UCS process must add this function in a while loop.*/
/* If tmdown is called, an event is sent to here. */

} /* end of while */

o usermain() handles tasks in a loop. usermain() uses tpsendtocli() to send data to clients and
uses tpschedule() to process TCS type services.

o tpschedule() is used only by a UCS server processes.
The function has a timeout parameter, which specifies how long in seconds the function is to

await data. Upon receiving the data, the function returns it to the client. If the data does not
arrive within time, the function stops waiting.

If the parameter is set to -1, tpschedule() checks for returned data. If no data is received,
tpschedule() proceeds to the next step. If the parameter is set to O, tpschedule() waits for
client requests.

When data arrives, the required services are executed automatically and tpschedule() is
returned. Therefore, users cannot execute services arbitrarily after data arrives. Services are
always carried out by the system, which applies to UCS type service programs.

o If usermain() calls services in asynchronous mode (tpacall), tpregcb() must be used to receive
the response.

The following is an example of the Tmax configuration file for using UCS type processes.

*DOMAIN
resi SHMKEY = 66999, MAXUSER = 256

22 | Application Development Guide

*NODE

tmax TMAXDIR =
APPDIR =
PATHDIR =
TLOGDIR =
ULOGDIR =
SLOGDIR =

*SVRGROUP

svgl NODENAME

*SERVER

svri SVGNAME

#Add SVRTYPE=UCS for

ucssvr SVGNAME
ucssvr2 SVGNAME
ucssvr3 SVGNAME
*SERVICE

TOUPPER SVRNAME
TOLOWER SVRNAME
DUMY1 SVRNAME
DUMY?2 SVRNAME

The following is an example of a UCS program.

#include <stdio.h>
#include <usrinc/a
#include <usrinc/u

DUMYT(TPSVCINFO *msg)
{

printf("svc s

tpreturn(TPSUCCESS, @, (char *)msg->data, @, TPNOFLAGS);

}

int usermain(int argc

{
while (1) {
jobs = tp
cnt++;

ret = tpcall("TOUPPER", sbuf, @, &rbuf, &rlen, TPNOFLAGS);

if (ret <

"/user/tmax",
"/user/tmax/appbin
"/user/tmax/path",

"/user/tmax/log/tlog",
"/user/tmax/log/ulog",

"/user/tmax/log/sl

= tmax

= svgl

ucs.

= svg1, SVRTYPE
= svg1, SVRTYPE
= svgl, SVRTYPE

= svrl
= svri
= ucssvrl
= ucssvr2

tmi.h>
cs.h>

tart!");

, char *argv[])

schedule(-1);

0) {

n
’

Ogll

ucs
ucs
ucs

error processing routine

}

RDP

3. Server Programs | 23

RDP is a UCS server process enhanced at the kernel level to send multiple client small, fast-changing
data more efficiently and quickly. RDP shows remarkably low process occupancy rate and processing
speed when the server sends small data to many clients frequently (more than 10 times in a second).
However, each node can have one RDP server. The RDP server differs from the UCS only in terms of
the settings in the configuration file and the library used for compilation.

The following is an example of the Tmax configuration file for enabling an RDP process.

*DOMAIN
tmax1 SHMKEY = 7090, MINCLH = 2, MAXCLH = 2

*NODE

tmax1 TMAXDIR = "/home/navis/tmax",
APPDIR = "/home/navis/tmax/appbin",
PATHDIR = "/home/navis/tmax/path",
TLOGDIR = "/home/navis/tmax/log/tlog",
ULOGDIR = "/home/navis/tmax/1log/ulog",
SLOGDIR = "/home/navis/tmax/log/slog",
REALSVR = "real",rscpc = 2

For more information about RDP, refer to Tmax Administrator’s Guide or Tmax
ﬂ Programming Guide (UCS).

3.4. Compiling a Program

After you write a server program, it must be compiled to create a binary file. For compilation, you
need the server program, Tmax server library, and the service table. If a struct buffer is used, you
need a structure-standard buffer conversion/reversion program and a structure binary table. If a
field buffer is used, you need a field header file and a field buffer binary table. TCS and USC server
programs are compiled differently.

3.4.1. Compiling a TCS Server Program
In general, you can compile a C program by using the shell installed with Tmax or the mksvr utility.

The following shows the process of compiling a server program using a struct buffer or field buffer.

24 | Application Development Guide

System Configuration File

Server Program cfl -i tmconfig.m

Structure buffer

Pre-Compiling
Proc iname = server

sdlc -i demo.s
Tmax Server Library

gst

sdlc -¢ -i demo.s

-0 tmax.sdl
L

libsvr.a

m server_svctab.c

Compile

=z

Server Executable File

tmboot[-s server]

H=

Server Process

Compiling a Server Program Using a Struct buffer

System Configuration File

‘ cfl -i tmconfig.m
Server Program

Pre-Compiling
Proc iname = server

gst
Tmax Server Library

server_svctab.c

Compile

FIELD buffer

fdlc -c -i demo.f
-0 tmax.fdl

Server Executable File

tmboot[-s server]

ﬂ=

Server Process

Compiling a Server Program Using a Field Buffer

The following are the steps for compiling a TCS server program in Linux. Each development
environment (32 or 64 bit) and platform requires different flags and libraries.

3. Server Programs | 25

1. Compile the server program to create an object file.

The server program must include the header files provided by Tmax. If necessary, the program
must include the structure file or field buffer header files. If the program contains SQL
statements, the program must be precompiled with a tool provided by the corresponding
database vendor.

$cc -c -I/home/tmax/usrinc app.c > app.o

2. Compile the structure file if a struct buffer is used.

Compilation involves two phases. First, use sdlc to create the structure-standard buffer
conversion/reversion program. Second, compile the program to create an object file. If a
structure file is not used, use TMAXDIR/lib/sdl.o.

$sdlc -i demo.s -> demo_sdl.c
$cc -c¢ -I/home/tmax/usrinc demo_sdl.c » demo_sdl.o

3. Compile the service table provided by the system administrator to create an object file.

$cc -c app_svctab.c » app_svctab.o

4. Link the object files created in the previous steps to the server library provided by Tmax to create
an executable server program.

$cc -0 app app.o demo_sdl.o app_svctab.o libsvr.a libnodb.a » aptest

Using a Shell program to compile a server program

When Tmax is installed, sample programs, four Makefiles, and a shell program (Makefile.c,
Makefile.sdl, Makefile.pc, Makefile.psdl, and compile) are created in the sample server program
directory.

The following is a Makefile (Makefile.sdl) of a Tmax server program that uses a struct buffer but not a
database. The name of the program is included in $COMP_TARGET, which is passed when a shell
program compiler is used.

Server makefile

TARGET = $(COMP_TARGET)
APOBJ]S = $(TARGET).o
SDLFILE = demo.s

#Not use Db

LIBS = -1svr -1lnodb
#In the case of Solaris, —-1lsocket -1nsl is added.

26 | Application Development Guide

#In the case of Oracle, Informix, Db2, and Sybase,
#-loras, -linfs, -1db2, and -1sybs are used instead of -1nodb, respectively.

0BJS = $(APOBIS) $(SDLOB1) $(SVCTOBJ)

SDLOB] = ${SDLFILE:.s=_sdl.o}
SDLC = ${SDLFILE:.s=_sdl.c}
SVCTOB] = $(TARGET) svctab.o

CFLAGS = -0 -I$(TMAXDIR)

#Different CFLAG is used according to development environments (32 or 64 bit) and platforms.
#Solaris 32bit, Compaq, Linux: CFLAGS = -0 -I$(TMAXDIR)

#Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(TMAXDIR)

#HP 32bit: CFLAGS = -Ae -0 -I$(TMAXDIR)

#HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(TMAXDIR)

#IBM 32bit: CFLAGS = -q32 -brtl -0 -I$(TMAXDIR

#IBM 64bit: CFLAGS = -q64 -brtl -0 -I$(TMAXDIR

APPDIR = $(TMAXDIR)/appbin

SVCTDIR = $(TMAXDIR)/svct

LIBDIR = $(TMAXDIR)/1ib

#In the 64 bit environment, it is $(TMADIR)/1ib64.

i
.SUFFIXES : .c

$(CC) $(CFLAGS) -c $<

#
server compile
#

$(TARGET): $(0BIS)
$(CC) $(CFLAGS) -L$(LIBDIR) -o $(TARGET) $(0BIS) $(LIBS)
mv $(TARGET) $(APPDIR)/.
rm -f $(0B1S)

$(APOBIS): $(TARGET).c
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
touch $(SVCTDIR)/$(TARGET) svctab.c
$(CC) $(CFLAGS) -c $(SVCTDIR)/$(TARGET) svctab.c

$(SDLOBI):

$(TMAXDIR)/bin/sdlc -i ../sd1/$(SDLFILE)
$(CC) $(CFLAGS) -c ../sd1/$(SDLC)

#

clean:
-rm -f *.0 core $(TARGET)

The following is an example of using a Makefile. svr1, svr2, svr3, fdltest, and sdltest are sample
programs created during Tmax installation. For more information, refer to the each Makefile.

$./compile sdl svr1l

3. Server Programs | 27

$./compile ¢ svr2
$./compile ¢ svr3
$./compile pc fdltest
$./compile psdl sdltest

Using the mksvr utility to compile a server program

If you are using the mksvr utility to compile a server program, you do not have to specify the service
name when configuring the Tmax system configuration file or create a service table with the gst
command. However, if a structure is used, you must create the structure-standard buffer
conversion/reversion program. To connect to a database, you must use a pre-compiled file or specify
an RM file.

$cfl i sample.m

$sdlc -i demo.s

$sdlc —-c —i demo.s —o tmax.sdl

$mksvr —s SDLTOUPPER,SDLTOLOWER -o svr1 —f svrl.c =S ../sd1/demo_sdl.c

$mksvr —s TOUPPER,TOLOWER —o svr2 -f svr2.c

$fdlc -c -i demo.s -o tmax.fdl
$mksvr —s FDLTOPPER, FDLTOLOWER —o svr3 —f svr3.c

$proc iname=fdltest include $TMAXDIR
$mksvr —s FDLINS,FDLSEL,FDLDEL,FDLUPT -0 fdltest —f fdltest.c

$mksvr —s SDLINS,SDLSEL,SDLDEL,SDLUPT -o sdltest -f sdltest.c
-S ../sdl/demo_sdl.c -r ORACLE

o For more information about mksvr, refer to Tmax Reference Guide.

3.4.2. UCS

UCS server programs are compiled like TCS server programs. However, USC uses the libsvrucs.a (or
libsvrucs.so) server library while TCS uses libsvr.a (or libsvr.so). A USC server program, like a TCS
server program, can be compiled with a general C compiler, which can be used through the shell
program created when Tmax is installed or the mksvr utility.

The following are the steps for compiling a UCS type server program in Linux. Each development
environment (32 or 64 bit) and platform requires different flags and libraries. Because of the
similarities in the compilation processes of UCS and TCS, refer to Compiling a TCS Server Program for
more information.

1. Compile the server program to create an object file.

The server program must include the header files provided by Tmax. If necessary, the program

28 | Application Development Guide

must include the structure file or field buffer header files. If the program contains SQL
statements, the program must be precompiled with a tool provided by the corresponding
database vendor.

$cc -c -I/home/tmax/usrinc app.c > app.o

2. Compile the structure file if a struct buffer is used.

Compilation involves two phases. First, compile with sdlc to create the structure-standard buffer
conversion/reversion program. Second, compile the program to create an object file. If a
structure file is not used, use TMAXDIR/lib/sdl.o.

$sdlc -i demo.s -> demo_sdl.c
$ce -¢ -I/home/tmax/usrinc demo_sdl.c » demo_sdl.o

3. Compile the service table provided by the system administrator to create an object file.

The following is an example of when a database is not used. If a database is used, liboras.so(a),
libinfs.so(a), libdb2.so(a), or libsybs.so(a) is used (depending on the database). If a shell program
is used, change -Isvr to -Isvrucs in the corresponding Makefile. The usage is the same.

$cc -c app_svctab.c » app_svctab.o

Using the mksvr utility to compile a server program

If the mksvr utility is used, service names are not required when writing the Tmax system
configuration file and a service table created through gst is also not required. However, if a structure
is used, the structure-standard buffer conversion/reversion program must be created. If a database
is used, a precompiled file must be used or an RM file must be specified.

$cfl -1 sample.m

$sdlc —i demo.s

$sdlec —c -i demo.s -o tmax.sdl

$mksvr —s UCSSAMPLE -0 ucs_svr —-f ucs_svr.c =S ../sdl/demo_sdl.c -t UCS

ﬂ For more information about mksvr, refer to Tmax Reference Guide.

3.5. Creating and Terminating a Process

The system administrator is responsible for creating server processes. Unlike a UNIX executable file,
the Tmax application server does not start automatically because a server process references the
Tmax configuration file when the server process is created. Therefore, you must create a server

3. Server Programs | 29

process by using the tmboot command and terminate the server process by using the tmdown
command.

Before creating a Tmax application server process, the Tmax configuration file (for example,
sample.m) written by the system administrator must be compiled by using the cfl command. The
server process is created by referring to the compiled binary configuration file (for example,
tmconfig).

The following are commands used to create and terminate a process.

+ Creating a process
> The following command creates the Tmax system process and all server processes registered

in the binary Tmax configuration file.

$tmboot [-f Binary configuration file]

> The following command creates specific server processes.

$tmboot [-s Server program name]

+ Terminating a process

> The following command terminates the Tmax system process and all server processes
registered in the binary Tmax configuration file.

$tmdown [-f Binary configuration file]

> The following command terminates specific server processes.

$tmdown [-s Server program name]

o For more information about commands, refer to Tmax Reference Guide.

30 | Application Development Guide

4. Communication Mode

This chapter describes the communication modes supported by Tmax.

4.1. Overview

Tmax supports three client-to-server communication modes: synchronous, asynchronous, and
interactive.
* Synchronous/Asynchronous communication

> Synchronous communication is most widely used. During synchronous communication, the
client sends one request and awaits a reply one at a time, and the server similarly processes
one request one at a time before moving onto another.

o Services are requested by tpcall() and tpacall(). The transmit/receive buffer must be allocated
by tpalloc() before data is transmitted. The service routine on the server side is completed by
tpreturn() or tpforward().

> In synchronous mode, a client sends a request to the server by calling tpcall() and waits in the

blocking status for the response from the server.

In asynchronous mode, a client issues a request to the server by calling tpcall(). The client
conducts other tasks without waiting for the response from the server. When the client is
ready to receive the response from the server, the client calls tpgetrply() and receives the
response from the server.

* Interactive communication

> Unlike synchronous or asynchronous mode, server programs must be developed only with
interactive service functions. Interactive mode is rarely used because of its long connection
maintenance time.

o Service requests are initialized by tpconnect(). Data is sent by using tpsend() and received by
using tprecv(). The transmit/receive buffer must be allocated by tpalloc() before data is sent.

o In interactive mode, you cannot use tpforward().

4.2. Synchronous Communication

In synchronous mode, a client requests a service and waits for a response in the blocking status.

4. Communication Mode | 31

Stay in a blocking state until the

sernvice result is received Service name

Call a service

tpreturn()

----- Return the process result

Synchronous Communication

The following is how the client and the server communicate in synchronous mode.

Client Server

main() i
{ servicename(msg)
/* Connect to Tmax™/

tp sta rt{}, TPSVCINFO *I'I'ISQ.'.

[*Allocates a buffer for
communication with a server™/
tpalloc();

while(true){

{

*Data received from the client *
transf = msg-> data;

"Request a synchronous service®/

[*The client is in a blocking state '

until it receives the response”/
tpcall("servicename”, ...);

}

Service Execution

v

f*Return the result to the client”
tpreturn();

I"Release a buffer®/
tpfree();
/Disconnect from Tmax™/
tpend();

}

Synchronous Mode

- For more information about functions related to synchronous communication,
0 refer to Synchronous Communication or Tmax Reference Guide.

4.3. Asynchronous Communication

In asynchronous mode, the client can request a service and proceed with another task without
awaiting a reply. This is because tpacall() immediately returns after it is called. However, tpgetrply(),
which is called to receive a response, waits in the blocking status until a reply arrives or timeout
occurs.

32 | Application Development Guide

Continue to execute
after calling a function

- Call a service Service name
d=tpacdl(), vl 3~

..... tpreturn()
tpgetrply(cd, ...); Return the proceess

result

Asynchronous Communication

The following is how the client and the server communicate in asynchronous mode.

Client Server

main() servicename(msg)

f* Connect to Tmax */
* .
tpstart(); TPSVCINFO *msg;

f* Allocate a buffer for {

communication with a server */ I* Data received from
tpalloc();

the client */
while(true){ transf = msg-> data;
I Asynchronous service request */

tpacall(“servicename”, --); '

"Other job

E Service execution
process” _—

I* Response received "/ ’

tpgetrply(); I"Return the result to the client"/
tpreturn();

f* Release a buffer */
tpfree();
f* Disconnect from Tmax */

tpend();

Asynchronous Mode

For more information about functions related to asynchronous communication,
ﬂ refer to Asynchronous Communication or Tmax Reference Guide.

4.4. Interactive Communication

During interactive communication, a half-duplex connection is established between the client and
server, where messages are sent in only one direction. When a client initially connects to a server,
communication control is given to either the client or the server. The side with control can send a

4. Communication Mode | 33

message while the other side can receive a message. Control can be passed by using a flag from the
side with control. The other side learns of control change through an event value.

The following is the process of passing communication control and disconnecting a connection.

svc(tpsvcinfo)

tprecv(tpsvcinfo ->cd, -);

cd = tpconnect("svc”, ...) -3 } IR TITARSUCLES S
tpsend(cd, ...);
tprecv(cd, &buf, ...);

Interactive Communication

In interactive mode, tpconnect() is used to make a connection, tpsend() is used to send data, and
tprecv() is used to receive data. To send data, the client or the server must have connection control,
which operates by setting a flag value in tpconnect() and tpsend.

The following is how the client and the server communicate in interactive mode.

Client Server

main()

{
f* Connect to Tmax™/ ® .
tpstart(); TPSVCINFO *msg;

servicename(msg)

f“Allocate a buffer for
communication with a server®/
tpalloc();

I* Connect for interactive service®/
cd = tpconnect(“servicename”);

while(true){

I Send a message”/

tpsend(cd, :-); e

tpsend(cd, --)

I* Recieve a message®/
tprecv(cd, --);

" Disconnect */
tpreturn();

tprecv(cd, --);

}
" Release a buffer ™/

tpfree();

f* Disconnect from Tmax*/
tpend();

}

Interactive Mode

34 | Application Development Guide

+ Interactive communication is initiated by calling tpconnect(), which selectively sends data to
services and determines which program holds control. If tpconnect() is executed successfully, it
returns the connection descriptor (cd), which distinguishes message transmissions and
receptions from those for other connections.

+ Interactive communication is used when additional information is required depending on
context. However, compared to other communication modes, an interactive connection stays
connected for a long period of time: from the point of connection (tpconnect()) to the point of
disconnection (tpdiscon() or tpreturn()). Synchronous/asynchronous communication is
recommended because an interactive connection has greater network load.

* tpreturn() is generally called in the server to terminate an interactive communication. In this
case, the receiving side receives both the data and the TPEV_SVCSUCC event. If the control side
calls tpdiscon(), interactive communication is forcibly terminated. When the function is called,
data being transmitted may be lost and transactions being processed are rolled back.

* Only the program that has communication control can give the control to the counterpart using
the TPRECVONLY flag in tpsend(). The counterpart receives data and the TPEV_SENDONLY event
and takes control.

* To pass the control to the counterpart, set the flags parameter to TPRECVONLY and call
tpconnect() or tpsend(). The TPEV_SENDONLY event occurs to the counterpart to let the
counterpart know control was received. After control is passed, data can be sent by calling
tpsend().

* Like synchronous or asynchronous communication, interactive mode uses buffers, which must be
allocated in advance by tpalloc(). All buffers used in Tmax communication must be allocated by
tpalloc().

For more information about functions related to interactive communication, refer
0 to Interactive Communication or Tmax Reference Guide.

4.4.1. Events Related to Interactive Communication

The following lists the five events of interactive communication.

Event Receiving Description
Function
TPEV_SENDONLY tprecv() Indicates the location of the connection control.
(0x0020)
TPEV_DISCONIMM tesend() Abnormal disconnection, which occurs when tpdiscon() is called
or tpreturn() is called while sub-services are still open.
(0x0001) tprecv()
tpreturn()

4. Communication Mode | 35

Event Receiving Description

Function

TPEV_SVCERR tpsend() Service function error, which occurs when the receiver has called
tpreturn() without having control or when the argument of

(0x0002) tprecv() tpreturn() is valid but an error is generated.

TPEV_SVCFAIL tpsend() Service function failed, which occurs when tpreturn() is called by
a party that does not have control of the connection or

(0x0004) tprecv() tpreturn() is called with its flags set to TPFAIL or TPEXIT.

TPEV_SVCSUCC tprecv() Service function successfully completed. tpreturn() is called with
the flag set to TPSUCCES.

(0x0008)

6 For more information about functions, refer to Tmax Reference Guide.

36 | Application Development Guide

5. Buffer Types

This chapter describes the buffer types supported in Tmax.

5.1. Overview

If you are using multiple servers with different hardware devices and operating systems, you
encounter an issue when you need to transfer data among the servers: you need in-depth
knowledge about all the operating systems and data conversion process.

To avoid this problem, the Tmax system supports various types of standard buffers. The buffers
bring the following benefits:

+ Developing flexible business programs using various buffers.

+ Saving development time that could be otherwise spent on data conversion.

+ Suffering less network overhead that arises from converting data intro character strings. With the
Tmax buffers, you can send and receive the data whose type is specified before a transaction
begins.

5.2. Buffer Types

To decrease network overhead and enhance the development process, the following buffers are
supported.

String Buffer Hello WorldW0
Carray Buffer Hlielt 1o ™lwlolr|1]|a|¥
0 0]
Field Buffer(FDL) keyh |H|e |l |I |o key w WorldW0
. AN - .
carra;r‘/hclata string wdala
struct data { char h[6]; char w(6]; }
Struct Buffer(SDL) JH|e I |1 |0 wlo|r|||d
N " -

Tmax Communication Buffer Types

* String buffer

5. Buffer Types | 37

Used for strings that end with NULL. The buffer length is not required. This buffer is platform-
neutral.

* CARRAY and X_OCTET buffers

Used for strings with a specified data transmission length (usually binary data). This buffer is
platform-neutral.

¢ Struct and X_C_TYPE buffers

Used for structure data in C (language). This buffer can have all primitive types, declared structs,
and arrayed of structs as members.

« X_COMMON buffer

A C program structure that can have only char, int, and long as members.
* Field buffer

Used for data with a field key. This buffer can have all primitive types as members. It is used to
pass flexible data types because it supports various data access methods and conversion APIs.

5.3. Managing a Buffer

To guarantee buffer integrity, a standard communication buffer is used, which sets the standards
for the data type and memory allocation. Before it is sent, data is converted to the standard
communication format, and before it is received, the data is converted back into the original format.
In this way, structure and string buffers are passed for communication between heterogeneous
machines.

Tmax uses sdlc to convert data to the standard format. On the client side, the sdlc program
generates a conversion information table. On the server side, the sdlc program creates a
conversion/reversion program for standard communication. The client encrypts data to a standard
recognized by the server. A program on the server decrypts the data and then encrypts the result to
the client in the standard type. Throughout this process, struct buffers or field buffers that have
string or primitive data types can be used without any constraints.

The STRUCT, X_C_TYPE, and X_COMMON struct buffers must be converted to standard
communication types and added during compilation. STRING, CARRAY, and X_OCTET buffers do not
need to be converted to standard buffer types because they allow string type communication
between heterogeneous machines.

For more information about buffers and related functions, refer to Buffer
ﬂ Management or Tmax Reference Guide.

38 | Application Development Guide

5.3.1. Struct Buffers

Developers write the structures they want to use in a struct file (xxx.s), which is referenced to create
the conversion table and conversion program. A struct file cannot include commands such as typdef
and include. All primitive and structure types can be members of a struct.

To use the struct buffer, you must use the sdlc program to create a conversion table and the
conversion/reversion program that convert the struct buffer to and from the standard
communication buffer. The information table is automatically used when the structure is used, and
the conversion/reversion program is compiled and used together with the service routine.

The following is the process of compiling a server/client program when developing an application
that uses a struct buffer (STRUCT, X_C_TYPE, and X COMMON). demo.s is the struct buffer.

Client

Program sdlc -c -i demo.s -0

tmax.sdl/
Executable "C Compile
Program

Executable

sdlc -c -i demo.s -0

tmax.sdl C Compile SRR

Program

v

Program

Client Server

Compiling an Application Program that Uses a Struct Buffer

5.3.2. Field Buffers

Developers write field buffers they want to use in a field buffer file (xxx.f), which is referenced to
create the conversion table. To convert a field buffer to the standard communication format, you
must use the fdlc program to create the conversion table, which is automatically used by the system
when the field buffer is used.

The following is the process of compiling a server/client program when developing an application
that uses a field buffer. demo.f is the field buffer.

5. Buffer Types | 39

Client

Program

fdlc -c -i demo.f -0

tmax.fdl C Compile

W_,. Executable
Program

Client

fdlec -c -i demo.f -o
tmax.fdl

Server

Program

C Compile

Executable

Program

Server

Compiling an Application Program that Uses a Field Buffer

40 | Application Development Guide

6. Transactions

This chapter outlines the concept and process of a transaction and describes some transaction
errors.

6.1. Overview
A transaction is a unit of work that changes a resource from a valid state to another.
Tmax supports local and global transactions.
* Local Transaction
A local transaction is a transaction that involves one resource manager (database).
* Global Transaction

A global transaction involves a logical unit consisting of more than one resource manager
(database) and more than one physical site. All transactions in the Tmax system are handled as
global transactions.

Transaction processing in the Tmax system preserves ACID (Atomicity, Consistency, Isolation, and
Durability) properties and implements the TX standard of the X/Open DTP model.

The following are the ACID properties.

Atomicity
A transaction is either completed or not (all or nothing).
+ Consistency

A completed transaction changes a shared resource from one valid state to another.

Isolation

The execution result of a transaction that involves a shared resource is visible only after it is
committed.

* Durability

The results of committed transactions are permanent even if a system or a media failure occurs.

6.2. Distributed Transaction

Global transactions that involve two or more databases use the two-phase commit (2PC) protocol to
guarantee ACID properties of the transaction. The following describes the two phases of 2PC.

6. Transactions | 41

* Prepare Phase

The commit manager checks whether the databases participating in the transaction are ready to
commit. When all databases are ready, a ready signal is sent.

¢« Commit Phase

When all databases send a ready signal, the transaction is committed. If a database fails to send a
ready signal, the transaction is rolled back.

Commit Coordinator Subordinate Subordinate
(ROOT) Node Node

Prepare_to_‘ Prepare_to_‘ Prepare_to_‘
@
g
o S

.y_to_commit .y_to_commit

;o) oD oD
=1}
je
o

- Complete - Complete - Complete

Two-phase Commit (2PC) Protocol

During a distributed transaction processing, the 2PC protocol ensures data integrity. Also, a number
of functions such as tx_begin, tx_commit, and tx_rollback enable global transaction processing. In
addition, a multi-thread transaction manager ensures improved resource efficiency and dynamic
error logging. Dynamic error logging enables a quick response to errors and supports reliability
through recovery and rollback. All transactions are monitored through a single interface to facilitate
easy scheduling and management of transactions.

Processing Mechanism

The Tmax system uses a set of standard functions, the Application-to-Transaction Monitor Interface
(ATMI), which implements the X/Open distributed transaction model of transaction processing.

The following is the of X/Open DTP structure.

42 | Application Development Guide

Application Program(AP)

-—————————————
—
—=
—=

Distributed
X l XATMI Transaction
—
™ -—»
—
XA XA+ I

0sI-TP

X/Open DTP Structure

The following describes X/Open DTP components.

Classification Description

AP The application program (AP) defines the boundary of a distributed transaction.

RM The resource manager (RM) provides access to resources, such as databases.

™ The transaction manager (TM) assigns identifiers to transactions by each database,
manages execution of transactions, and recovers a transaction in case it completes
or fails.

CRM The communication resource manager (CRM) controls communication between

between applications that have operations distributed among different computers
or databases from different vendors.

OSI-TP The open system interconnection transaction processing (OSI-TP) manages
communication between TMs.

X/OPEN ATMI processes transactions that occur between heterogeneous DBMSs that comply with
X/OPEN DTP by grouping them.

The following is how distributed transactions are processed.

6. Transactions | 43

_ 2

tx_begin();
tpeall(“A");
tpcall(*B");
t_commit(;
Ensured ACID Database Database
A B

The Process of Distributed Transactions

A transaction starts when tx_begin() is called and ends when tx_commit() or tx_rollback() is called.

tx_begin() begins a transaction. The calling process becomes transaction publisher that is responsible
for closing the transaction by using tx_commit() or tx_rollback(). Processes that are part of a
transaction demarcated by tx_begin() and tx_commit() or tx_rollback() are called transaction
participants, which can affect the results of the transaction when they return values with tpreturn().
You cannot call tx_begin() to start a transaction if another transaction is being processed, which
causes failure and sets tperrno to TPEPROTO. Before calling another transaction, the transaction
must be completed first.

A client participating in a transaction can exclude a server from the transaction by setting flags to
TPNOTRAN when calling tpcall() or tpacall(). An excluded server cannot affect the result of the
transaction being processed.

You can start an explicit transaction by issuing transaction functions such as tx_begin and
tx_commit or an implicit transaction by configuring a database in SVRGROUP of the Tmax
configuration file.

Checklist for DBMS Integration

The following is a DBMS integration checklist.

*+ Check that the DBMS vendor’s client module is installed.
+ Check restrictions on DBMS settings such as maximum session count for database and client.
+ Get ready development tools module needed to create a Tmax server application

* Check the XA and non-XA settings.

The use of XA mode must be determined in the application design phase. XA and non-XA modes

44 | Application Development Guide

differ in terms of database access and distributed transaction processing methods as follows:

Mode
XA

Non-XA

Description

Settings of the Tmax configuration file is used to access a DBMS. X/OPEN ATMI
functions are used to commit or roll back XA transactions, and the commit or rollback

is completed through the transaction management server (TMS).

DBMS connections, transaction commits, and rollbacks are processed via the
developer’s ESQL statement.

6.2.1. XA Mode

In XA mode, the transaction management server (TMS) provided by Tmax manages transactions.

All transactions are handled as global transactions and are processed with the 2PC protocol to
ensure data integrity. To connect and disconnect an RM, you must configure some settings in the
Tmax configuration file. Transactions are managed using the Tmax API, which is necessary when
processing databases in a distributed environment. The following are steps for executing an XA

transaction.

main()

{

}

client

tpstart();

tpalloc();

tx_begin();

tpeall(); Tra
if(error){
tx_rollback();
Jelse{
tx_commit();
}

tptree();
tpend();

— 1

transaction

hsaction

cope

XA Mode

SVC(TPSVCINFO *msg)
{

transf=msg—)data;

Service Execution

tpreturn();

server

transaction

To connect to and disconnt a database, tpsvrinit() and tpsvrdone() are not required. As in non-XA
mode, connection to the database is made with tmboot, and TMS, which manages commits and
rollbacks of global transactions, also connects to the database. Any start, commit, rollback, or
rollback cancellation calls of a global transaction must be made via the TX API of the Tmax system or
by configuring the Tmax configuration file settings. To use the XA option, go to the SYRGROUP
section in the configuration file. Then, check the name of a server group that contains the server

application to connect to DBMS and specify the XA option for the server group.

The following is an example of specifying XA mode in the SVRGROUP section.

*SVRGROUP

6. Transactions | 45

svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=600",
TMSNAME = svg1_tms

*SERVER
svrl SVGNAME = svq1
For more information about server group configuration environment, refer to
0 Tmax Administrator’s Guide.

6.2.2. Non-XA Mode

In non-XA mode, explicit transaction functions are enabled and global transactions are disabled in a
distributed environment. The Tmax system issues explicit transaction functions, and global
transactions are disabled in a distributed environment. To enable non-XA mode, you must connect an
application to an RM and declare a transaction for the application.

In non-XA mode, a server program uses native SQL and has control over transaction involving the
RDBMS, which cannot participate in global transactions supported by the Tmax system. Server
programs running in non-XA mode are suitable for executing simple select queries or time-
consuming batch server programs. In non-XA mode, you can define transaction boundary and
control but only for direction connection between a client application and RDBMS, which does not
involve the Tmax system.

The following describes how non-XA mode differs from XA mode.

* An RDBMS is accessed through the client application’s SQL.

* The server can request a transaction but the client cannot. It is recommended to issue tpsvrinit()
and tpsvrdone() to connect the server to the database or disconnect it.

The following are steps for executing a non-XA transaction.

46 | Application Development Guide

TCS Program Pseudo Code Development Point

int tpsvrinit{int argc, char, **argv)

{

Common jobs, initialization jobs,
and logic for non-XA mode access to the DBMS
} (for XA mode, this is not required)

SVC1(TPSVCINFO *msq)
{

User Written Logic

*data access of TPSVCINFO Assigns data requested by a client

Application-related operation logic,

DB transaction(ESQL) logic, and external
integration logic

tpreturn();. or tpforward(); - Processes response data and sends it

Application Process Logic

}

int tpsvrdone()

{ Jobs that must be processed before the process
User Written Logic is terminated. Cancels termination of non-XA mode

} transactions with DBMS, and disconnect logic

(for XA mode, this is not required)

Non-XA Mode

1. Write logic in tpsvrinit() to access the DBMS.
2. Write explicit logic to roll back and release the DBMS in tpsvrdone().

3. When a Tmax server application is booted through tmboot or tmboot -S svrname, a connection is
established between the DBMS and the Tmax server application process.

4. After a connection is established, the service logic can send a transaction request, commit, or roll
back the transaction via ESQL.

The following is an example of specifying non-XA mode in the SVRGROUP section.

*SVRGROUP
svg1 NODENAME = tmax

*SERVER
svr1 SVGNAME = svq1l

: For more information about transaction-related functions, refer to Transaction
0 Management or Tmax Reference Guide.

6.3. Transaction Errors

Transactions errors involve TX and XA.

6. Transactions | 47

TX errors are defined in <usrinc/tx.h>, and XA errors are listed by database vendor. For Oracle’s XA
errors, refer to <$ORACLE_HOME/rdbms/demo/xa.h>.

6.3.1. TX Error

The following describes transaction errors.

Error Code
TX_NOT_SUPPORTED(1)

TX_OK(0)
TX_OUTSIDE(-1)
TX_ROLLBACK(-2)
TX_MIXED(-3)
TX_HAZARD(-4)
TX_PROTOCOL_ERRORC(-5)
TX_ERRORC(-6)
TX_FAIL(-7)
TX_EINVAL(-8)
TX_COMMITTED(-9)
TX_NO_BEGIN(-10)

6.3.2. XA Error

Description

Transactions are not supported in this mode.

This transaction has been completed successfully.

A local transaction is being processed.

commit cannot be executed. The transaction is rolled back.
This transaction is partly committed and partly rolled back.
This transaction has not been completed successfully.

This transaction has been abnormally called.

An error has occurred in the database.

The database has failed.

Invalid parameters have been received.

This transaction has been committed independently to the database.

This transaction has been committed, but a new transaction cannot
begin.

The following describes XA errors.

Error Code
XA_OK(0)
XAER_RMERR(-3)

XAER_NOTA(-4)
XAER_INVAL(-5)
XAER_PROTO(-6)
XAER_RMFAIL(-7)
XAER_DUPID(-8)
XAER_OUTSIDE(-9)

Description
This transaction has been successfully completed.

An error has occurred with the resource manager specified in the
OPENINFO section.

The given XID is invalid.

Invalid parameters have been received.

The routine has been invoked in an improper context.
Failed to connect to database.

A duplicate XID exists.

The database is working outside a local transaction.

48 | Application Development Guide

7. Multithreading and Multicontexting

This chapter describes how to use multithreaded and multicontexted Tmax applications.

7.1. Overview

The Tmax system supports a kernel-level thread package to enable multithreading and
multicontexting. However, you must consider logic when writing a program that creates and
removes a thread. Multithreaded and multicontexting applications are supported in C but not in
COBOL.

The multithread and multicontext functions are available for the client library in
ﬂ Tmax version 3.8.15 or later and for the server library in Tmax 5 SP2 or later.

7.2. Client Program

This section describes the program flow, implementation method, and examples of multithreaded
and multicontexted server programs.

7.2.1. Program Flow

7.2.1.1. Multithreading

A multithreaded process has more than one execution unit. A multithreaded Tmax application
enables one process to make multiple service requests concurrently.

The following figure shows the program process of a multithreaded client application, which can
make two concurrent service requests.

7. Multithreading and Multicontexting | 49

Client Process

TTE aclil-l Single
pca Connection /
(Context)

Thread-2
tpcall

Multithreaded Tmax Client Application

7.2.1.2. Multicontexting

Multicontexted programming allows a single client to make multiple connections to the Tmax
system.

The following figure shows the program flow of a multi-context client application program. One client
has multiple contexts and each context is connected to the Tmax system for transferring data back
and forth with the system. In a multicontexted environment, the Tmax system is considered a single
user.

Client Process

Thread-1 Multiple
tpcall Connections
(Context)

Thread-2
tpcall

Tmax Client Multicontext Application

50 | Application Development Guide

7.2.2. Implementation
The following routines must be included in a program to use multithreading and multicontexting.

1. Start statement
2. Implementation statement

3. End statement

For more information about the functions used to implement a client program,
0 refer to Tmax Reference Guide.

Start Statement
The following function is used to start a multithreaded and multicontexted program.

* tpstart()

int tpstart (TPSTART_T *tpinfo)

tpstart() creates a connection to the Tmax system. The first argument, TPSTART_T, has flags which
can be set to TPMultiContextS or TPSINGLECONTEXT to enable a multi-context or single-context
connection to the Tmax system. If the flag is not specified, TPSTART_T is set to TPSINGLECONTEXT
by default.

After specifying the mode, the client continues to run in that mode.

o For more information about tpstart(), refer to Tmax Reference Guide.

* tpsetctxt()

int tpsetctxt(int ctxtid, long flags)

This function is used to configure the current context. Using this function differs for the client and
server programs. For more information about the function, refer to tpsetctxt.

Implementation Statement

You can implement a multithreaded or multicontexted application by using the ATMI functions. To
use the functions successfully, you must check that you are applying them to the current context.

* Synchronous Communication

During synchronous communication between the Tmax system and the client, you can enable

7. Multithreading and Multicontexting | 51

multithreading and the multicontexting as long as a thread does not have TPINVALIDCONTEXT,
which indicates that the current context is freed by another thread.

Let's suppose that thread1 invokes tpstart() and gets context1, and thread2 invokes tpsetctxt()
and shares context1 with thread1. In this case, if thread1 finishes a task and invokes tpend(),
context1 is deleted from memory. As a result, thread2 that shared context1 is left with
TPINVALIDCONTEXT.

In single-context mode, the client can automatically start a connection to Tmax system by calling
tpcall() without using tpstart(). However, in multicontext mode, the client must issue tpstart() to
use other APIs such as tpcall().

* Asynchronous Communication

In multicontext mode, after a thread calls tpacall(), another thread can access the results by
calling tpgetrply() if the context is shared by the two threads. tpacall() must be called before
tpgetrply(). The priority of the two threads must be explicitly defined in order to get a valid result.

Similar to synchronous communication, the process is successfully completed as long as the
current context is not TPINVALIDCONTEXT.

* Transaction

If a thread starts a transaction, transactions of other threads that share the context of the thread
become a single transaction. Similar to asynchronous communication, priority must be explicitly
defined. In addition, the process is successfully completed as long as the current context is not
TPINVALIDCONTEXT.

End Statement

To end multithreaded and multicontexted mode, use tpend().

int tpend()

If tpend() is not used, the information of the context and associated threads is not deleted from
memory, which can cause a problem. To avoid this issue, use tpend() after using a context.

7.2.3. Program Example

The following are examples of a client program, a server program, and a Makefile.

Client Program

The following is an example of a client program.

/* Multi-thread/Multi-context Sample Program */

52 | Application Development Guide

/* */
/* TmaxSoft Co. / QA */
/* remarks: TOUPPER of Tmax must be started already. */

/***/

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/types.h>
#include <usrinc/atmi.h>
#fdefine MAX_CTID_CNT 400
#define MAX_CALL 1
#define NUM_THREADS 2
#fdefine NUM_CONTEXTS 40

void *mythread(void *arg);

int sveCall(char* svc, char* arg);

int newContext();
int altContext(int id);
int delContext();

#define CTID_EMPTY 0
#tdefine CTID_OCCUPIED
#define THRERR (void *)-1
#fdefine THRSUC (void *)1

extern int errno;

extern int _init_wthr_flag;
int thr_id;
TPSTART_T* tpinfo;

int main()
{
void *retVal;
char argData[100];
int tent = 0;
int scnt = 0;

/* The number of maximum contexts*/

/* The number of threads that must be created at once*/
/* The number of contexts to be created in a thread*/

pthread_t p_thread[NUM_THREADS];

memset(argData, 0x00, sizeof(argData));
strcpy(argData, . ..mtme test...");

if (tmaxreadenv("tmax.env","TMAX") == -1)

{

printf("tmax read env failed\n");

return FALSE;

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, @);

if (tpinfo == NULL)
{

printf("[THR:%d]tpinfo tpalloc fail[%d][%s]\n",pthread_self(),

7. Multithreading and Multicontexting | 53

tperrno, tpstrerror(tperrno));

}

#ifdef _MULTI_THREAD_TEST_

while(scnt<MAX_CALL)
{
for (tent=0 ; tcnt<NUM_THREADS ; tcnt++)
{
if (pthread_create(&p_thread[tcnt], NULL, mythread,argData))
{
fprintf(stderr, "mythread start fail...[%d]\n", errno);
return FALSE;
}
}
for(tent=0 ; tcnt<NUM_THREADS ; tcnt++)
{
pthread_join(p_thread[tcnt], &retVal);
}

scnt++;
sleep(1);

#telse
if (pthread_create(&p_thread[tcnt], NULL, mythread, argData))
{
fprintf(stderr, "mythread start fail...[%d]\n", errno);
return FALSE;

pthread_join(p_thread[tcnt], &retVal);
ffendif

tpfree((char *)tpinfo);
return TRUE;

/**/

/* Sub Process : myhread */

/;s khkkkhhhhdx khkkkhhhhdkx khkkkhhhhhx r\/

void *mythread(void *arg)
{
int i,j,k;

printf("[THR:%d] thread start\n",pthread_self());

#ifdef _MULTI_CONTXT_TEST_
tpinfo->flags = TPMultiContextS;
for(i=0;i<NUM_CONTEXTS/2;1i++)

{
j=newContext();
k=newContext();

svcCall("TOUPPER",arg);
delContext();

altContext(j);
svcCall("TOUPPER",arg);

54 | Application Development Guide

delContext();

}

#telse
tpinfo->flags = TPSINGLECONTEXT;
newContext();
svcCall("TOUPPER",arg);
delContext();

#endif

printf("[THR:%d] thread finish\n",pthread_self());

return THRSUC;

/**/

/* Sub Process : delContext &7

/**/

int delContext()

{
int i;
int id;
i = tpgetctxt(&id, TPNOFLAGS);
if (i <0)
{
printf("\t[delContext]tpgetctxt fail[%d][%s]\n",
tperrno, tpstrerror(tperrno));
return -1;
}
tpend();
printf("\t[THR:%d][CTXT:%d]tpend.\n",pthread_self(),id);
return 1;
}
/'k """ *kkkkkkhkhkhkhhkk *kkkkkkhkhkhkhhkk *khkkkkkhkhkhkhhkk k'/
/* Sub Process : newContext */

/**/

int newContext()

{

int i;

int id;

i = tpstart(tpinfo);

if (i <0)

{
printf("\t[newContext]tpstart fail[%d][%s]\n", tperrno, tpstrerror(tperrno));
tpfree((char *)tpinfo);

return -1;

}

i = tpgetctxt(&id, TPNOFLAGS);

7. Multithreading and Multicontexting | 55

if (i <0)

{
printf("\t[newContext]tpgetctxt fail[%d][%s]\n", tperrno, tpstrerror(tperrno));
return -1;

}

return id;

}

/**/

/* Sub Process : altContext */

/**/

int altContext(int id)

{
int 1;
int ret;
ret = tpsetctxt(id, TPNOFLAGS);
if (ret < 0)
{
printf("\t[altContext]tpsetctxt fail[%d][%s]\n", tperrno,
tpstrerror(tperrno));
tpfree((char *)tpinfo);
return -1;
}
return 1;
}

/**/

/* Sub Process : svcCall */
/**/

int svcCall(char* svc, char* arg)
{

int ret;

long rlen;

char *sbuf, *rbuf;

int 1id;

ret=tpgetctxt(&id, TPNOFLAGS);

sbuf = (char *)tpalloc("STRING", NULL, @);
if (sbuf == NULL)

{
printf("\t[svrCall]ltpalloc error[%d][%s]\n",tperrno,
tpstrerror(tperrno));
return -1;
by

rbuf = (char *)tpalloc("STRING", NULL, 0);
if (rbuf == NULL)

{
printf("\t[svrCall]ltpalloc error[%d][%s]\n",tperrno,
tpstrerror(tperrno));
return -1;
}

strepy(sbuf, (char *)arg);

56 | Application Development Guide

ret = tpcall(sve, (char *)sbuf, strlen(arg), (char **)&rbuf, (long *)&rlen,

TPNOFLAGS);
if (ret < 0)
{
printf("\t[sveCall]tpcall fail.[%d][%s]\n",tperrno,
tpstrerror(tperrno));
}
else
{
printf("\t[THR:%d][CTXT:%d]tpcall success.\n",pthread_self(),id);
}

tpfree((char *)sbuf);
tpfree((char *)rbuf);

/**/
/= END */

/**/

Server Program

The following is an example of a server program.

#include <stdio.h>
#include <usrinc/atmi.h>

TOUPPER(TPSVCINFO *msg)
{

int 1;

printf("\tTOUPPER service is started!\n");
printf("\tINPUT : data=%s\n", msg->data);

for (i = 0; i < msg->len; i++)
msg->data[i] = toupper(msg->data[il);

printf("\tOUTPUT: data=%s\n", msg->data);

tpreturn(TPSUCCESS, @, (char *)msg->data, 0,0);

Makefile

The following is an example of a Makefile used to build a client program.

TARGET = $(COMP_TARGET)
APOBJS = $(TARGET).o

TMAXLIBD = $(TMAXDIR)/1ib64

TMAXLIBS = -1lcli
#TMAXLIBS =/home/ancestor/tmax/1lib/libclid.a

7. Multithreading and Multicontexting | 57

#In case of multi_thread / multi_context
CFLAGS = -qb64 -0 -I$(TMAXDIR) -D_ MULTI_THREAD_TEST_ -D _MULTI_CONTXT_TEST_

#In case of single_thread / multi_context
CFLAGS = -qb64 -0 -I$(TMAXDIR) -D _MULTI_CONTXT_TEST_

LDFLAGS = -brtl

i
.SUFFIXES : .c

$(CC) $(CFLAGS) $(LDFLAGS) -c $<

#
client compile
#
$(TARGET): $(APOBIS)
$(CC) $(CFLAGS) $(LDFLAGS) -L$(TMAXLIBD) -o $(TARGET) $(APOB]S) $(TMAXLIBS)

#
clean:
-rm -f *.0 core $(TARGET)

7.3. Server Program

This section describes the program flow, implementation method, and examples of multithreaded
and multicontexted server programs.

7.3.1. Overview

Tmax supports multithreaded and multicontexted TCS server libraries. The UCS and RDP libraries do
not support multithreading and multicontexting functions.

The multithreaded and multicontexted server library enables a server process to handle service
requests from multiple threads and allows multiple threads to share a single context to run a service.

The standard Tmax server library does not support multicontexting. Therefore, from a user-created
thread, you cannot use APIs provided by the Tmax server library.

The following must be completed to use the multithreaded and multicontexted server library.

+ Writing the server application code using the associated APIs.

+ Linking libsvmt,so or tmaxsvrmt.dll, which is a multithreaded and multicontexted server library
when you are building a server program.

+ Setting the multithreading and multicontexting server settings in the SERVER section of the Tmax
configuration file.

o Relevant settings: SVRTYPE, MINTHR, MAXTHR, STACKSIZE, and CPC.

58 | Application Development Guide

Multithreaded programming provides many benefits. However, you must consider concurrency and
performance when writing a program to avoid low concurrency and performance issues. To use
multithreaded programming to your advantage, you need to understand both the benefits and limits
of multithreaded programming.

The following are advantages and disadvantages of using multithreaded and multicontexted server
libraries.
+ Advantages
> You can write simple codes and intuitive programming scripts.
> You can involve less server processes.
+ Disadvantages
o It is relatively difficult to manage concurrency and write code.
o It is relatively difficult to debug errors.

o If you are porting a program from another platform, you must check whether the program is
thread-safe.

o If you are connecting to RM, you must check whether it is supported for a multithreaded
program.

These benefits and limits must be considered with care before adopting
multithreaded programming. If running any server program causes an issue,

ﬂ check logs. For more information about the logs, refer to Tmax Error Message
Reference Guide.

7.3.2. Program Flow

7.3.2.1. Multithreading

Multiple threads can exist in a single process to handle multiple service requests. In the multithread
and multicontext server library, a thread is classified as a Service thread or a User-created thread.

Service Threads

A service thread is generated and managed by the multithreaded server library. It creates a specific
number of service threads to process multiple service requests concurrently as set in the
configuration file. The service threads are managed in the thread pool.

You can configure the thread pool with MINTH and MAXTHR settings of the configuration file. When
a server process is booted, the minimum number of threads is created by default. If the number of
threads becomes less than minimum number, additional threads are created to maintain the
minimum number. If the number of service requests increases and no idle threads exist in the thread
pool, additional threads are created up to the maximum number to process the services.

7. Multithreading and Multicontexting | 59

Client A

!}I_ ---'-‘? Request a service -

.'.ﬂﬂ” ﬁﬁ!.l, erver
== Process
Client 8
% Reguest a servil

L
Client C

—

IIII -“I|I|I

Tmax Server Multithread Application

When it receives service requests, the server process handles each service request in a separate
thread independently and returns the results to the client.

The basic operations of service routines and regular server programs are the same. Therefore, you
can write a service routine as you do from a regular server library. However, note that all service
routines must be thread safe to avoid one service routine being executed by multiple threads.

The following are the steps for writing a server program flow. All steps but step five are automatically
carried out by the server library.

1. At startup, a server process calls tpsvrinit().
. A thread pool is configured and service threads are created as set in the configuration file.

. Each thread created initially calls the tpsvrthrinit() function one time.

A W N

. Service threads wait in the thread pool. When a service request is received, an idle thread
executes the service routine.

Ul

. A service routine is executed by using the jobs described in Implementation Statement.

6. After calling the tpreturn() and tpforward() functions, the thread returns the process results to a
client and waits in the thread pool.

7. If the server process is terminated, all service threads created execute the tpsvrthrdone() function
and are terminated.

8. The server process calls the tpsvrdone() function and is terminated.

User Threads

User threads can be created in a service or initialization routine such as tpsvrinit() or tpsvrthrinit().
They have their own starting routine and are not in the thread pool that the server library manages.
Therefore, user threads do not handle any service request. After a user thread is created, you must
keep in mind when the thread is created and when it is to expire.

User threads created by tpsvrinit(), tpsvrthrinit(), or a service routine function work independently
from the multithreaded and multicontexted server library and therefore have no context. The user
threads can be used in place of, together with, or independently from service routines. Before

60 | Application Development Guide

creating user threads, refer to Restrictions and Considerations.

The following are the steps for program execution flow when a user thread is sharing the context of
a server thread. Steps one and eight are executed automatically by the server library.

1. A service request is received, and a service thread performs a service routine.
. The service routine calls tpgetctxt() to retrieve its context ID.

. An existing user thread is used or a new user thread is created in the service routine.

A W N

. The user thread receives the context ID from the service thread and calls tpsetctxt() to share the
context.

5. Each thread performs its defined routine. Both the user thread and the service thread can call
ATMI APIs such as tpcall() and tpacall().

6. Before a service thread calls tpreturn() or tpforward(), the following must be completed.
o Terminating all synchronous, asynchronous, and interactive communications.
o Committing or rolling back an ongoing transaction.
o Calling tpsetctxt() from the user thread to stop sharing the context

7. The user thread checks its termination time.

8. The service thread executes tpreturn() and is returned to the thread pool to wait for the next
service request.

7.3.2.2. Multicontexting

A context in a server library is a set of data required to process a service request. A multithreaded
environment requires multicontexting so that each thread can process a service request
independently.

Each service thread in the thread pool has its own context by default. In a multicontexted
environment, multiple threads can share a single context. However, user threads do not have their
own context. For a user thread to call Tmax APIs such tpcall(), the user thread must share the context
of a service thread by calling tpgetctxt() or tpsetctxt(). If a user thread calls a Tmax API without
sharing a context, the call fails and returns the TPEPROTO error code.

In the multithreaded and multicontexted server library, a context includes data about transactions
and communication mode such as synchronous, asynchronous, and interactive communication. Such
data is shared when the context of a service thread is shared with a user thread.

7. Multithreading and Multicontexting | 61

Server

— Other
Application : Resources
Client A @
o | Reques:a read]
I \ »| Svr Thread | ’
= -

1 Context sharing

App Thread

Tmax Server Multicontext Application

7.3.3. Implementation
The following APIs can be used when you are writing multithreaded and multicontexted server

programs.

Related API
The following are the APIs that can be used to write a server program.

* tpsvrthrinit

int tpsvrthrinit(int argc, char *argv[])

Available only in a multithreaded and multicontexted server, tpsvrthrinit initializes a service
thread managed by the thread pool after the tpsvrinit function is called. For more information
about tpsvrthrinit(), refer to tpsvrthrinit.

* tpsvrthrdone

int tpsvrthrdone()

Available only in a multithreaded and multicontexted server. As a server process is terminated,
before calling tpsvrdone, tpsvrthrdone terminates service threads. For more information about
tpsvrthrdone(), refer to tpsvrthrdone.

. tpsetctxt

int tpsetctxt(int ctxtid, long flags)

tpsetctxt specifies a context for use. The syntax of this function varies with the client program
and the server program. For more information about tpsetctxt(), refer to tpsetctxt.

62 | Application Development Guide

« tpgetctxt

int tpgetctxt(int *ctxtid, long flags)

tpgetctxt returns as the first parameter the context ID set for the thread that called this function.
For more information about tpgetctxt(), refer to tpgetctxt.

More APIs are available in the server library. For more information about APIs
ﬂ used to implement a program, refer to Tmax Reference Guide.

Restrictions and Considerations

There are are some restrictions and considerations you must keep in mind when developing a server
program.

The following restrictions must be considered when APIs such as tpsetctxt() and tpgetctxt() are
called to be used between a service thread and a user thread.

+ User thread creation and termination times must be carefully and logically specified. If a service
routine only creates a user thread but does not delete it, calling the service routine can result in a
large number of threads, which negatively affects system performance.

* Because it does not have a context by default, a user thread must share the context of a service
thread by calling tpsetctxt() to communicate with Tmax.

* The tpreturn() or tpforward() function must be called by a service thread. User threads cannot call
tpreturn().

* When tpreturn() or tpforward() is called, if any synchronous, asynchronous, or interactive
communication is incomplete, the TPESVCERR error code is returned to the client that has called
the function and the service fails.

* The context that is used by a user thread must be returned to the service thread before tpreturn()
or tpforward() is called. You must use tpsetctxt() to set the context to TPNULLCONTEXT so a user
thread releases the context it is sharing before calling tpreturn(). Alternatively, you can specify a
different context to be used by the user thread so that it does not share the context with the
service thread that calls tpreturn(). Otherwise, tpreturn() returns the TPESVCERR error code to the
client and the service fails.

* The tpsetctxt() function cannot be called from a service thread. If it is called from a service thread,
the call returns the TPEPROTO error code and the service fails.

+ A thread that has been started in one of the threads that share a context can be committed or
rolled back from only one of them irrespective of where the transaction began.

The following are other considerations.

* When a service timeout occurs in a multithreaded or multicontexted server, the server process is
immediately terminated. Other service requests currently being processed are also canceled

7. Multithreading and Multicontexting | 63

because it is difficult to determine if a thread was suspended due to a timeout while running a
service. For example, if a thread is suspended after occupying synchronization resources or
receiving dynamically allocated memory, resolving such an issue requires complex code and
abnormal operations may occur.

* The tpstart() and tpend() functions used by clients cannot be used.

* Only services provided by its own server process can be called in synchronous and asynchronous
communications. In this situation, you must prepare for a deadlock resolution process (for
example, setting a service timeout for related services) in case a deadlock occurs.

7.3.4. Service Processing Program Example

The following are examples of a client program, a server program, and a Makefile.

Server Program

The following is an example of a server program.

#include <stdio.h>
#include <usrinc/tmaxapi.h>

int tpsvrinit(int arge, char **argv)

{
printf("tpsvrinit()");
return 1;
}
int tpsvrthrinit(int argc, char **argv)
{
printf("tpsvrthrinit()");
return 1;
+
MTOUPPER(TPSVCINFO *msq)
{
int 1;
printf("MTOUPPER service is started!");
for (i = 0; i < msg->len; i++)
msg->data[i] = toupper(msg->data[il);
tpreturn(TPSUCCESS, @, msg->data, 0, 0);
+
MTOLOWER(TPSVCINFO *msq)
{
int 1;
printf("MTOLOWER service is started!");
for (i = 0; i < msg->len; i++)
msg->data[i] = tolower(msg->data[i]);
tpreturn(TPSUCCESS,@,msg->data, 0, 0);
}

int tpsvrthrdone()
{

64 | Application Development Guide

printf("tpsvrthrdone()");
return 1;

}

int tpsvrdone()

{
printf("tpsvrdone()");
return 1;

Makefile

The following is an example of a server Makefile.

TARGET = $(COMP_TARGET)
APOBJS = $(TARGET).o
NSDLOBJ = $(TMAXDIR)/1ib/sdl.0

LIBS = -1svrmt -1nodb
0BJS = $(APOBJS) $(SvVCTOBI)
SVCTOBJ = $(TARGET) svctab.o

CFLAGS = -I$(TMAXDIR) -D_MCONTEXT

APPDIR = $(TMAXDIR)/appbin
SVCTDIR = $(TMAXDIR)/svct
LIBDIR = $(TMAXDIR)/1ib

i
.SUFFIXES : .c

$(CC) $(CFLAGS) -c $<

#
server compile
#

$(TARGET): $(0BIS)
$(CC) $(CFLAGS) -L$(LIBDIR) -0 $(TARGET) $(0BIS) $(LIBS) $(NSDLOBJ)
mv $(TARGET) $(APPDIR)/.
cp $(TARGET).c $(APPDIR)/.
rm -f $(0BJS)

$(APOBIS): $(TARGET).c
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
cp -f $(SVCTDIR)/$(TARGET) svctab.c .
touch ./$(TARGET) svctab.c
$(CC) $(CFLAGS) -c ./$(TARGET) svctab.c

clean:
-rm -f *.0 core $(APPDIR)/$(TARGET)

7. Multithreading and Multicontexting | 65

Configuration

The following is an example of a configuration file.

*DOMAIN
tmax1 SHMKEY = 77214, MINCLH = 1, MAXCLH = 1,
TPORTNO = 8888, BLOCKTIME = 30, MAXCACALL = 1024

*NODE

tmax TMAXDIR = "/home/test/tmax",
APPDIR = "/home/test/tmax/appbin",
PATHDIR = "/home/test/tmax/path",
TLOGDIR = "/home/test/tmax/log/tlog",
ULOGDIR = "/home/test/tmax/log/ulog",
SLOGDIR = "/home/test/tmax/log/slog",
MAXCPC = 200

*SVRGROUP
svgl NODENAME = tmax

*SERVER

svrmt1 SVGNAME = svg1, SVRTYPE = "STD_MT",
MIN = 1, MAX = 1,
CPC = 10, MINTHR = 5, MAXTHR = 10

*SERVICE
MTOUPPER SVRNAME = svrmt1, SVCTIME = 20
MTOLOWER SVRNAME = svrmt1, SVCTIME = 20

7.3.5. Context-Sharing Program Example

In this example, a client calls the service named MSERVICE. A service routine creates a user thread,
which shares the context of the service thread and simultaneously requests a service through tpcall().

Server Program

The following is an example of a server program.

#include <stdio.h>

#include <string.h>
#include <pthread.h>
#include <usrinc/tmaxapi.h>

void * THREAD(void *arg);

typedef struct {
int ctxtid;
TPSVCINFO *svcinfo;
} param_t;

int testcall(char *service, char *msg, long flags)

{

char *sndbuf, *rcvbuf;

66 | Application Development Guide

long sndlen, rcvlen;

sndlen = strlen(msg);

if((sndbuf = (char *) tpalloc("STRING", NULL, sndlen)) == NULL) {
printf("Error allocating send buffer, [tperrno:%d]", tperrno);
return -1;

}

if((revbuf = (char *) tpalloc("STRING", NULL, @)) == NULL) {
printf("Error allocating recv buffer, [tperrno:%d]", tperrno);
tpfree(sndbuf);
return -1;

}

strepy(sndbuf, msg);
if(tpcall(service, sndbuf, sndlen, (char **)&rcvbuf, &rcvlen, flags) == -1)
printf("tpcall(%s) failed, [tperrno:%d, tpurcode:%d]", service, tperrno,
tpurcode);
else
printf("tpcall(%s) success, [rcvbuf:%s]", service, rcvbuf);

tpfree(sndbuf);
tpfree(rcvbuf);
return 0;

}

MTOUPPER(TPSVCINFO *svcinfo)
{

int i;

printf("MTOUPPER service is started! [len:%d, data:%s]\n", svcinfo->len,
svcinfo->data);

for (i = @; i < svcinfo->len; i++)
sveinfo->datal[i] = toupper(svcinfo->datal[il);

sleep(1);

printf("MTOUPPER service is finished!\n");

tpreturn(TPSUCCESS, @, svcinfo->data, 0, 0);
}

MTOLOWER(TPSVCINFO *svcinfo)
{

int i;.

printf("MTOLOWER service is started! [len:%d, data:%s]\n", svcinfo->len,
svcinfo->data);

for (i = 0; i < svcinfo->len; i++)
svcinfo->data[i] = tolower(svcinfo->datali]);

sleep(1);

printf("MTOLOWER service is finished!\n");

tpreturn(TPSUCCESS, @, (char *)svcinfo->data, 0, 0);
}

MSERVICE(TPSVCINFO *svcinfo)

{
pthread_t tid;
param_t param,;

7. Multithreading and Multicontexting | 67

printf("MSERVICE service is started!");

tpgetctxt(¶m.ctxtid, 0);
param.svcinfo = svcinfo;
pthread_create(&tid, NULL, THREAD, ¶m);

testcall("MTOLOWER", svcinfo->data, 0);
pthread_join(tid, NULL);

printf("MSERVICE service is finished!");
tpreturn(TPSUCCESS, @, svcinfo->data, 0L, 0);

}
void *THREAD(void *arqg)
{
param_t *param;
TPSVCINFO *svcinfo;
param = (param_t *)arg;
svcinfo = param->svcinfo;
if (tpsetctxt(param->ctxtid, 0) == -1) {
printf("tpsetctxt(%d) failed, [tperrno:%d]", param->ctxtid, tperrno);
return NULL;
}
testcall("MTOUPPER", svcinfo->data, 0);
if (tpsetctxt(TPNULLCONTEXT, @) == -1) {
printf("tpsetctxt(TPNULLCONTEXT) failed, [tperrno:%d]", tperrno);
return NULL;
}
return NULL;
}
int tpsvrinit(int argc, char *argv[])
{
printf("do tpsvrinit()");
return 1;
}
int tpsvrthrinit(int argc, char *argv[])
{
printf("do tpsvrthrinit()");
return 1;
}
int tpsvrthrdone(void)
{
printf("do tpsvrthrdone()");
return 1;
}
int tpsvrdone(void)
{
printf("do tpsvrdone()");
return 1;
}

68 | Application Development Guide

Makefile

Refer to Makefile.

Configuration File

The following is an example of a configuration file.

*DOMAIN
tmax1 SHMKEY = 77214, MINCLH = 1, MAXCLH = 1,
TPORTNO = 8888, BLOCKTIME = 30, MAXCACALL = 1024

*NODE

tmax TMAXDIR = "/home/test/tmax",
APPDIR = "/home/test/tmax/appbin",
PATHDIR = "/home/test/tmax/path",

TLOGDIR = "/home/test/tmax/log/tlog",
ULOGDIR = "/home/test/tmax/log/ulog",
SLOGDIR = "/home/test/tmax/log/slog",
MAXCPC = 200

*SVRGROUP

svgl NODENAME = tmax

*SERVER

svrmt2 SVGNAME = svg1, SVRTYPE = "STD_MT",
MIN =1, MAX = 1,
CPC = 10, MINTHR = 5, MAXTHR = 10

*SERVICE

MSERVICE SVRNAME = svrmt2, SVCTIME = 10
MTOUPPER SVRNAME = svrmt2

MTOLOWER SVRNAME = svrmt2

7. Multithreading and Multicontexting | 69

8. Security System

This chapter describes the security system provided by Tmax.

8.1. Overview

Tmax provides a three-level security system: system access control, user authentication, and service
access control. The security level can be set with the SECURITY item in the DOMAIN section of the
Tmax configuration file. The following values are available.

Value Description
DOMAIN_SEC System access control
USER_AUTH User authentication
ACL | MANDATORY Service access control
NO_SECURITY No security

For more information about creating each file (group, user, and acl) and the
ﬂ relevant commands, refer to Tmax Reference Guide.

8.2. Level 1 Security (System Access Control)

The level-one security function, system access control, restricts a client’s access to the Tmax system.
The client must enter a password required to access the Tmax system, which is used as the password
for the account defined in OWNER of the DOMAIN section.

Before registering the password in Tmax, the client must set the password by using the mkpw utility.
After system access control is set, the client must register the password with dompwd of the
TPSTART_T structure when tpstart() is called. The client must enter the correct password to log in to
the Tmax system. If SECURITY is set to NO_SECURITY, the client does not need to set a value for
dompwd, to which NULL is passed.

The following is a Tmax configuration file that uses system access control.

#fFor system authentication, set SECURITY to "DOMAIN_SEC".

*DOMAIN
resl SHMKEY = 66999, MAXUSER = 256,
SECURITY = "DOMAIN_SEC", OWNER = tmax
*NODE
Tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin"
*SVRGROUP
svgl NODENAME = tmax

70 | Application Development Guide

*SERVER
upper SVGNAME

svgl, RESTART =Y, MAXRSTART = 3

*SERVICE
TOUPPER SVRNAME = upper
TOLOWER SVRNAME = upper, PRIO = 100

The following is an example of specifying a password by using dompwd of the TPSTART_T structure.

main(int argc, char *argv[])

{
TPSTART_T *tpinfo;

if ((tpinfo = (TPSTART_T *)tpalloc(“TPSTART”, NULL, sizeof(TPSTART_T)))== NULL){
error processing routine

}
strepy(tpinfo->dompwd, “tmax1234”);
if (tpstart(tpinfo) == -1){

error processing routine

}

8.3. Level 2 (User Authentication)

The level-two security, user authentication,allows only an authorized user to access the Tmax system.

In order to connect to Tmax by calling tpstart(), a client must register usrname and usrpwd of the
TPSTART_T structure. usrname is the user name of the account authenticated by Tmax and usrpwd
is the account password. A username and password must be specified by using the mkpw utility.
When user authentication is enabled, the client can log into the system only with a valid user name
and password.

Because user authentication includes system access control, the client must register a valid dompwd
by using the mkpwd utility.

6 The password file must be created and updated before Tmax is configured.

The following is a Tmax configuration file that uses user authentication.

#In case of User Authentication, set "USER_AUTH”to the SECURITY item.

*DOMAIN

resi SHMKEY = 66999, MAXUSER = 256,
SECURITY = "USER_AUTH", OWNER = tmax

*NODE

8. Security System | 71

tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin"

*SVRGROUP

svgl NODENAME = tmax

*SERVER

upper SVGNAME = svg1, RESTART =Y, AXRSTART = 3
*SERVICE

TOUPPER SVRNAME = upper
TOLOWER SVRNAME = upper, PRIO = 100

The following is an example of setting usrname and usrpwd of the TPSTART_T structure.

main(int argc, char *argv[])

{

TPSTART_T *tpinfo;
if((tpinfo = (TPSTART_T *)tpalloc(“TPSTART”, NULL,sizeof(TPSTART_T))) == NULL){
error processing routine

}

strepy(tpinfo->dompwd, “tmax12347);
strepy(tpinfo->usrname, “gdhong”) ;
strepy(tpinfo->usrpwd, “hong00@9”) ;

if (tpstart(tpinfo) == -1){
error processing routine

}

8.4. Level 3 (Service Access Control)

The level-three security, service access control, restricts an authorized client's access to services.

Service access control classifies users into groups. A service is available only to users who belong to a
group that is authorized for the service. Therefore, service access control requires a group file, one or
more user files that belong to the group file, and an ACL file, which is used for associating a user
group with certain access permissions to use services. Before using service access control, you must
set the SECURITY item to ACL or MANDATORY.

Service access control includes both system access control and user authentication security
measures. Therefore, if the parameter in SECURITY is set to ACL (or MANDATORY), a client must pass
the level one and two security measures by using the dompwd, usrname, and usrpwd to connect to
the Tmax system and gain permission to acces services.

The following is a Tmax configuration file that uses service access control.

*DOMAIN

72 | Application Development Guide

tmax1

*NODE
tmaxh4

tmaxh?

*SVRGROUP
svgl
svg2
svg3

*SERVER

svr1001
svr_ucs]
Svr_ucs?2

*SERVICE
TOUPPER1
TOUPPER2
LOGINT
LOGIN2

<Group File>

grpo:
grpl:
grp2:
grp3:
grp4:
grp5:

X X X X X X

<User File>

starbj0:1002:1

starbj1:1:1
starbj2:2:2
starbj3:3:3
starbj4:4:4
starbj5:5:5

<ACL File>

SHMKEY = 78350,

TPORTNO = 8350, SECURITY = ACL, OWNER = starbj@, RACPORT = 3155

TMAXDIR =
APPDIR =

TMAXDIR
APPDIR

NODENAME
NODENAME
NODENAME

SVGNAME =
SVGNAME =
SVGNAME =

SVRNAME =
SVRNAME =
SVRNAME =
SVRNAME =

TOUPPERT:SERVICE:1
TOUPPER3:SERVICE:5
TOUPPERS5:SERVICE:5

"/EMC@1/starbj81/tmax",
"/EMCO1/starbj81/tmax/appbin"

"/datal/starbj81/tmax",
"/datal/starbj81/tmax/appbin”,

"tmaxh4", COUSIN =
"tmaxh2", LOAD = 5

"tmaxh4"

svgl
svg3, CLOPT
svg3, CLOPT

svro1001
svré1001
svr_ucs]
Svr_ucs?

"-u 35", SVRTYPE
"-u 37", SVRTYPE

"svg2", LOAD = 1

UCS, MIN
UCS, MIN

1, MAX
1, MAX

8. Security System | 73

<Client Program>

int main()

{

strepy(tpinfo->usrname, "starbj1");
strepy(tpinfo->dompwd, "starbje");
strepy(tpinfo->usrpwd, "starbj1");

if(tpcall("TOUPPERT", sndbuf, @, &rcvbuf, &rcvlen, 0)==-1){

error routine..

}

74 | Application Development Guide

9. Client API

This chapter describes the APIs used in client program development.

9.1. Overview

The following is a list of functions available for client program development. For more information
about the functions, refer to Tmax Reference Guide.

¢ Connection and Disconnection

Function Description
tpstart Connects client to the Tmax system.
tpend Disconnects client from the Tmax system.

* Synchronous Communication

Function Description

tpcall Sends a service request through synchronous communication and
waits for a reply.

* Asynchronous Communication

Function Description

tpacall Sends a service request message and directly returns without
waiting for a reply.

tpgetrply Receives a reply for the service that was requested through the
tpacall() function.

tpcancel Cancels a server or client reply.

* Interactive Communication

Function Description

tpconnect Establishes a connection and starts communication.

tpsend Sends a message from the connection controller.

tprecv Receives a message from the connection controller.

tpdiscon Server and client close the interactive communication connection.

* Unsolicited Message Processing

9. Client API | 75

Function

tpsetunsol

tpgetunsol

* Timeout Change

Function

tpset_timeout

tpsetsvctimeout

+ Buffer Management

Function

tpalloc
tprealloc

tpfree

tptypes

* Transaction Management

Function
tx_begin
tx_commit
tx_rollback

tx_set_transaction_timeout

tx_set_transaction_control

tx_set_commit_return

tx_info

* RQ System

Function
tpenq
tpdeq

76 | Application Development Guide

Description

Used by the client to set the routine that processes unsolicited
messages.

Processes unsolicited messages.

Description

Used by the client and server to set the blocking timeout.

Called in a service to set the service timeout.

Description

Used by the client and server to allocate a buffer.
Used by the client and server to reallocate a buffer.

Used by the client and server to release the memory allocated to
the buffer.

Used by the client and server to provide information about the
buffer type and sub-type.

Description

Used by the client and server to start a global transaction.
Used by the client and server to commit a transaction.
Used by the client and server to roll back a transaction

Used by the client and server to set the transaction_timeout
property with a timeout value.

Used by the client and server to set the transaction_control
property with a control value.

Used by the client and server to set the commit_return property.

Used by the client and server to return the global transaction
information.

Description

Used by the client and server to store data in RQ.

Used by the client and server to load data from RQ.

Function

tpgstat

tpextsvcname

* Functions using Events

Function

tpsubscribe

tpunsubscribe

tppost

¢ Broadcast and Multicast

Function

tpbroadcast

Description

Used by the client and server to request the statistics of the data
stored in RQ.

Used by the client and server to extract the service name of data
that is read from the RQ using tpdeq.

Description

Used by the client and server to register a request for the message
of a specific event.

Used by the client and server to unregister the request for the
message of a specific event.

Used by the client and server to generate a specific event and send
a message.

Description

Used by the client and server to send an unsolicited message to
other clients.

* Windows Environment Programming

o tmaxmt.dll

Function

WinTmaxAcall

WinTmaxAcall2

o WinTmax.dll

Function

WinTmaxStart

WinTmaxEnd

WinTmaxSetContext

WinTmaxSend

Description

Connects to Tmax to request a service, replies to the Windows
procedure with the result, and then closes the connection.

Connects to Tmax to request a service and receives the reply
with a callback function.

Description

Creates a thread to process a message and initializes the used
memory.

Closes the thread that processed a message and releases the
used memory.

Sets the Windows and message number to send data received
by Tmax.

Allows a client to call a service and process other jobs
immediately.

9. Client API | 77

* Multithread and Multicontext

Function Description
tpgetctxt Returns the current context.
tpsetctxt Sets the current context.

9.2. Connection and Disconnection

The following describes functions that are used to connect to Tmax and disconnect from Tmax.

9.2.1. tpstart

Connects a client to a Tmax system. Before using ATMI functions to process service requests or
transactions, a client must use tpstart() to connect to a Tmax system.

Before tpstart() is called, if another ATMI function (tpalloc() or tpcall()) is called, tpstart(NULL) is called
internally. To disable this action, set the TMAX_ACTIVATE_AUTO_TPSTART environment variable to N.
In such a case, if another ATMI function is called, a TPEPROTO error is returned without calling
tpstart(NULL) internally.

To connect to a Tmax system by using tpstart(), the IP and port number of the server where the Tmax
system is installed are required. If tpstart() is returned successfully, the client can send an initial
service request or can define a transaction. In this case, if tpstart() is called again, a TPEPROTO error
occurs.

The following describes environment variables required to find server information.

Variable Description

TMAX_HOST _ADDR IP address of a node to which a client is to be connected. This variable
is used for a client to be internally connected to a server system when
tpstart() is called.

TMAX_HOST_PORT Port number of a node to which a client is to be connected. This
variable is used together with a TMAX_HOST_ADDR for a client to be
internally connected to a server system when tpstart() is called.

The port number must be defined in a TPORTNO in a Tmax
configuration file. When both a client and a server reside in a node, it
is more efficient to use a domain socket rather than a TCP/IP socket
when processing a client request. In this case, replace the TPORTNO
value with PATHDIR. Refer to the TPORNO item in the DOMAIN and
NODE sections of a Tmax configuration file.

78 | Application Development Guide

Variable Description

TMAX_BACKUP_ADDR Alternative Tmax system node to use when the node specified by
TMAX_HOST_ADDR fails. The client tries to connect to the node
specified by TMAX_HOST_ADDR, and, if the attempt fails, to the node
specified by TMAX_BACKUP_ADDR.

TMAX_BACKUP_PORT Tmax system port number of the node with a TMAX_BACKUP_ADDR
address.

TMAX_CONNECT_TIMEOUT Timeout value for connecting to a Tmax system in microseconds.
(Example: 3.5)

* Prototype

#include <atmi.h>
int tpstart (TPSTART_T *tpinfo)

* Parameters

A tpinfo is a pointer for a TPSTART_T structure. This structure uses a TPSTART buffer type, which
must be allocated by a tpalloc() before tpstart() is called. After tpstart() has been called, the
allocated buffer must be freed by using tpfree(). When connecting to the system, a client
transfers necessary information with the tpinfo parameter, which contains client information,
unsolicited message processing methods, and security information.

You can set tpinfo to NULL. In this case, cltid, dompwd, usrname, and usrpwd are given zero-
length strings, the Tmax security features is not enabled, and flags are not selected.

The following shows a TPSTART_T structure.

struct TPSTART_T{
char cltid[MAXTIDENT+2]; /* Client name (tpbroadcast())*/
char dompwd[MAX_PASSWD_LENGTH+2]; /*Password for system access security*/
char usrname[MAXTIDENT+2]; /*Account for user authentication security*/
char usrpwd[MAX_PASSWD_LENGTH+2]; /*Password for user authentication security*/
int flags; /*Unrequested message type and system access method*/

Y
Member Description
cltid Character string ending with a NULL value that can be up to 30 characters
long. A cltid is a name defined by an application program and is used to
specify a client to which tpbroadcast() sends unsolicited messages.
dompwd Password used for system access control of the Tmax security system. It

registers a password for an account set to an OWNER item of the DOMAIN
section of the Tmax configuration file.

9. Client API | 79

Member

usrname

usrpwd

flags

¢ Return Values

Value
Oor1

* Errors

Description

User name used for user authentication of the Tmax security system. A
usrname must be an account name registered in the passwd file of a Tmax
system.

Password for an account. When user authentication is required, a client must
register a usrname and usrpwd to connect to the Tmax system and access
services. For information about security settings, refer to the SECURITY item
in the DOMAIN section of the source config file.

Used to determine how to handle unsolicited notifications and how to access
the system.

The following values are available.

* TPUNSOL_POLL: receives unrequested messages.

* TPUNSOL_HND: sets a function that receives unrequested messages. For
more information, refer to tpsetunsol.

* TPUNSOL_IGN: ignores unsolicited messages. (Default)

Description

A function call was successful. 0 is returned to the primary host and 1 to a
backup host.

A function call failed. A tperrno is set to an error code.

The following is a list of error codes to one of which tperrno is set to when tpstart() fails.

Error Code

[TPEINVAL]

[TPEITYPE]
[TPEPROTO]

[TPESYSTEM]

[TPEOS]

* Examples

Description

An invalid parameter. For example, a tpinfo is NULL or not a pointer for a
TPSTART_T.

A tpinfo is not a pointer for a TPSTART_T structure.

A tpstart() was called from an invalid state. For example, a tpstart() was called
in a server program, or it was called after a connection was already
established.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred. Environment variables may be invalid.
For example, a connection failed because a TMAX_HOST_ADDR or
TMAX_HOST_PORT was invalid.

80 | Application Development Guide

#include <stdio.h>
#include <usrinc/atmi.h>
void main(int argc, char *argv[])

{
int ret;
char *buf;
long len;
TPSTART_T *tpinfo;

tpinfo = (TPSTART_T *)tpalloc(“TPSTART”, NULL, sizeof(TPSTART_T));
if (tpinfo==NULL) { error processing }

strepy(tpinfo->cltname, “cli1”);
strepy(tpinfo->usrname, “navis”);
strepy(tpinfo->dompwd, “tmax”);
tpinfo->flags = TPUNSOL_HND;
ret=tpstart(tpinfo);

if (ret==-1) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

ret=tpcall(“SERVICE”, buf, 20, &buf, &len, TPNOFLAGS);
if (ret==-1) { error processing }

data process....
tpfree((char *) buf);
tpend();

* Related Funcitons

tpend()

9.2.2. tpend

Disconnects a client from a Tmax system. If a client is in a transaction mode, a transaction will be
rolled back automatically. If a tpend() is returned successfully, a caller will not communicate with any
other programs and will not participate in any transactions. Maintained interactive connections will
be terminated immediately.

If a tpend() is called more than once (if called again after already being disconnected from a Tmax
system), a -1 value will be returned without affecting a system.

* Prototype

include <atmi.h>
int tpend (void)

¢ Return Values

9. Client API | 81

Value

* Errors
When a tpend() fails

Error Code
[TPEPROTO]

[TPESYSTEM]

[TPEOS]

* Examples

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <usrinc/at

void main(int argc,
{
char *sndbuf
long rcvlen,
int ret;

Description

A function call failed. tperrno is set to an error code.

to execute, a tperrno will be set to one of the following values:

Description

tpend() was called from an invalid state. For example, a caller is a server or a
tpend() was called after being disconnected.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred.

mi.h>
char *argv[])

, *rcvbuf;
sndlen;

ret=tpstart((TPSTART_T *)NULL)
if (ret==-1) {error processing }

buf = (char *)tpalloc(“STRING”, NULL, @)
if (buf=NULL) { error processing }

data process

ret=tpcall(“SERVICE”, buf, @, &buf, &len, TPNOFLAGS);

if (ret==-1) {
data process
printf(“ data:

tpfree((char *)
tpend();

* Related Functions

tpstart()

error processing }

%s\n”, buf);
buf);

82 | Application Development Guide

9.3. Synchronous Communication

The following describes functions that are used for synchronous communication.

9.3.1. tpcall

Sends a service request to a svc service named through synchronous communication and receives a
reply. It works similar to calling a tpgetrply() successively after calling a tpacall().

If tx_time expires after tx_begin() is called, calling tpcall() occurs the TPETIME error.

* Prototype

include <atmi.h>

int tpcall (char *svc, char *idata, long ilen, char **odata, long *olen,

* Parameters

Parameter

SvC

idata

ilen

*odata

long flags)

Description

Service that is requested, which must be one provided by a Tmax application
server program.

Pointer to service request data. The buffer must have been allocated by a
tpalloc(). The type and subtype of an idata must be supported by the service
specified by svc.

Data length.

« If an idata points to a variable-length buffer type, such as STRING,
STRUCT, X_COMMON, or X_C_TYPE, an ilen is ignored and set to 0 by
default.

« If an idata points to a fixed-length buffer type, such as X_OCTET, CARRAY,
or MULTI STRUCTURE, an ilen cannot be set to 0.

+ If anidata is NULL, ilen is ignored.

Pointer to reply data with the length of a value specified by *olen. *odata
must have been allocated by using tpalloc().

If the same buffer is used to both send and receive data, *odata must be set
to the idata address. Before tpcall() is completed, the reply buffer size of
*odata and the value received by *olen are compared to determine whether
to change the reply buffer size. If the reply buffer is smaller than the value of
*olen, the reply buffer size is enlarged. Otherwise, the reply buffer size is
unchanged.

9. Client API | 83

Parameter Description

*odata If tpcall() is called when idata and *odata are using the same buffer, the
idata address becomes invalid if the reply buffer is too big or if any other
occasion causes invalidation.

If a *olen is returned as 0, no data is received and *odata and the buffer it
refers to are not changed. If *odata or *olen is NULL, it is an error.

*olen Reply data length in a *odata.

flags Communication mode option.
The following values are available.
* TPNOTRAN

If a program calls tpcall() to request the svc service with the flag set to
TPNOTRAN in transaction mode, the service is executed outside the
transaction. Therefore, to call a service that does not support
transactions, set the flag to TPNOTRAN to call a tpcall() in transaction
mode. When tpcall() is called in transaction mode, it is subject to a
transaction timeout (TXTIME) even if the flag is set to TPNOTRAN. For
example, a tpacall with a TPNOTRAN flag fails after a transaction times
out without calling a service. If a service called with the flag set to
TPNOTRAN fails, there is no effect on the current transaction of the
caller.

* TPNOCHANGE

If a TPNOBLOCK flag is set and a blocking condition (for example, the

internal buffer is full with messages to send) occurs, a request fails. A

TPNOCHANGE is applied only to a Tx in a tpcall(). If a tpacall() is called
without setting a TPNOBLOCK flag and a blocking condition occurs, a

caller must wait until it is unblocked or until a transaction or blocking

timeout occurs.

* TPNOTIME

A caller awaits a reply indefinitely and a blocking timeout is ignored.
Timeout will occur even if a tpcall() is called during a transaction timeout.

» TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without the flag set to TPSIGRSTRT, a function fails and tperrno is set to
TPGOTSIG.

¢ Return Values

84 | Application Development Guide

Value

* Errors

Description

A function call was successful.

A function call failed, and a tperrno is set to an error code.

If a tpcall() fails, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPENOENT]
[TPEITYPE]
[TPEOTYPE]

[TPETRAN]

[TPETIME]

[TPESVCFAIL]

[TPESVCERR]

Description

Invalid parameter or flag. For example, svc is NULL or data points to a buffer
that was not allocated by a tpalloc().

The specified svc does not exist.
The svc does not support the idata type or subtype.

A function caller does not know the type or subtype of a reply buffer, or flags
were set to a TPNOCHANGE but the type or the subtype of the buffer
pointed to by *odata does not match that of the reply buffer. In this case,
the data in *odata and *olen are not changed.

If a caller requests a service in transaction mode, the transaction is rolled
back because a reply is ignored.

A xa_start failed due to an error in a database while invoking a transaction
service.

A transaction timeout occurred when a caller was in transaction mode, and
the transaction was rolled back. If a caller is not in transaction mode and if
neither TPNOTIME nor TPNOBLOCK is specified, a blocking timeout occurs.
In that case, *data and *len are not changed. If a transaction timeout occurs,
any attempt to receive a new service request or await a reply causes a
[TPETIME] error and fails until the transaction is rolled back.

A service routine sent a reply by calling a tpreturn() with a TPFAIL because of
an application error. Service reply data can be accessed through *odata.

Communication may be attempted before a transaction is rolled back due to
a transaction timeout. Such a communication attempt may succeed or fail.
For the communication to succeed, you must specify TPNOTRAN. All
operations performed while a caller is in transaction mode are rolled back
when the transaction is complete.

An error occurred during the execution of a service routine or a tpreturn()
(for example, a wrong argument was passed). If this error occurs, no reply
data is returned, and neither *odata nor *olen is changed.

9. Client API | 85

Error Code Description

[TPESVCERR] This error occurs when a buffer that was not allocated by a tpalloc is used,
when the Tmax header of an allocated buffer is affected by an invalid pointer
such as memcpy, when a call descriptor of a tpacall or a tpconnect is
returned, or when a service includes invalid interactive data while in recv
mode. A client will receive this error when attempting to execute a tpreturn.

When a TPEV_DISCOMN event occurs, which is equivalent to a
TPEV_DISCOMN that is returned to a service program after a client forcefully
disconnects a conversation, a client receives a tperrno set to TPESVCERR
through a tpreturn of a service.

If the caller is running a transaction, further communication may be
attempted before a transaction is rolled back due to a transaction timeout.
Such a communication attempt may succeed or fail. For the communications
to succeed, you must specify TPNOTRAN. All operations performed while a
caller is in transaction mode are rolled back when a transaction is complete.

A SVCTIMEOUT can be specified for each service. If a service execution time
exceeds a specified limit, service execution stops and returns a TPESVCERR.
If a SVCTIMEOUT occurs, a tpsvctimeout() is called. Operations such as buffer
lock releases and logging can be performed during a tpsvctimeout() as

needed.
[TPEBLOCK] Blocking occurred while the flag is set to TPNOBLOCK.
[TPGOTSIG] A signal was received while the flag is not set to TPSIGRSTRT.
[TPEPROTO] A tpcall() was called in an invalid state.
[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a

system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>

void main(int argc, char *argv[])
{

int ret;

char *sndbuf, *rcvbuf;

long sndlen, rcvlen;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

sndbuf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (sndbuf==NULL) {error processing };

rcvbuf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (rcvbuf==NULL) {error processing };

86 | Application Development Guide

data process....

sndbuf=strlen(sndbuf);

ret=tpcall(”SERVICE”, sndbuf, sndlen, &rcvbuf, &rcvlen, TPNOCHANGE);
if (ret==-1) { error processing }

data process....

tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

¢ Related Functions

tpalloc(), tpacall(), tpgetrply(), tpreturn()

9.4. Asynchronous Communication

The following describes functions that are used for asynchronous communication.

9.4.1. tpacall

Sends a service request to a svc service through asynchronous communication and is returned
immediately without awaiting a reply. A response can be obtained using tpgetrply() or canceled
using tpcancel().

If tx_time expires after tx_begin() is called, tpacall() succeeds only when flags is set to TPNOTRAN or
TPNOREPLY; otherwise, the TPETIME error occurs.

* Prototype

include <atmi.h>
int tpacall (char *svc, char *data, long len, long flags)

* Parameters

Parameter Description

svc Service to call. Must be provided by a Tmax application server program.
data Pointer to a buffer allocated by a tpalloc().

len Length of data to be sent.

+ If data points to a variable-length buffer type, such as STRING, STRUCT,
X_COMMON, or X_C_TYPE, len is ignored and 0 is used.

9. Client API | 87

Parameter Description

len + If data points to a fixed-length buffer type, such as X_OCTET, CARRAY, or
MULTI STRUCTURE, len cannot be 0.

« If data is NULL, len is ignored and a service request is received without
data. The data type and subtype must be supported by svc. If a service
request is sent in transaction mode, a reply must be received.

flags Calling mode option.
The following values are available.
* TPBLOCK

If a tpacall is used without a flag, a normal reply is returned even if a
called service does not exist in svc or if an invalid result is returned. An
error is returned when a tpgetrply is called. If a TPBLOCK is used to call a
tpacall(), the service state can be checked.

*« TPNOTRAN

If a service does not support transactions in transaction mode, you must
set the flag to TPNOTRAN to call tpacall(). If a caller requests the svc
service by setting a flag in transaction mode, the service is executed
outside the transaction. When tpacall() is called in transaction mode, the
call is affected by a transaction timeout even if TPNOTRAN is specified.
For example, a tpacall with the flag set to TPNOTRAN will fail after a
transaction times out without calling a service. If a service called with the
flag set to TPNOTRAN fails, there is no effect on the current transaction
of the caller.

* TPNOREPLY

If tpacall() is used to send a service request, tpacall is returned
immediately without awaiting a reply. A client can retrieve results by
using tpgetrply() through the descriptor returned by tpacall(). If the flag
is set to TPNOREPLY, tpacall() does not await a reply and returns O if a
service is called successfully. If a caller is in transaction mode, you must
specify TPNOREPLY together with TPNOTRAN. When TPNOREPLY is
specified, you must specify TPBLOCK if you want to check a service state.
If TPBLOCK is not specified, an error is returned even if a service is NRDY.

+ TPNOBLOCK

If there is a blocking condition such as when an internal buffer is full of
messages to send, this option causes a request to fail. If a tpacall() is
called without setting the flag to TPNOBLOCK and if a blocking condition
occurs, a caller must wait until a transaction or a blocking timeout
occurs.

88 | Application Development Guide

Parameter

flags

flags

¢ Return Values

Value

Descriptor

* Errors

Description
* TPNOTIME

A caller must wait indefinitely until a reply is received. Blocking timeouts
are ignored. A timeout will occur even if a tpacall() is called during a
transaction timeout.

* TPSIGRSTRT

Allows signal interrupts. If a system function call is interrupted by a
signal, it will be re-executed. If a signal interrupt occurs without this flag
set, a function will fail and tperrno will be set to TPGOTSIG.

Flags are listed in the following table.

Description
A function call is successful. A returned descriptor is used to get a service
reply.

A function call failed, and tperrno is set to an error code.

If a tpacall() fails, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPENOENT]
[TPEITYPE]

[TPELIMIT]

[TPETIME]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]

Description
Invalid parameter. For example, when a svc is NULL, data will point to a
buffer that was not allocated by a tpalloc(), or a flag will be invalid.

The specified svc does not exist.

The data type or subtype is not supported by the svc. For a struct, this error
occurs when the struct is not declared in a SDLFILE file.

The maximum number of unprocessed asynchronous service requests has
been reached. A request was not sent.

A transaction timeout occurred when a caller was in transaction mode, and a
transaction was rolled back. If a caller is not in transaction mode, and if
neither TPNOTIME nor TPNOBLOCK is specified, a blocking timeout occurs.
In that case, the data in *data and *len are not changed. If a transaction
timeout occurs, any attempt to receive a new service request or await a reply
causes a [TPETIME] error and fails until the transaction is rolled back.

Blocking occurred while the flag is set to TPNOBLOCK.
A signal was received while the flag is not set to TPSIGRSTRT.

A tpacall() was called in an invalid state. For example, a TPNOREPLY was
called in a transaction mode without setting a TPNOTRAN.

9. Client API | 89

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
void main(int arge, char *argv[])

{
char *buf;
int ret,cd;
long len;
ret=tpstart((TPSTART_T *)NULL);
if (ret<@) { error processing }
buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing }
data process....
cd = tpacall(“SERVICE”, sndbuf, 20, TPNOTIME);
if (cd<@) {error processing }
data process:
ret=tpgetrply(&cd, (char **)&buf, &len, TPNOTIME);
if (ret<@) { error processing }
data process....
tpfree((char *)buf);
tpend();
}

* Related Functions

tpalloc(), tpcall(), tpcancel(), tpgetrply()

9.4.2. tpgetrply

Used to get a reply for an asynchronous service request made through a tpacall(). This function can
be used on both a client and a server.

* Prototype

include <atmi.h>
int tpgetrply(int *cd, char **data, long *1len, long flags)

* Parameters

90 | Application Development Guide

Parameter
cd

*data

len

flags

Description

Call descriptor returned by a tpacall(). In general, tpgetrply waits until a reply
for a cd is received or until a timeout occurs. In general, cd becomes invalid
after tpgetrply receives a valid reply.

Pointer to a buffer allocated by a tpalloc().

Length of data received from a tpgetrply(). If necessary, the buffer size can
be increased to store a reply.

You can change the size of *data for various reasons such as when the
buffer is smaller than the received data. Before tpgetrply is called, if a len is
greater than the total size of a buffer, the buffer size will be set to the value
of len. If len is returned as 0, no reply is received and buffers pointed to by a
*data and len are not changed.

If a *data or a len is NULL, it is an error.

The following values are available.
* TPGETANY

Ignores the cd value specified for a reply and returns a reply that can be
received. In general, tpgetrply() waits until a reply is received. If
TPGETANY is not specified, *cd becomes null without additional settings.
If TPGETANY is specified, cd can be used for an error response. If an
error occurs before a response is returned, cd is set to 0. This does not
affect a current transaction for a caller unless there are additional
settings.

+ TPNOCHANGE

The buffer type that *data points to cannot be changed. If the types of
the reply buffer and *data do not match, the *data type is changed to
the reply buffer type. If TPNOCHANGE is specified, the buffer type is not
changed. The buffer type and subtype of a reply buffer must be the same
as those of *data.

+ TPNOBLOCK

Does not wait for a response, but returns a valid response if available. If
a TPNOBLOCK flag is not set, and there is no available response, a caller
waits until a reply is received or until a transaction or a blocking timeout
occurs.

* TPNOTIME

A caller waits indefinitely until a reply is received. Blocking timeouts are
ignored and timeout will occur even if a tpgetrply() is called during a
transaction timeout.

9. Client API | 91

Parameter Description
flags ¢ TPSIGRSTRT

Allows signal interrupts. If a system function call is interrupted by a
signal, it is re-executed. If a signal interrupt occurs without this flag
specified, the function will fail and a tperrno will be set to TPGOTSIG.

¢ Return Values

Value Description

1 A function call was successful. When a tpgetrply() returns successfully or a
tperrno is [TPESVCFAILL], the global variable tpurcode returned by a tpreturn()
will be set to a value defined in the application.

-1 A function call failed. tperrno is set to an error code.

* Errors
If a tpgetrply() fails, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a cd, data, *data, or alenis NULL or a
flags is invalid. If a cd is not NULL, it is valid even if an error occurs, and a
function will continue to wait for a response.

[TPEBADDESC] An invalid cd.

[TPEOTYPE] A caller does not know the type or subtype of a response buffer.

In this case, flags are set to TPNOCHANGE but the type or subtype of *data
does not match that of the response buffer, so the data in *data and *len
are not changed. If the caller received a response in a transaction mode, the
transaction will be rolled back because the response will be ignored.

[TPETIME] A transaction timeout occurred when a caller is in a transaction mode, and
the transaction is rolled back. If a caller is not in a transaction mode, a block
timeout will occur if both a TPNOTIME and a TPNOBLOCK are not set. In such
cases, the data in a *data and a *len are not changed. If a transaction
timeout occurs, any new service requests and processes waiting for a
response will fail due to a [TPETIME] error until the transaction is rolled back.

[TPESVCFAIL] A service routine sent a reply by calling a tpreturn() with a TPFAIL because an
error occurred in an application program. Service reply data can be accessed
through a *data. If a caller is in a transaction mode, the transaction will be
rolled back.

When a transaction timeout occurs, other communication may be attempted
before a transaction is rolled back. For such attempts to be successful, a
TPNOTRAN must be set. All operations performed while a caller is in a
transaction mode are rolled back when the transaction is complete.

92 | Application Development Guide

Error Code Description

[TPEBLOCK] Blocking occurred while a TPNOBLOCK was set. A cd is valid.

[TPGOTSIG] A signal was received while a TPSIGRSTRT was not set.

[TPEPROTO] A tpcall() was called in an invalid state.

[TPETRAN] A xa_start failed due to an error in the database while invoking a transaction
service.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a

system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
void main(int argc, char *argv[])

{
int ret;
long len;
char *buf;
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }
buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process -
cd = tpacall(“SERVICE”, buf, @, TPNOFLAGS);
if (cd==-1) { error procesing }
data process....
ret=tpgetrply(&cd, &buf, &len, TPNOTIME);
if (ret==-1) { error processing }
data process....
tpfree(buf);
tpend();
}

* Related Functions

tpacall(), tpalloc(), tpreturn()

9.4.3. tpcancel

Cancels a server or client response. It cancels the caller description, cd, returned by a tpacall().

* Prototype

9. Client API | 93

include <atmi.h>
int tpcancel (int cd)

* Parameters

Parameter Description

cd A target to be canceled, which is set by a caller descriptor returned by
tpacall(). Services related to global transactions cannot be canceled. If a
service response is canceled, cd is nullified and all responses received
through cd are ignored.

¢ Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpcancel() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEBADDESC] An invalid cd.

[TPETRAN] A cd is related to a caller’s global transaction. It is still valid and the caller’s
current transaction is not affected.

[TPEPROTO] A tpcanceled() was called from an invalid state.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
void main(int arge, char *argv[])
{
char *test[2];
int ret, i, cd[2];
long len;

if (arge != 4) { error processing }
ret=tpstart((TPSTART_T *)NULL;
if (ret==-1) { error processing }

for (i=0; i<3; i++)

{
test[i] = tpalloc(“STRING”,NULL,Q);

94 | Application Development Guide

if (test[I])==NULL} { error processing }

strepy(test[i],argv[i+1]);

cd[i]=tpacall(“SERVICE”, test[i], @, TPNOTIME);
)

ret=tpcancel(cd[1]); /* Cancels the second response. */
if (ret==-1) { error processing }
for (i=0; i<3; i++)

{
ret=tpgetrply(&cd[i], (char **)&test[i], &len, TPNOTIME)
if (ret==-1) printf(“Can’t rcv data from service of %d\n”,cd[i]);
else prtinf(“%dth rcv data : %s\n”, I+1, test[I]);
tpfree(test[I]);

}

tpend();

¢ Related Functions

tpacall()

9.5. Interactive Communication

The following describes functions that are used for interactive communication.

9.5.1. tpconnect

Allows a program to communicate with an interactive service svc. Communication is half-duplex,
which only allows one process to either receive or send a message but not both at the same time.
During a connection configuration process, a function caller can deliver data to a service routine.
Interactive services receives data and len using a TPVCINFO structure, so calling a tprecv() is
unnecessary to receive data delivered by tpconnect(). This function can be used on both a client and
a server.

* Prototype

include <atmi.h>
int tpconnect (char *svc, char *data, long 1len, 1long flags)

* Parameters

Parameter Description
SvC Service name of an interactive service.
data A buffer must be allocated by a tpalloc() for a caller to deliver data.

9. Client API | 95

Parameter Description

len Length of data to be sent.

+ If data points to a buffer type that does not require a specified length,
such as a STRING, STRUCT, X_ COMMON, or X_C_TYPE, a len will be
ignored and 0 will be used.

+ If data points to a buffer type that requires a specified length, such as a
X_OCTET, CARRAY, or MULTI STRUCTURE, a len cannot be 0.

If data is NULL, a len will be ignored and a service request will be received
without data. The data type and subtype must be supported by a svc.

flags The following values are available.
* TPNOTRAN

If a tpconnect() caller requests a svc service by setting a TPNOTRAN flag
in a transaction mode, the svc service will be excluded from a transaction
mode and then executed. If svc does not support transactions in a
transaction mode and tpconnect() is called in transaction mode, a flag
must be set to TPNOTRAN. If tpconnect() is called in a transaction mode,
it is affected by a transaction timeout even if TPNOTRAN is set. If a
service called with the flag set to TPNOTRAN fails, there is no effect on
the current transaction of the caller.

* TPSENDONLY

After a connection is made, a caller can only send data and only the
requested services can be performed. The caller gets the communication
control first. The flag must be set to either TPSENDONLY or TPRECVONLY.

* TPRECVONLY

After a connection is made, a caller can only receive data and a
requested service will send data, so at first, a requested service only has
communication control. Either a TPSENDONLY or TPRECVONLY must be
set.

* TPNOTIME

A function caller must wait indefinitely until a response is received.
Blocking timeouts are ignored. If a tpacall() is called during a transaction
timeout, a transaction timeout will be applied.

TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, the function will fail and a tperrno will be set to
TPGOTSIG.

96 | Application Development Guide

* Return Values

Value

Descriptor

* Errors

Description

A function call was successful and a descriptor used for a following
connection is returned.

A function call failed. A tperrno is set to an error code.

If a function call fails, a caller’s transaction will not be affected unless there is a specific direction.
When a tpconnect() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPENOENT]

[TPEITYPE]
[TPELIMIT]

[TPETRAN]

[TPETIME]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]
[TPESYSTEM]

[TPEOS]

* Examples

#include <stdio.h>

Description

An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

Cannot request a service because a service corresponding to a svc does not
exist.

A svc does not support a data type or subtype.

A maximum number of connections has been reached. Cannot request a
service.

A xa_start failed because a problem occurred in a database when a
transaction service was requested.

A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, the transaction will be rolled back. If the function
caller is not in a transaction mode, a block timeout will occur if neither a
TPNOTIME nor a TPNOBLOCK is set.

In these cases, *data content and *len are not changed. If a transaction
timeout occurs, new service requests and processes waiting for a response
fail with the [TPETIME] error until the transaction is rolled back.

A blocking state occurred when a TPNOBLOCK was set.
A signal was received when a TPSIGRSTRT was not set.
A tpconnect() was called from an invalid state.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred.

#include <usrinc/atmi.h>

void main(int argc, char *argv[])

9. Client API | 97

char *buf;
int ret, cd;
long len, revent;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf=tpalloc(“STRING”,NULL,®);
if (buf=NULL) { error procesing }

data process

cd = tpconnect(“SERVICE”,sndbuf,®, TPRECVONLY);
if (cd==-1) { error processing }
data process....

ret=tprecv(cd, &buf, &len, TPNOFLAGS, revent);
if (ret==-1) { error processing }

tpfree(buf);

tpend();

* Related Functions

tpalloc(), tpdiscon(), tprecv(), tpsend()

9.5.2. tpsend

Available in a server and a client. This function sends data to a partner program in an interactive
communication. A caller must have communication control.

* Prototype

include <atmi.h>
int tpsend (int c¢d, char *data, long len, long flags, 1long *revent)

* Parameters

Parameter Description

cd Sets a connection to receive data. It is a descriptor returned by a tpconnect()
or a TPSVCINFO parameter.

data A buffer allocated by a tpalloc(). If no application data is received (for
example, only a communication control was passed without any data), data
can be NULL. The data type and subtype must be recognizable by a
connected partner.

len A buffer length to receive. If data points to a buffer that does not need to be
specified, a len will be ignored and 0 will be used. If data points to a buffer
which must be specified, a len cannot be 0.

98 | Application Development Guide

Parameter Description

flags The following values are available.
* TPNOBLOCK

If a blocking situation occurs, for example if an internal buffer is filled
with messages to be sent, data and events will not be sent. If a tpsend()
is called without setting a TPNOBLOCK flag or if a blocking state occurs, a
caller will wait until either a transaction or a block timeout occurs or a
state is resolved.

* TPNOTIME

A function caller waits for a response and infinitely ignores a block
timeout. If a tpsend() is used within a transaction timeout, the
transaction time will still apply.

* TPRECVONLY

A caller sends a communication control to a partner after receiving data.
A caller cannot call a tpsend() until it receives a communication control
again. A communication partner will receive a TPEV_SENDONLY event,
which means a communication control will be received when receiving
data using a tprecv(). A receiver cannot call a tprecv() until receiving a
communication control from a partner.

» TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, a function will fail and a tperrno will be set to
TPGOTSIG.

revent If an event exists for a descriptor cd, a tpsend() will fail and data will not be
received. The event type will be returned as a revent.

The events that can be delivered to revent are as follows:
* TPEV_DISCONIMM

A communication starter used a tpdiscon() to forcefully terminate a
connection. This event is received by a communication subordinate and
is returned when a connection is terminated due to a communication
error such as server, node, or network error.

* TREV_SVCERR

This event is received by a communication starter and notifies that a
communication subordinator performed a tpreturn() without a
communication control being in a TPEV_SVCFAIL state.

9. Client API | 99

Parameter

revent

¢ Return Values

Description
* TREV_SVCFAIL

This event is received by a communication starter and notifies that a
communication subordinator performed a tpreturn() without a
communication control, and that a tpreturn() was called as a TPFAIL
without data and that it was performed as a TPFAIL rval and had data
with a NULL value.

If a revent is a TREV_SVCFAIL, a tpurcode global variable is set to a rcode value, which is delivered
when calling a tpreturn().

Value
0

-1

* Errors

Description

A function call was successful.

A function call failed. A tperrno is set to an error code.

When a tpsend() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPEBADDESC]
[TPETIME]

[TPEEVENT]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]

[TPESYSTEM]

[TPEOS]

Description

An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

An invalid cd.

A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, a transaction will be rolled back. If a function caller is
not in a transaction mode, a block timeout will occur if neither a TPNOTIME
nor a TPNOBLOCK is set.

In these cases, a *data content and a *len will not be changed. If a
transaction timeout occurs, new service requests and processes waiting for a
response will fail with a [TPETIME] error until a transaction is rolled back.

An event occurred. If an error occurs, data will not be sent and an event type
will be returned as a revent.

A blocking state occured when a TPNOBLOCK was set.
A signal that is received when a TPSIGRSTRT was not set.

A tpsend() was called from an invalid state. For example, a tpsend() was
called in a receiver mode.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred.

100 | Application Development Guide

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include “../sd1/demo.s”

main(int argc, char* argv[])
{

int ret, cd;

struct dat *buf;

long revent, len;

if (argc!=3) {error processing }
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf=(struct dat *)tpalloc(“STRUCT”, “dat”, 0);
if (buf==NULL) { error processing }
strepy(buf->sdata, argv[1]);

data process:.

cd=tpconnect(“SERVICE”, buf, @, TPSENDONLY);
if (cd==-1) { error processing }
strepy(buf->sdata, argv[2]);

data process:.

ret=tpsend(cd, buf, @,TPRECVONLY,&revent);
if (ret==-1) { error processing }

ret=tprecv(&cd, (char**)&buf,&len, TPNOTIME, Grevent);
if (ret==-1) { error processing }

data process....

tpfree(buf);
tpend();

¢ Related Functions

tpalloc(), tpconnect(), tpdiscon(), tprecv(), tpreturn()

9.5.3. tprecv

Available in a server and a client. This function receives messages in an interactive communication.
This is used to receive data sent from a partner in an interactive communication. A tprecv() can be
used only by a program (on a server or a client) which does not have communication control.

* Prototype

include <atmi.h>
int tprecv (int cd, char **data, long *1len, long flags, long *revent)

9. Client API | 101

* Parameters

Parameter
cd

data

len

flags

Description

Sets a connection to receive data. It is a descriptor returned by a tpconnect()
or a TPSVCINFO parameter.

Pointer to a buffer allocated by a tpalloc(). If a function successfully returns, a
*data will point to received data.

The length of data to be sent.

If the value of a len is bigger than the total size of a buffer before calling it,
the size of the buffer will be set to the value of len.

If the value of a len is 0, no data will be received and neither *data nor a
buffer, which a *data points to, will be changed.

The following values are available.
* TPNOCHANGE

If a received response buffer and a buffer type that a *data points to are
not the same, the buffer type of a *data will be changed to a received
response buffer type in a scope that a receiver can recognize. If a
TPNOCHANGE flag is set, the buffer type that a *data points to will not
be changed. A received response buffer type and subtype must be the
same with those of the buffer that a *data points to.

* TPNOBLOCK

Does not wait for data. If there is receivable data the data will be
returned. If a TPNOBLOCK flag is not set, and there is no receivable data,
a caller will wait for data.

* TPNOTIME

A function caller waits infinitely until a response is received, and ignores
block timeouts. If a tprecv() is used within a transaction timeout, a
transaction time will be applied.

* TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, a function will fail and a tperrno will be set to
TPGOTSIG.

102 | Application Development Guide

Parameter

revent

¢ Return Values

Description

The event types returned to a revent are as follows:

* TPEV_DISCONIMM

A communication starter used a tpdiscon() to forcefully terminate a
connection. This event is received by a communication subordinate. This
event is also returned when a connection is terminated due to a
communication error such as a server, node, or network error. Any data
being sent may be lost. If two programs participate in the same
transaction, the transaction will be rolled back. a cd used by an
interactive communication will not be valid.

TPEV_SENDONLY

A connected partner program gave up on a communication control. A
TPEV_SENDONLY event receiver can send data but cannot receive any
data until a receiver returns a control.

TPEV_SVCERR

This event notifies a communication starter of an error that occurred
while a communication subordinator executes a tpreturn(). The error can
occur if an invalid parameter is passed to a tpreturn(), or a tpreturn() is
called while a service maintains a connection to another subordinator. In
these cases, a return code or a part of data cannot be used. An
interactive connection will be terminated a cd will not be valid. If this
event occurs during a receiver’s transaction, the transaction will be rolled
back.

TPEV_SVCFAIL

This event notifies a communication starter of information that a service
of a communication subordinator was terminated due to a failure. A
tpreturn() was called using a TPFAIL as an argument. If a communication
subordinator service has a communication control when calling a
tpreturn(), a service cannot send data to a connected partner. A server
process terminates an interactive connection when a service is
terminated. Therefore, a cd will not be valid anymore. If this event occurs
to a receiver transaction process, the transaction will be rolled back.

TPEV_SVCSUCC

This event notifies a communication starter that a service of a
communication subordinator was terminated successfully. A tpreturn()
was called using a TPSUCCESS as an argument.

9. Client API | 103

If a revent value is TREV_SVCSUCC or TREV_SVCFAIL, a tpurcode global variable that is delivered
by a tpreturn() will be defined by an application. Otherwise, a -1 will be returned and a tperrno
will be set to the value corresponding to a state. If an event has no error, a tprecv() will return a -1
and a tperrno will be set to [TPEEVENT].

* Errors
When a tprecv() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEBADDESC] An invalid cd.

[TPEBLOCK] A blocking state occurred when a TPNOBLOCK was set.

[TPEEVENT] An event occurred. Use a revent to find the event type.

[TPEINVAL] An invalid parameter. For example, a svc is NULL, a *data points to a buffer
that was not allocated by a tpalloc(), or a flag is invalid.

[TPEOS] An operating system error occurred.

[TPEOTYPE] The type or subtype of an entered buffer is unknown to a caller, or a

TPNOCHANGE flag was set but the type or subtype of a buffer pointed to by
a *data did not match the type or subtype of an entered buffer. In this case,
both the contents of a *data and a *len are not changed. If interactive
communication is a part of a transaction, the transaction will be rolled back
because a reply will be ignored.

If an error occurred, the event for a cd will be ignored and an interactive
communication state cannot be guaranteed. Therefore a caller must
terminate an interactive communication.

[TPEPROTO] A tprecv() was called from an invalid state. For example, a tprecv() was called
in a sender mode.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPETIME] A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, a transaction will be rolled back. If a function caller is
not in a transaction mode, a block timeout will occur if neither a TPNOTIME
nor a TPNOBLOCK are set.

In these cases, a *data content and a *len are not changed. If a transaction
timeout occurs, new service requests and processes waiting for a response
will fail with a [TPETIME] error until a transaction is rolled back.

[TPGOTSIG] A signal was received when a TPSIGRSTRT was not set.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include “../sd1/demo.s”

104 | Application Development Guide

main(int argc,char* argv[])
{

int ret, cd;
struct dat *buf;
long revent, len;

if (argc!=3) {error processing }
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf=(struct dat *)tpalloc(“STRUCT”, “dat”, 0);
if (buf==NULL) { error processing }
strepy(buf->sdata, argv[1]);

data process'.

cd=tpconnect(“SERVICE”, buf, @, TPSENDONLY);
if (cd==-1) { error processing }
strepy(buf->sdata, argv[2]);

data process:-.

ret=tpsend(cd, buf, @,TPRECVONLY,&revent);
if (ret==-1) { error processing }

ret=tprecv(cd, (char**)&buf,&len, TPNOTIME,&revent);
if (ret==-1) { error processing }
data process....

tpfree(buf);
tpend();

* Related Functions

tpalloc(), tpconnect(), tpdiscon(), tpsend()

9.5.4. tpdiscon

Terminates an interactive communications connection. If a service is connected by a tpconnect(), in
extremely rare cases the connection will immediately terminate and a TPEV_DISCONIMM event will
occur for the connection partner. This function can be used on both a client and a server.

A tpdiscon() can be called only by the side that started an interactive communication. The service that
provides a descriptor cannot call a tpdiscon(). A program that communicates with an interactive
service can terminate communication. To ensure correct results, a tpreturn() must be called to
terminate the connection.

A tpdiscon() terminates a connection forcibly, which may result in data that did reach a target to
become lost. It can be called while a connected program participates in a caller’s transaction. In this
case a transaction is canceled and data may be lost. A function caller does not need to have
communication control.

* Prototype

9. Client API | 105

include <atmi.h>
int tpdiscon (int cd)

* Parameters

Parameter Description

cd A descriptor returned by a tpconnect().

¢ Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpdiscon() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEBADDESC] Aninvalid cd, or a cd is already in use by an interactive service.

[TPETIME] A timeout occurred due to an invalid cd.
[TPEPROTO] A tpdiscon() was called from an invalid state.
[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a

system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <stdlib.h>
#include <usrinc/atmi.h>

void main(int argc, char *argv[])
{

int ret, cd;
char *buf
long len, revent;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf=tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }

data process....
cd=tpconnect(“SERVICE”,buf,@, TPRECVONLY);

if (cd==-1) { error processing }

106 | Application Development Guide

data process....
ret=tprecv(cd, (char **)&buf, &len, TPNOFLAGS, &revent);
if (ret==-1 && revent != TPEV_SENDONLY && revent != TPEV_SVCSUCC)
{ error processing }
printf(“received data = %s\n”, buf);
if (atoi(buf)>90) {
ret=tpdiscon(cd);
if (ret==-1) {error processing }
tpfree(buf);
tpend();
exit(1);
}

data process....
tpfree(buf);
tpend();

¢ Related Functions

tpconnect(), tprecv(), tpreturn(), tpsend()

9.6. Unsolicited Message Processing

These functions are used to send messages unilaterally or to process messages received unilaterally.
Not all clients can always receive unsolicited messages (tpbroadcast()) sent by a server. To receive an
unsolicited message, the client must be connected to Tmax. When connecting to Tmax, the client
must notify the server that it can receive unsolicited messages.

For Tmax to handle data that is sent from a server unilaterally, the flags field of the TPSTART_T
structure, which is used when calling tpstart(), must be set to TPUNSOL_POLL or TPUNSOL_HND.

9.6.1. tpsetunsol

Available in a client. This function sets a routine that processes unrequested and received messages.
How a system receives unrequested messages is determined by each application and can be
changed by each client.

Any unrequested messages received by Tmax libraries before a tpsetunsol() is called will be ignored.
A tpsetunsol() that is called by a NULL function pointer is also ignored. The function pointer delivered
by a call must be suitable for a parameter definition.

* Prototype

include <atmi.h>
Unsolfunc *tpsetunsol (void (*disp) (char *data, long 1len, long flags))

* Parameters

9. Client API | 107

Parameter Description

data Points to a received type buffer. If there is no data, a DATA can be NULL. If a
buffer type or subtype of a DATA are unknown by a client, data cannot be
recognized. An application cannot delete a DATA, instead a system deletes it
and nullify a data area to return.

len Data length

flags Not currently supported.

¢ Return Values

Value Description

Pointer / NULL A function call was a success.

* Pointer: Returns the pointer of a routine for an unrequested message
process that was previously set.

* NULL: A message process function was not previously set. A return will
be successful.

TPUNSOLERR A function call failed. An error code will be set in tperrno.

* Errors

When a tpsetunsol() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEPROTO] A tpsetunsol() was called from an invalid state.
[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in

a system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include “../sd1/demo.s”

void get_unsol(char *data, long len, long flags)

{
printf(“get unsolicited data = %s\n”, data);
data process....
}
void main(int argc, char *argv[])
{
int ret;
char *buf;
long len;

108 | Application Development Guide

ret=tpstart((TPSTART_T *)NULL);

if (ret==-1) { error processing }
ret=tpsetupsol_f1lag(TPUNSOL_HND);
if (ret==-1) { error processing }

ret=tpsetunsol(get_unsol);
if (ret==TPUNSOLERR) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };
data process...

ret=tpcall(“SERVICE”, buf, 20, (char **)&buf, &len, TPNOFLAGS);
if (ret==-1) { error processing }
data process...

tpfree((char *)buf);
tpend();

* Related Functions

tpstart(), tpend(), tpgetunsol()

9.6.2. tpgetunsol

Processes a message that was received unilaterally without a client request. The message is sent
through a tpbroadcast(), tpsendtocli(), tppost() from a sender.

All messages received before calling a tpgetunsol() will be ignored. To receive unrequested messages
through a tpgetunsol(), a TPUNSOL_POLL or a TPUNSOL_HND must be set when connecting to a
Tmax system through a tpstart(). If a tpgetunsol() is called from a program, a client will receive an
unrequested message from a server because a flag has been changed to TPUNSOL_POLL internally
even though the flag of a tpstart() was initially set to TPUNSOL_IGN.

* Prototype

#include <tmaxapi.h>
int tpgetunsol (int type, char **data, long *1len, long flags)

* Parameters

Parameter Description

type A message type delivered from a server. The types are UNSOL_TPPOST,
UNSOL_TPBROADCAST, and UNSOL_TPSENDTOCLI.

data A pointer to a delivered message. If this is a buffer type or subtype that is
not known by a client, "data" cannot be used.

len The total length of a message.

9. Client API | 109

Parameter Description

flags Determines whether to block a message.
The following values are available.
+ TPBLOCK
A caller waits for a reply in a blocking state.
* TPNOCHANGE

In general, if a received response buffer and the buffer type pointed to
by a *data do not match, the *data buffer type will be changed to a
received response buffer in a scope that a receiver can recognize. If this
is set, the buffer type pointed to by a *data cannot be changed. A
received response buffer type and subtype must match those of a buffer
pointed to by a *data.

* TPNOTIME

A function caller must wait indefinitely until a response is received.
Blocking a timeout will be ignored. If a tpgetrply() is called during a
transaction timeout, a transaction timeout will be applied.

* TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, a function will fail and tperrno will be set to TPGOTSIG.

* TPGETANY

Ignores a cd as an input value and returns any receivable responses. A cd
will become a caller descriptor for a returned response. If there is no
response, a tpgetrply() will wait until a response is received.

¢ Return Values

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpgetunsol() fails to execute, a tperrno will be set to one of the following values:

110 | Application Development Guide

Error Code Description

[TPEPROTO] A tpgetunsol() was called from an invalid state. For example, it was called
from a server.

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <string.h>
#include <usrinc/tmaxapi.h>

void main(int arge, char *argv[])

{
int ret;
char *buf;
long len;
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }
buf=tpalloc(“STRING”, NULL, @);
if (buf==NULL) { error processing }
data process....
while(1)
{
ret=tp_sleep(2);
if (ret==-1) { error processing }
if (ret==0)
printf(“nothing happened\n”);
else {
ret=tpgetunsol (UNSOL_TPSENDTOCLI, (char **)&buf, &len, TPNOCHANGE);
if (ret==-1) { error processing }
printf(“received data : %s\n”, buf);
}
data process....
if (strncmp(buf, “end”, 3)==0) break;
}
data process....
tpfree(buf);
tpend();
}

¢ Related Functions

tpbroadcast(), tpsetunsol(), tpstart(), tpend()

9. Client API | 111

9.7. Timeout Change

The following describes functions that are used to change timeout.

9.7.1. tpset_timeout

Available in a server and a client. This function sets a block timeout, a service limited time setin a
server. If a timeout is set using a tpset_timeout(), the response for a service request will wait during
the specified amount of time. If a response is not received during the specified amount of time, a
timeout error will occur and the service request will be returned as a failure without waiting for a
response.

A tpset_timeout() applies to service requests that were received after this function was called. The
function is valid until a tpset_timeout() is called again, or a client or server process is terminated. If a
tpset_timeout() is not used, a BLOCKTIME set in a Tmax configuration file will be used as a block
timeout.

* Prototype

#include <tmaxapi.h>
int tpset_timeout (int sec)

* Parameters

Parameter Description

sec Sets a block time in seconds.

¢ Return Values

Value Description

0 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpset_timeout() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

112 | Application Development Guide

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

void main(int argc, char *argv[])
{

int ret;
char *sndbuf, *rcvbuf;
long sndlen, rcvlen;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

sndbuf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (sndbuf==NULL) {error processing };

rcvbuf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (revbuf==NULL) {error processing };

data process....

sndbuf=strlen(sndbuf);
ret=tpset_timeout(4);
if (ret==-1) { error processing }

ret=tpcall(“SERVICE”, sndbuf, sndlen, &rcvbuf, &rcvlen, TPNOCHANGE);
if (ret==-1) { error processing }
data process....

tpfree((char *)sndbuf);

tpfree((char *)rcvbuf);
tpend();

9.7.2. tpsetsvctimeout

Available in a server. This function sets a service timeout in a server. If a service time is set using a
tpsetsvctimeout(), a service request will wait for a response during the time set by this function. If a
response was not received during the set time, a timeout error will occur and a service request will
be returned as a service failure without waiting for a response.

* Prototype

#include <tmaxapi.h>
int tpsetsvctimeout (int sec, long flags)

* Parameters

Parameter Description
sec Sets a service timeout in seconds.
flags Not currently supported.

9. Client API | 113

* Return Values

Value Description

0 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpsetsvctimeout() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>

#include <usrinc/atmi.h>
#include <stdlib.h>
#include <usrinc/tmaxapi.h>
#include <usrinc/tdlcall.h>

TOUPPER(TPSVCINFO *msg)
{
int il
if (tpsetsvctimeout(10, @) < 0)
//error handle code
printf("TOUPPER service is started!\n");

sleep(15);
printf("INPUT : data=%s\n", msg->data);

for (i = @; i < msg->len; i++)

msg->data[i] = toupper(msg->datal[i]);
printf("OUTPUT: data=%s\n", msg->data);
tpreturn(TPSUCCESS, @, (char *)msg->data, 0,0);

9.8. Buffer Management

Because memory allocation methods and data types differ according to hardware and operating
system, received data may have different data values. Therefore, in a general client/server
environment, heterogeneous systems communicate through conversion, which creates network
overhead.

The following describes APIs that are used for buffer management.

114 | Application Development Guide

9.8.1. tpalloc

Allocates a typed buffer. A buffer cannot be set by malloc(), realloc(), or free() of C library. For
example, the buffer allocated with tpalloc() cannot be deleted through free().The tpalloc function
allocates a typed buffer in servers and clients. It cannot be used along with malloc(), realloc(), or
free() of C library. For example, a buffer allocated by tpalloc() cannot be released by free().In this case,
tpfree() must be used.

The tpalloc function allocates a buffer of the type specified by "type", and it returns the pointer to the
buffer. The buffer subtype and size can also be specified for some types. Some types of buffers
require initialization, so tpalloc() initializes and returns pointers to these buffers. The buffer returned
to the caller can be used immediately. If tpalloc() fails to initialize the buffer to 0, the allocated buffer
becomes free.

* Prototype

include <atmi.h>
char * tpalloc (char *type, char *subtype, long size)

* Parameters

Parameter Description

type Buffer type. Input options:

+ STRING: sends string-type data that ends with NULL.
* CARRAY, X_OCTET: sends character-type data with a specified length.
* STRUCT, X_C_TYPE: sends C-language structure type data.

X_COMMON: is used for C structures that allow only char, int, and long
data types.

FDL (FIELD buffer): stores data with an identifier and a corresponding
value.

subtype For STRUCT, X_C_TYPE, and X_COMMON type buffers, a subtype must be set.
Only the first 8 bytes of type and the first 16 bytes of subtype are used. Any
remaining data is truncated. If the specified buffer type does not use a
subtype, the subtype is ignored and NULL is used.

The default allocated buffer size is greater than 1024 bytes.

Size If type is CARRY or X_OCTET, size must be specified. size is not required for
other buffer types. If size is 0, the default size of each buffer is used.

The default size of STRING, STRUCT, X_C_TYPE, X COMMON is 1024 bytes.
The default size of CARRY is 0, but the size must be greater than 0 when
allocating a buffer.

¢ Return Values

9. Client API | 115

Value Description

Buffer Pointer A function call was successful and a proper buffer pointer is returned.
NULL A function call failed. A tperrno is set to an error code.
* Errors

When a tpalloc() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEINVAL] An invalid parameter. For example, a type is NULL.
[TPENOENT] Unknown type or subtype. For example, in a STRUCT buffer type the subtype

(tag name of the structure) does not exist in SDLFILE.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred. Memory cannot be allocated.
[TPEOTYPE] Buffer type is STRUCT but the server is compiled without a structure file.
« Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include “../sd1/demo.s”

void main(int arge, char *argv[])

{

int ret;
struct data *buf;
long len;

ret=tpstart((TPSTART_T *)NULL);

if (ret<@) { error processing }

buf=(struct data *)tpalloc(“STRUCT”, “data”,);
data process....

ret=tpcall(“SERVICE”, (char *)sndbuf, @, (char **)&rcvbuf, &len, TPNOFLAGS);
if (ret<@) {error processing }

data process....

tpfree((char *)buf);

tpend();

* Related Functions

tpfree(), tprealloc(), tptypes()

116 | Application Development Guide

9.8.2. tprealloc

Reallocates a buffer pointed to by a ptr in bytes, and returns a pointer for a new buffer (when a
buffer is changed).

Like a tpalloc(), a buffer size must be larger than the default size (1024 bytes). A buffer type is kept
the same even after it is reallocated. When a function successfully returns a pointer, the returned
pointer is used to refer to a reallocated buffer. At this time, a ptr cannot be used any more. If a
reallocated buffer size is smaller than a previous buffer size, the original ptr content cannot be
ensured.

Some buffer types need to be initialized to be used. A tprealloc() re-initializes a re-allocated buffer
and then returns it. Therefore, a buffer returned to a caller can be used immediately. If it fails to
reinitialize a buffer, a tprealloc() will returns a NULL and data in a buffer pointed by a ptr will not be
valid.

Prototype

include <atmi.h>
char * tprealloc (char *ptr, long size)

* Parameters

Parameter Description
ptr A pointer to a buffer to be allocated.
size The size of a buffer to be allocated.

Return Values

Value Description
Buffer Pointer A function call was successful and a proper buffer pointer is returned.
NULL A function call failed. A tperrno is set to an error code.

* Errors

When a tprealloc() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a buffer pointed by a ptr is not the one
allocated by a tpalloc().

[TPEPROTO] A tprealloc() was called from an invalid state.

[TPENOENT] A buffer pointed to by a ptr was not allocated by a tpalloc().

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a

system log file.

9. Client API | 117

Error Code Description

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>

#include <usrinc/atmi.h>

void main(int argc, char *argv[])
{

char *buf;
buf=tpalloc(“STRING”,NULL,10);

if (buf==NULL) { error processing }
buf=tprealloc(buf,20); /* ok */

if (buf==NULL) { error processing }
buf="test”;

buf=tprealloc(buf,30); /*error : TPEINVAL */
if (buf==NULL) { error processing }

¢ Related Functions

tpalloc(), tpfree(), tptypes()

This function cannot be used together with a malloc(), realloc(), or free() from a
ﬁ C library. For example, it is impossible to free a buffer allocated by a tprealloc() by
using a free().

9.8.3. tpfree

Releases memory that is allocated to a typed buffer by a tpalloc() or a tprealloc(). This function can
be used on both a client and a server.

* Prototype

include <atmi.h>
void tpfree(char *ptr)
* Parameters

Parameter Description

ptr A pointer to a buffer allocated by a tpalloc() or a tprealloc().

If a ptr is NULL, nothing will happen. If a ptr points to a non-typed buffer or
a buffer already released by a tpfree(), nothing will happen.

118 | Application Development Guide

Parameter Description

ptr If a ptr points to a buffer sent to a service routine, a tpfree() will not free the
buffer but instead will return it as it is. To free some buffer types, related
data or status information must first be removed. A tpfree() removes related
information before freeing these types of buffers.

Once a tpfree() returns, a ptr cannot be transferred to a XATMI routine as a
parameter, and it cannot be used in any other way.
« Return Values
A tpfree() function does not return any value to a function caller.

* Examples

#include <usrinc/atmi.h>
#include <stdio.h>
#include “../sd1/demo.s”

void main(int argc, char *argv[])

{
int ret;
struct data *buf;
char *message, *message2;
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }
buf=(struct data *)tpalloc(“STRUCT”, “data”,0);
if (buf==NULL) { error processing }
message=tpalloc(“STRING”, NULL, 0);
if (message==NULL) { error processing }
message2=tpalloc(“CARRAY”, NULL, 20);
if (message==NULL) { error processing }
data process....
tpfree((char *)buf);
tpfree(message);
tpfree((char *)message2);
tpend();

}

¢ Related Functions

tpalloc(), tprealloc()

) This function cannot be used together with a malloc(), a realloc(), or a free() from
ﬂ a Clibrary. For example, it is impossible to free a buffer allocated by a tpalloc() by
using a free().

9. Client API | 119

9.8.4. tptypes

Provides information about the type and subtype of a buffer. This function is available both in a
server and a client. A tptypes() function receives a pointer for a data buffer, and returns the type and

subtype of the buffer.

* Prototype

#include <atmi.h>

long tptypes (char

* Parameters

Parameter

ptr
type, subtype

¢ Return Values

Value
Buffer Size

-1

* Errors

*ptr, char *type, char *subtype)

Description

Must indicate a buffer allocated by a tpalloc().

Types and subtypes will have type and subtype names of each buffer
respectively for the string they indicate if they are not NULL. If names have a
maximum length (8 characters for a type, and 16 characters for a subtype), a
string could not end with a NULL. If there is no subtype, the arrangement
indicated by a subtype will contain a NULL string.

Only the first 8 bytes of a type and 16 bytes of a subtype have valid values.

Description

A function call was successful and a proper buffer pointer is returned.

A function call failed. A tperrno is set to an error code.

When a tptypes() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPEPROTO]
[TPESYSTEM]

[TPEOS]

* Examples

#include <stdio.h>

Description

An invalid parameter. For example, a buffer pointed to by a ptr is not
allocated by a tpalloc().

A tptypes() was called from an invalid state.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred.

120 | Application Development Guide

#include <usrinc/atmi.h>
#include “../sd1/demo.s”
main(int argc, char *argv[])
{
int ret;
struct sel_o *rcvbuf;
char type[9], subtype[17];
long size;

ret=tpstart((TPSTART_T *)NULL);

if (ret==-1) { error processing }

buf=(struct sel_o*)tpalloc(“STRUCT”,”sel_o0”,0);
if (buf==NULL) {error processing };

size =tptypes((char*)buf, type,subtype);

if (size==-1) {error processing };

printf (“buf : size %d, type %s, subtype %s\n\n”, size, type, subtype);

/*revbuf : size 1024, type STRUCT, subtype sel_o */
data process...

tpfree((char *)buf);

tpend();

* Related Functions

tpalloc(), tpfree(), tprealloc()

9.9. Transaction Management

The following describes functions that are used for transaction management.

9.9.1. tx_begin

Begins a global transaction, for which a function caller becomes a transaction mode. This function is
available for both servers and clients. To start a transaction, a calling process must be first connected
to a resource manager with a tx_open(), then, it will return a [TX_PROTOCOL_ERROR]. A tx_begin()
function will fail if a caller is already in a transaction mode or a tx_open() is not called first.

Once a transaction begins, a calling process must call a tx_commit() or a tx_rollback() in order to
complete a current transaction. There are also chaining transactions that do not need to call a
tx_begin() directly in order to begin. For further information, see tx_commit and tx_rollback.

* Prototype

#include <tx.h>
int tx_begin (void)

¢ Return Values

9. Client API | 121

Value
TX_OK

Negative Value

* Errors

Description

A function call was successful.

A function call failed.

When a tx_begin() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TX_OUTSIDE]

[TX_PROTOCOL_ ERROR]

[TX_ERROR]

[TX_FAIL]

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>

Description

A transaction manager cannot start a global transaction because a
current calling process is participating in external global
transactions. The global transaction can be started after all outside
jobs are complete. This error does not affect the participating
transactions.

A tx_begin() was called from an invalid state. For example, a caller
is already in a transaction mode. This error does not affect current
transactions.

A transaction manager or a resource manager momentarily
encountered an error while starting a transaction. When this error
is returned, a caller is not in a transaction mode. Exact causes of
the error depend on product characteristics.

A transaction manager or a resource manager encountered a
critical error. The manager can no longer execute jobs for an
application program. When this error is returned, a caller is not in a
transaction mode. Exact causes of the error differ depending on
product characteristics.

void main(int argc, char *argv[])

{
char *buf;
int ret,cd;
long len, revent;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

data process.

ret=tx_set_transaction_timeout(5);
if (ret<@) { error processing }

122 | Application Development Guide

ret=tx_begin();
if (ret<@) { error processing }

cd = tpconnect(“SERVICE”, buf, 20, TPRECVONLY);
if (cd==-1) { error processing }

ret = tprecv(cd, (char **)&buf, &len, TPNOFLAGS, &revent)};
if (ret < 0 && revent != TPEV_SVCSUCC)

tx_rollback();
else

tx_commit();

data process....

tpfree((char *)buf);
tpend();

* Related Functions

tx_commit(), tx_open(), tx_rollback(), tx_set_transaction_timeout()

9.9.2. tx_commit
Commits a global transaction. This function is available for both servers and clients.

When a transaction_control property value is TX_UNCHAINED, a caller will not be in a transaction
mode anymore when a tx_commit() returns. However, if the value is TX_CHAINED, the caller will
remain in the transaction mode for a new transaction when the tx_commit() returns. For detailed
information, see tx_set_transaction_control.

* Prototype

include <tx.h>
int tx_commit(void)

¢ Return Values

Value Description

TX_OK A function call was successful.

Negative Value A function call failed. A tperrno is set to an error code.
* Errors

When a tx_commit() fails to execute, a tperrno will be set to one of the following values:

9. Client API | 123

Error Code Description

[TX_NO_BEGIN] Occurs only when a transaction_control property is a TX_CHAINED.
A transaction was successfully committed, but new transactions
cannot be started, and a caller will no longer be in a transaction
mode.

[TX_ROLLBACK] A transaction is rolled back. If a transaction_control property is
TX_CHAINED, a new transaction will begin.

[TX_ROLLBACK_NO_BEGIN] Occurs only when a transaction_control property is TX_CHAINED. A
transaction is rolled back, but new transactions cannot be started,
and a caller is no longer in a transaction mode.

[TX_HAZARD] Portions of a transaction may be committed while others may be
rolled back due to an error. If a transaction_control property is
TX_CHAINED, a new transaction will be started.

[TX_HAZARD_NO_BEGIN] Occurs only when a transaction_control property is TX_CHAINED.
Portions of a transaction are committed while others are rolled
back. A new transaction cannot be started and a caller will no
longer be in a transaction mode.

[TX_PROTOCOL_ERROR] A tx_commit() was called from an invalid state. For example, a
caller was not in a transaction mode. a caller’s status is not affected
by the transaction.

[TX_FAIL] A transaction manager or a resource manager encountered a
critical error. A manager can no longer execute jobs for an
application program. Exact causes of the error differ depending on
product characteristics. The caller’s status related to the
transaction is unknown.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>

void main(int argc, char *argv[])
{

char *buf;

int ret,cd;

long len, revent;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

data process.-

ret=tx_set_transaction_timeout(5);
if (ret<@) { error processing }

124 | Application Development Guide

ret=tx_begin();
if (ret<@) { error processing }

cd = tpconnect(“SERVICE”, buf, 20, TPRECVONLY);
if (cd==-1) { error processing }

ret = tprecv(cd, (char **)&buf, &len, TPNOFLAGS, &revent)};
if (ret < 0 && revent != TPEV_SVCSUCC)
tx_rollback();
else
tx_commit();
data process....

tpfree((char *)buf);
tpend();

¢ Related Functions

tx_begin(), tx_set_commit_return(), tx_set_transaction_control(), tx_set_transaction_timeout()

9.9.3. tx_info

Returns global transaction information. This function is available for both servers and clients. It
notifies global transaction information through a structure indicated by info. It also returns a value
informing whether a caller is in a transaction mode or not.

* Prototype

#include <tx.h>
int tx_info (TXINFO *info)

+ Parameters
If info is not NULL, a TXINFO structure indicated by info will be global transaction information.

A TXINFO structure is composed as follows:

struct TXINFO {

XID xid;

COMMIT_RETURN when_return;
TRANSACTION _CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

If a tx_info() is called in a transaction mode, a xid will be the current transaction branch ID, and a
transaction_state will be the current transaction state. If a caller is not in a transaction mode, a

9. Client API | 125

xid will be a NULL XID (See <tx.h> for further information).

In addition, regardless of whether a caller is in transaction mode or not, when_return,
transaction_control, and transaction_timeout will contain the current settings of a commit_return,
transaction_control property, and a transaction timeout value in seconds.

A returned transaction timeout value is used when a next transaction begins. It may not be a
timeout value for a caller’s current global transaction, because the caller might have changed the
transaction timeout by calling a tx_set_transaction_timeout() after a current transaction began. If
info is NULL, a TXINFO structure will not be returned.

Continuous tx_info() calling in the same global transaction ensures provision of a XID of the same
gtrid (global transaction identifier). However, it does not ensure a same bqual (local transaction
identifier). Thus, XIDs may not be the same.

e Return Values

Value Description
1 A caller is in a transaction mode and a function call was successful.
0 A caller is not in a transaction mode and a function call was
successful.
Negative Value A function call failed. A tperrno is set to an error code.
* Errors

When a tx_info() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TX_PROTOCOL_ERROR] A tx_info() was called from an invalid state. For example, a
tx_open() was not yet called.

[TX_FAIL] A transaction manager encountered a critical error. The manager
can no longer execute jobs for an application program. Exact
causes of the error differ depending on product characteristics.

« Examples

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
void main(int arge, char *argv[])
{

int ret;

long len;

char *buf;

TXINFO info;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

126 | Application Development Guide

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

data process....

ret=tx_begin();

if (ret<@) { error processing }

ret=tpcall(“SERVICE”, buf, 20, (char **)&buf, &len, TPNOFLAGS);
if (ret==-1) { error processing }

if (tx_info(&info)==1) printf(“In transaction \n”);
else printf(“Not in transaction \n”);

if (strncmp(buf, “err”, 3)==0) tx_rollback();
else tx_commit();

data process....
tpfree((char *)buf);
tpend();

* Related Functions

tx_open(), tx_set_commit_return(), tx_set_transaction_control(), tx_set_transaction_timeout()

9.9.4. tx _rollback

Used to roll back a global transaction. This function is available for both servers and clients.

If a transaction_control property is TX_UNCHAINED, a caller will not be in a transaction mode any
more when a tx_rollback() returns. If a transaction_control property is TX_CHAINED, however, a caller
will remain in a transaction mode for a new transaction when a tx_rollback() returns. For detailed
information about a transaction_control property, see tx_set_transaction_control.

* Prototype

#include <tx.h>
int tx_rollback(void)

e Return Values

Value Description

TX_OK A function call was successful.

Negative Value A function call failed. A tperrno is set to an error code.
* Errors

When a tx_rollback() fails to execute, a tperrno will be set to one of the following values:

9. Client API | 127

Error Code
[TX_NO_BEGIN]

[TX_MIXED]

[TX_MIXED_NO_ BEGIN]

[TX_HAZARD]

[TX_HAZARD_NO_ BEGIN]

[TX_COMMITTED]

[TX_COMMITTED_
NO_BEGIN]

[TX_PROTOCOL_ ERROR]

[TX_FAIL]

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>

Description

Occurs only when a transaction_control property is TX_CHAINED.
New transactions cannot be started, and a caller is no longer in a
transaction mode.

Portions of a transaction may be committed while others may be
rolled back due to an error. If a transaction_control property is
TX_CHAINED, a new transaction will be started.

Occurs only when a transaction_control property is TX_CHAINED.
Portions of a transaction are committed while others are rolled
back. A new transaction cannot be started and a caller will no
longer be in a transaction mode.

Portions of a transaction may be committed while others may be
rolled back due to an error. If a transaction_control property is
TX_CHAINED, a new transaction will be started.

Occurs only when a transaction_control property is TX_CHAINED.
Portions of a transaction are committed while others are rolled
back. A new transaction cannot be started and a caller will no
longer be in a transaction mode.

A transaction was committed independently. If a
transaction_control property is TX_CHAINED, a new transaction will
be started.

Occurs only when a transaction_control property is TX_CHAINED. A
transaction was successfully committed, but new transactions
cannot be started, and a caller will no longer be in a transaction
mode.

A tx_rollback() was called from an invalid state. For example, a
caller was not in a transaction mode. A caller’s status is not
affected by a transaction.

A transaction manager or a resource manager encountered a
critical error. A manager can no longer execute jobs for an
application program. Exact causes of an error differ depending on
product characteristics. A caller’s status related to a transaction is
unknown.

void main(int argc, char *argv[])

{
char *buf;
int ret,cd;
long len, revent;

128 | Application Development Guide

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

data process.-
ret=tx_set_transaction_timeout(5);

if (ret<@) { error processing }

ret=tx_begin();
if (ret<@) { error processing }

cd = tpconnect(“SERVICE”, buf, 20, TPRECVONLY);

if (cd==-1) { error processing }

ret = tprecv(cd, (char **)&buf, &len, TPNOFLAGS, &revent)};
if (ret < @ && revent != TPEV_SVCSUCC) tx_rollback();
else tx_commit();

data process....

tpfree((char *)buf);
tpend();

* Related Functions

tx_begin(), tx_set_transaction_control(), tx_set_transaction_timeout()

9.9.5. tx_set_transaction_timeout

Sets a transaction_timeout property for a timeout value. This function is available for both servers
and clients. This value indicates the time in which a transaction must be completed before a
transaction timeout occurs. In other words, it is the interval between a tx_begin() and a tx_commit(),
or a tx_begin() and a tx_rollback().

A tx_set_transaction_timeout() function can be called regardless of whether a function calleris in a
transaction mode or not. If a tx_set_transaction_timeout() is called in a transaction mode, a new
timeout value will be applied from a following transaction.

* Prototype

include <tx.h>
int tx_set transaction_timeout (TRANSACTION TIMEOUT timeout)

* Parameters

Parameter Description

timeout Specifies a time allowed until a transaction timeout occurs, in
seconds. It can be set up to a maximum value of a long type
defined for each system.

9. Client API | 129

Parameter Description

timeout Default setting of a transaction_timeout is 0, which means there is
no timeout limit.

¢ Return Values

Value Description

TX_OK A function call was successful.

Negative Value A function call failed. A tperrno is set to an error code.
* Errors

When a tx_set_transaction_timeout() fails to execute, tperrno will be set to one of the following
values and a transaction_timeout value will be unchanged.

Error Code Description

[TX_EINVAL] An invalid timeout value.

[TX_PROTOCOL_ERROR] A tx_set_transaction_timeout() was called from an invalid state. For
example, a tx_open() was not yet called.

[TX_FAIL] A transaction manager encountered a critical error. A manager can
no longer execute jobs for an application program. Exact causes of
the error differ depending on product characteristics.

* Examples

#include <usrinc/atmi.h>
#include <usrinc/tx.h>

void main(int argc, char *argv[])
{

int ret;

long len;

char *buf;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) {error processing };

ret=tx_set_transaction_timeout(5);
if (ret<@) { error processing }

ret=tx_begin();
if (ret<@) { error processing }
ret = tpcall(“SERVICE”, (char *)buf, strlen(buf), (char **)&buf, &len,
TPNOFLAGS);
if (ret == -1) {
tx_rollback();

130 | Application Development Guide

error processing

}

data process
ret = tx_commit();
if (ret < @) { error processing }

data process...

tpfree((char *)buf);
tpend();

* Related Functions

tx_begin(), tx_commit(), tx_open(), tx_rollback(), tx_info()

9.9.6. tx_set_transaction_control

Sets a transaction_control property with a control value. This function is available for both servers
and clients.

This property determines whether to or not start a new transaction before a tx_commit() and a
tx_rollback() returns to a caller. tx_set_transaction_control() can be called regardless of whether an
application program is in a transaction mode or not. This setting is valid until it is changed as
tx_set_transaction_control() is called again.

* Prototype

include <tx.h>
int tx_set_transaction_control(TRANSACTION_CONTROL control)

* Parameters

Values available for control are as follows:

Configuration Value Description

TX_UNCHAINED The initial value of transaction_control property. Does not start a
new transaction until a tx_commit() or a tx_rollback() is returned to
a caller. In this case, a caller must execute a tx_begin() in order to
begin a new transaction.

TX_CHAINED Allows a new transaction to start before a tx_commit() or a
tx_rollback() is returned to a caller.

¢ Return Values

Value Description

TX_OK A function call was successful.

9. Client API | 131

Value Description

Negative Value A function call failed. A tperrno is set to an error code.

* Errors

When tx_set_transaction_control() fails to execute, tperrno will be set to one of the following
values and a previous transaction_control property will be unchanged.

Error Code Description
[TX_EINVAL] A control parameter is neither TX_UNCHAINED nor TX_CHAINED.

[TX_PROTOCOL_ERROR] A tx_set_transaction_control() was called from an invalid state. For
example, a tx_open() was not yet called.

[TX_FAIL] A transaction manager encountered a critical error. The manager
can no longer execute jobs for an application program. Exact
causes of the error differ depending on product characteristics.

* Examples

#include <usrinc/atmi.h>
#include <usrinc/tx.h>

int main(int argc, char *argv[])
{

int ret;

long len;

char *buf;

ret = tpstart((TPSTART_T *)NULL);
if (ret == -1) { error processing }

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };

ret = tx_set_transaction_timeout(5);

if (ret < @){ error processing }

ret = tx_set_transaciont_control(TX_UNCHAINED);
if (ret < @){ error processing }

ret = tx_begin();

if (ret < @) { error processing }

data process....

ret = tpcall(“SERVICE1”, (char *)buf, strlen(buf), (char **)&buf, &len,

TPNOFLAGS);
if (ret == -1)
{
tx_rollback();
error processing
}

data process...
ret = tpcall(“SERVICE2”, (char *)buf, strlen(buf), (char **)&buf, &len,
TPNOFLAGS);

132 | Application Development Guide

if (ret == -1)
{
tx_rollback();

error processing

}

data process -

ret = tx_commit();
if (ret < @) { error processing }
data process...

tpfree((char *)buf);
tpend();

* Related Functions

tx_begin(), tx_commit(), tx_open(), tx_rollback(), tx_info()

9.9.7. tx_set_commit_return

Sets a commit_return property with a when_return value. This function is available for both servers
and clients.

This property determines the method how a tx_commit() function returns a control to a caller. A
tx_set_commit_return() can be called regardless of whether a function caller is in a transaction mode.
This setting is valid until it is changed as a tx_set_commit_return() is called again. Initial setting of a
commit_return property depends on the situation when the function is executed.

* Prototype

#include <tx.h>
int tx_set_commit_return (COMMIT_RETURN when_return)

* Parameters

Values available for when_return are as follows:

Configuration Value Description

TX_COMMIT_ DECISION_ This flag causes a tx_commit() to return before the second phase

LOGGED of a Two-Phase Commit (2PC) protocol is completed after it was
logged in a first phase. This allows a tx_commit() to respond to a
caller more quickly. However, there is a danger that a transaction
may have a heuristic result. In this case, a caller cannot understand
the situation generated by the code returned from a tx_commit().

9. Client API | 133

Configuration Value Description

TX_COMMIT_ DECISION_ In normal cases, a transaction participant scheduled to commit a

LOGGED transaction in a first phase can normally commit a transaction in a
second phase. In abnormal cases such as a network failure or a
node fail lasting too long, it may be impossible to complete a
second phase and a heuristic result may be resulted. A transaction
manager can select this property not to be supported, using a
parameter. At this time, a tx_commit() returns
[TX_NOT_SUPPORTED], indicating that this property is not
supported.

TX_COMMIT_COMPLETED This flag causes a tx_commit() to return after a 2PC protocol is
completed. This setting shows a function caller return code
indicating that a transaction produced a heuristic result or a
probability. A transaction manager can select this property not to
be supported, using a parameter. At this time a tx_commit()
returns a [TX_NOT_SUPPORTED], indicating that this property is not
supported.

¢ Return Values

When successfully completed, a tx_set_commit_return() returns a [TX_OK] of a value other than a
negative value.

If a when_return is set to a TX_COMMIT_COMPLETED or a TX_COMMIT_DECISION_LOGGED, a
function will return a [TX_NOT_SUPPORTED] instead of a negative value and a previously used
commit_return property will still be valid. A transaction manager must set a when_return to
either a TX_COMMIT_COMPLETED or a TX_COMMIT_DECISION_ LOGGED.

* Errors

When a tmax_chk_conn() fails to execute, a tperrno will be set to one of the following values, and
a commit_return property will be unchanged.

Error Code Description

[TX_EINVAL] A when_return is not set to TX_COMMIT_COMPLETED or
TX_COMMIT_DECISION_LOGGED.

[TX_PROTOCOL_ERROR] A tx_set_commit_return() was called from an invalid state. For
example, a tx_open() was not yet called.

[TX_FAIL] A transaction manager or a resource manager encountered a
critical error. The managers could no longer execute jobs for an
application program. Exact causes of the error differ depending on
product characteristics. A caller’s status, related to the transaction,
is unknown.

« Examples

134 | Application Development Guide

#include <usrinc/tx.h>

int main(int argc, char *argv[])

{
int ret;
long len;
char *buf;
ret = tpstart((TPSTART_T *)NULL);
if (ret == -1) { error processing }
buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };
ret = tx_set_transaction_timeout(5);
if (ret < @){ error processing }
ret = tx_set _commit_return(TX_COMMIT_COMPLETED);
if (ret < 0){ error processing }
ret = tx_begin();
if (ret < @){ error processing }
data process....
ret = tpcall(“SERVICE1”, (char *)buf, strlen(buf), (char **)&buf, &len,
TPNOFLAGS);
if (ret == -1)
{
tx_rollback();
error processing
}
data process...
ret = tpcall(“SERVICE2”, (char *)buf, strlen(buf), (char **)&buf, &len,
TPNOFLAGS);
if (ret == -1)
{
tx_rollback();
error processing
}
data process -
ret = tx_commit();
if (ret < @) { error processing }
data process...
tpfree((char *)buf);
tpend();
}

* Related Functions

tx_commit(), tx_open(), tx_info()

9. Client API | 135

9.10. RQ System

This section describes functions that are used by RQ. The Tmax system provides the RQ system for
reliable queues. ENQSVR works as a queue management process to enqueue/dequeue data to/from
RQ. This function cannot be used in Windows NT or 2000.

Even when services cannot be provided due to a system failure or error, data stored in the queue can
guarantee its integrity. If multiple servers are established in a WAN environment or the load is large,
RQ can be used to process applications with guaranteed data integrity.

9.10.1. tpenq

The Tmax system ensures the integrity of data stored in a RQ even when a system fault or error
causes an out of service status. A tpenq() saves data to a RQ. If a system crashes, it will continue
processing data once the system recovers.

If a service is requested through a tpcall() or a tpacall(), requests will be queued if there are other
requests waiting to be processed. If a system error or failure causes a system shutdown, queued
data will be lost. To prevent data loss and to improve data consistency, a tpenq() saves data in a RQ
for each service request.

Although a tpenq() is executed in a transaction mode, it is excluded from transaction modes. If an
error occurs while this function is being executed in a transaction mode, a transaction will not be
affected.

* Prototype

include <tmaxapi.h>
int tpenq (char *gname, char *svc, char *data, long len, long flags)

* Parameters

Parameter Description

gname A RQ that saves data. A name must be specified and registered in a
configuration file.

svC Stores data to a RQ and immediately requests a service unless a svc name is
NULL.

If the svc name is NULL, data is stored in the RQ but a service will not be
performed. In this case, a function caller must request the service again
using a tpdeq(). If a system fault occurs when there is no service named svc
or a service result has not been received after a service was performed, the
data will be stored internally in a Fail Queue. This data must be re-requested
using a tpdeq() or processed as an error.

data This is a pointer to a buffer allocated by a tpalloc() unless the value is NULL,.
The type and subtype of data must be supported by a svc.

136 | Application Development Guide

Parameter Description

len The length of data to be sent.

+ If data points to a buffer type that does not require a specified length,
such as a STRING, STRUCT, X_ COMMON, or X_C_TYPE, a len will be
ignored and 0 will be used.

+ If data points to a buffer type that requires a specified length, such asa
X_OCTET, CARRAY, or MULTI STRUCTURE, a len cannot be 0.

« If data is NULL, len is ignored and a service request will be received
without data.

flags The following values are available.
* TPRQS

When a svc is not NULL, a function caller will request a svc service and
store service results in a RQ. To receive service results,a tpdeq() must be
called. If a svc is NULL, data will be stored in a RQ but a service will not be
performed.

* TPNOREPLY

When a svc is not NULL, a function caller will request a svc service and
will not store results in a RQ. If a svc is NULL, data will be stored in a RQ
but a service will not be performed.

* TPFUNC

Manages RQ data by service. If a TPFUNC is not set, data stored by a
tpenq() will be de-queued when it is initially stored. If data must be de-
queued before it is stored, a TPFUNC must be set when calling a tpenq().

* 0 (zero)

Stores service results to a client buffer of a Tmax system that is
connected to a function caller. Service is requested through a RQ, but the
results are saved to a client’s buffer similarly to a tpcall() function. Once
this flag is set, a 0 (zero) must also be set when calling a tpdeq() in order
to receive service results.

¢ Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpenq() fails to execute, a tperrno will be set to one of the following values:

9. Client API | 137

Error Code Description

[TPEINVAL] An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

[TPENOENT] A gname does not exist.

[TPEQFULL] A maximum queue length reached due to continuous service results.

[TPGOTSIG] A signal that is received when a TPSIGRSTRT is not set.

[TPEPROTO] A tpenq() was called from an invalid state.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a

system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

void main(int arge, char *argv[])

{
int ret;
char *buf;
long len;
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }
buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process....
ret=tpenq(“RQ”, “SERVICE”, (char *)buf, strlen(buf), TPRQS);
if (ret==-1) { error processing }
data process....
ret=tpdeq(“RQ”, “SERVICE”, (char **)&buf, (long *)&len, TPRQS);
if (ret==-1) { error processing }
data process....
tpfree(buf);
tpend();
}

* Related Functions

tpdeq(), tpgstat()

138 | Application Development Guide

9.10.2. tpdeq

Loads data from a RQ. It receives the result of a service request or sets a service name to NULL and
then reads stored data by using a tpenq() function. However, if a TPNOREPLY is set when a tpenq() is
called, a service cannot receive any results, so even if an error occurs while executing a tpdeq() in a
transaction mode, a transaction will not be affected.

* Prototype

include <tmaxapi.h>
int tpdeq (char *gname, char *svc, char **data, long *len, long flags)

* Parameters

Parameter Description

gname A RQ that saves data. A name must be specified and registered in a
configuration file.

SVC A svc must be set to a service name when a tpenq() is called. In other words,
if a tpenq() is called with a service name, a service will automatically be
requested and the results will be stored in a RQ. In order to receive service
results, the same service name must be specified.

If the service name is NULL when a tpenq() is called, the same service name
must be entered for a tpdeq_ctl(). If the service name is NULL, all data
accumulated in a queue can be loaded individually regardless of the service
name.

To call a tpdeq() for data saved in a fail queue due to an error or a system
failure, a svc must be set to _rg_sub_queue_name[TMAX_FAIL_QUEUE].

*data A pointer to a buffer allocated by a tpalloc(). When a function is successfully
returned, received data will be stored in a *data.

len Size of the data received by a tpdeq(). A tpdeq() can increase a buffer size if a

reply is larger than the buffer.

Returned results are stored in a *data, and a len will be the size of received
data. A *data can be modified if the size of received data is too large. If a len
is larger than the total size of a previously called buffer, a larger buffer size
will be allocated. If a len returns a 0, no data will be received and nothing will
be changed in the buffer indicated by a *data and a len.

If a *data or a len is NULL, an error will occur.

flags The following values are available.
* TPRQS

Loads service results from a reply queue (RQ).

9. Client API | 139

Parameter

flags

¢ Return Values

Value
-1

* Errors

Description
* TPFUNC

Manages RQ data by service. If a TPFUNC is not set, data stored by a
tpenq() will be dequeued when it is initially stored. If data must be
dequeued before it is stored, a TPFUNC must be set when calling a

tpenq().
« TPBLOCK

Waits until a message is returned during a block timeout.
« TPNOTIME

If a TPNOTIME and a TPBLOCK are both set, a function will wait until a
reply is returned regardless of a block timeout.

* 0 (zero)

Loads data from the buffer of a client that a function caller is connected
to.

Description

A function call failed. A tperrno is set to an error code.

When a tpdeq() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPGOTSIG]
[TPEMATCH]

[TPENOENT]
[TPEPROTO]
[TPESYSTEM]

[TPEOS]

* Examples

Description

An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

A signal that is received when a TPSIGRSTRT was not set.

When a service name is wrong or there is no data to be dequeued, no data
will be found for a given key.

An invalid gname.
A tpdeq() was called from an invalid state.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred.

140 | Application Development Guide

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

void main(int argc, char *argv[])

{
int ret;
char *buf;
long len;
ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }
buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process....
ret=tpenq(“RQ”, “SERVICE”, (char *)buf, strlen(buf), TPRQS);
if (ret==-1) { error processing }
data process....
ret=tpdeq(“RQ”, “SERVICE”, (char **)&buf, (long *)&len, TPRQS);
if (ret==-1) { error processing }
data process....
tpfree(buf);
tpend();
}

¢ Related Functions

tpenq(), tpgstat()

9.10.3. tpqstat

Used to get the data statistics accumulated in a current RQ. This function is available both in a server
and a client. A RQ internally consists of three queues: a _fail queue, a _request queue, and a _ reply
queue. A tpgstat() can get the data statistics stored in each of these queues, by using a flag value.

* Prototype

include <tmaxapi.h>
int tpgstat (char *gname, long flags)
* Parameters

Parameter Description

gname A RQ that saves data. A name must be specified and registered in a
configuration file.

9. Client API | 141

Parameter Description

flags A target data type.
The following values are available.
* O(TMAX_ANY_QUEUE): Retrieves the statistics about all data stored in a
_fail queue, _request queue, and _reply queue.

* 1(TMAX_FAIL_QUEUE): Retrieves the data statistics stored in a _fail queue.

* 2(TMAX_REQ_QUEUE): Retrieves the data statistics stored in a _request
queue.

* 3(TMAX_RPLY_QUEUE): Retrieves the data statistics stored in a _reply

queue.
* Return Values
Value Description
-1 A function call was successful. A tperrno is set to an error code.

* Errors

When a tpgstat() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEINVAL] An invalid parameter. For example, when a gname is NULL, there will be no
queue with a corresponding name, or a flag will be invalid.

[TPEPROTO] A tpgstat() was called from an invalid state.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

void main(int argc, char *argv[])

{
int ret, i;
char *buf;

if (argc!=2) { error processing }
ret=tpstart((TPSTART_T *)NULL);

if (ret==-1) {error processing }

buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }

142 | Application Development Guide

strepy(buf, argv[1]);

data process:

ret=tpenq(“RQ”, NULL, (char *)buf, strlen(buf), TPRQS);

if (ret==-1) {error processing }
printf(“gstat :”);
for (i=0;i<4;i++) {
ret=tpqstat(“rq”, i);
if (ret==-1) {error processing }

printf(“ %d”,ret); /* gstat :

}
printf(“\n”);
data process::

1T 0 0 1%

ret=tpenq(“RQ”, “SERVICE”, (char *)buf, strlen(buf), TPRQS);

if (ret==-1) {error processing }
printf(”qstat :7);

for (i=0;i<4;i++) {
ret=tpqstat(“rq”, i);
if (ret==-1) {error processing }

printf(” %d”,ret); /* gstat :

}

printf(“\n”);
tpfree((char *)buf);
tpend();

¢ Related Functions

tpenq(), tpdeq()

9.10.4. tpextsvchame

Extracts a service name from the data read from a RQ by using a tpdeq(). This function is generally
used to read data stored in a Fail Queue and can be used on both a client and a server.

* Prototype

include <tmaxapi.h>
int tpextsvcname (char *data, char *svc)

* Parameters

Parameter Description

data A pointer allocated by a tpalloc() that stores read data from a RQ through a
tpdeq().

svc A pointer that receives the service name of data.

2.0 0 2%

9. Client API | 143

* Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpextsvcname() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>
void main(int argc, char *argv[])
{

int ret;

char *buf, *svc_name;

long len;

ret=tpstart((TPSTART_T *)NULL);
if (ret==-1) { error processing }

buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process....

ret=tpenq(“RQ”, “SERVICE”, (char *)buf, strlen(buf), TPRQS);
if (ret==-1) { error processing }
data process....

ret=tpdeq(“RQ”, “SERVICE”, (char **)&buf, (long *)&len, TPRQS);
if (ret==-1) { error processing }

ret=tpextsvcname(buf, svc_name);
if (ret==-1) { error processing }
printf(“svc name : %s ,”,svc_name);

data process....

tpfree(buf);
tpend();

* Related Functions

144 | Application Development Guide

tpenq(), tpdeq()

9.11. Functions using Events

Tmax can send messages to service routines and multiple clients. Developers can specify any client
and service routine to register, cancel, or generate an event. Client and service routines can register
in each event redundantly or register in multiple events simultaneously.

ﬂ Occurred events' data and results are not included in the transaction.

9.11.1. tpsubscribe

Subscribes to an event or set of events named by an eventname. It is used to request a notification
for an event when an event is posted. This function is available for both servers and clients.

* Prototype

include <tmaxapi.h>
long tpsubscribe(char *eventname, char *filter, TPEVCTL *ctl, long flags)

* Parameters

Parameter Description

eventname A string ending with NULL that has up to a 63-character length.

A wildcard character or partial-matching is not supported. Only a name that
matches an entire string can be registered.

filter Reserved for future-use. NULL must be set in this parameter.

ctl A structure that receives a message when an event occurs. It works
differently depending on the subject of a tpsubscribe(). If a client used a
tpsubscribe(), a ctl must always be NULL and a message will be delivered to
a client as an unsolicited data type. Afterwards, the client will handle the
received data using a tpsubscribe() or a tpgetunsol().

flags Currently, only a TPNOTIME can be used.

If a tpsubscribe() is executed by a server, a ctl must not be NULL and it must be configured as
follows:

struct tpevctl {
long ctl_flags;
long post_flags;
char svc[XATMI_SERVICE_NAME_LENGTH];
char gname[RQ_NAME_LENGTH];

9. Client API | 145

I
typedef struct tpevctl TPEVCTL;

Member Description

ctl_flags Not currently supported. Set to 0.

post_flags Not currently supported. Set to 0.

gname When using a gname, a message will be queued in a RQ via a tpenq (gname,

NULL, data, len, TPNOFLAGS).

svC When using a svc, a message will be sent to a server in a similar manner to a
tpacall (svc, data, len, TPNOREPLY) and a response from the server will be
ignored. Only one gname or svc can be used at a time.

¢ Return Values

Value Description

descriptor A function call was successful and a descriptor to be used for a
tpunsubscribe() is returned.

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a tpsubscribe() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file. For a client program, a network error is the most common
error.

[TPEOS] An operating system error occurred. Memory cannot be allocated.

[TPEINVAL] An invalid parameter.

[TPENOENT] A RQ or a server corresponding to a specified gname or svc of a TPEVCTL
structure does not exist.

[TPEPROTO] A ctlis not NULL in a client and a server.

[TPETIME] A timeout occurred.

¢ Related Functions

tpsetunsol(), tpsetunsol_flag(), tpgetunsol(), tpacall(), tpenq()

9.11.2. tpunsubscribe

Removes an event subscription or a set of event subscriptions registered by a tpsubscribe() from a

146 | Application Development Guide

Tmax system'’s list of subscriptions. If all subscriptions are removed, a Tmax system will delete the
table containing the events.

* Prototype

include <tmaxapi.h>
int tpunsubscribe(long sd, long flags)

* Parameters

Parameter Description

sd A return value received when registering for a subscription with a
tpsubscribe().

flags Currently, only a TPNOTIME can be used.

e Return Values

Value Description

Positive Value A function call was successful.

Negative Value A function call failed. A tperrno is set to an error code.

* Errors

When a tpunsubscribe() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file. For a client program, a network error is the most common
error.

[TPEOS] An operating system error occurred. Memory cannot be allocated.

[TPEINVAL] An invalid parameter.

[TPETIME] A timeout occurred.

* Related Functions

tpsetunsol(), tpsetunsol_flag(), tpgetunsol(), tpacall(), tpenq()

9.11.3. tppost

Generates a specific event from a server or client and delivers a message. A tppost() notifies the
occurrence of an event to all clients and server processes that registered for the event by using the
eventname in a tpsubscribe(). If required, a message can be delivered.

9. Client API | 147

* Prototype

include <tmaxapi.h>
int tppost(char *eventname, char *data, long len, long flags)

* Parameters

Parameter Description

eventname A string that ends with a NULL, and has up to a 63-character
length. Wildcard or partial-matching is not supported.

data A pointer to a buffer for messages to be sent. Must be a buffer
allocated by a tpalloc().

len The length of a buffer to be sent.
+ If data indicates a buffer that does not require a data length to
be provided, a len will be ignored (0 is used by default).

« If data indicates a buffer that requires a data length, a len must
not be 0.

+ If data is NULL, a len will be ignored.
flags Currently, only a TPNOTIME can be used.

¢ Return Values

Value Description

Positive Value A function call was successful.

Negative Value A function call failed. A tperrno is set to an error code.
* Errors

When a tppost() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be
recorded in a system log file. For a client program, a network error
is the most common error.

[TPEOS] An operating system error occurred.

[TPEINVAL] An invalid parameter.

[TPENOENT] When using a tpsubscribe(), this error indicates that a RQ, a server
corresponding to a gname, or a svc of a TPEVCTL structure does
not exist.

[TPEPROTO] When a tpsubscribe() is executed in a client, a ctl is not NULL. When

a tpsubscribe() is executed in a server, a ctl is NULL.

148 | Application Development Guide

Error Code Description
[TPETIME] A timeout occurred.

* Related Functions

tpsetunsol(), tpsetunsol_flag(), tpgetunsol(), tpacall(), tpenq()

9.12. Broadcast and Multicast

Tmax can send data to clients in various ways. When sending data to multiple clients for
management or development, Tmax can manage all client IDs and send messages to each client.
This method, however, is not efficient when there are many concurrent users in the system.

If clients can be divided into several groups, an API can be used to send messages to all related
clients. Tmax implements broadcast and multicast by utilizing client access information or events.
Both the broadcast and multicast APIs can broadcast and multicast, but they are named so to
distinguish them.

9.12.1. tpbroadcast

Broadcasts notifications to clients registered in the Tmax system. To receive a notification, a client
must be connected to the Tmax system using tpstart(), the client name and flags must be defined
correctly, and flag values of the TPSTART_T structure used for tpstart() must be set to TPUNSOL_POLL
or TPUNSOL_HND. This function can be used on both the client and the server.

* Prototype

include <atmi.h>
int tpbroadcast (char *nodename, char *usrname, char *cltname,
char *data, long len, long flags)

* Parameters

Parameter Description
nodename, Logical names used to select target clients. The name length must be 63
characters or less. Wildcards (?, *, etc.) can be used to specify names. NULL
usrname, can also be used as a wildcard corresponding to all clients. A string
argument with a length of 0 corresponds only to a client name with a string
cltname
length of 0.

cltname is the client name used, which is registered when the client first
accesses the Tmax system, when using the tpstart() function.

data A buffer must be allocated through tpalloc() in advance.

9. Client API | 149

Parameter Description

len Length of data to receive.

* For STRING, STRUCT, X_COMMON, and X_C_TYPE buffers, which require
no length specification, len is ignored and 0 is used by default.

* lenis also ignored if data is NULL.

flags The following values are available.
+ TPNOBLOCK

If a blocking condition (for example, the internal buffer is filled with
messages to be transmitted) is encountered, the request is not sent.

* TPNOTIME

Function caller must wait indefinitely until a response is received.
Blocking timeout is ignored. If tpbroadcast() is called during a
transaction timeout, transaction timeout applies.

* TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function is executed again. If the signal interrupt occurs
without this flag, the function fails and tperrno is set to TPGOTSIG.

¢ Return Values

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpbroadcast() fails to execute and no messages can be transmitted to a client, a tperrno
will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, an identifier is too long or a flag is
invalid. If a nodename is incorrect, a tpbroadcast() will fail and return a
TPEINVAL. However, if a usrname or cltname is invalid, a message will not
be transmitted, but a function will be considered to have executed
successfully.

[TPETIME] Blocking timeout occurred while TPNOBLOCK or TPNOTIME is not set.
[TPEBLOCK] A blocking state occurred when a TPNOBLOCK was set.
[TPGOTSIG] A signal that is received when a TPSIGRSTRT is not set.

150 | Application Development Guide

Error Code Description
[TPEPROTO] A tpbroadcast() was called from an invalid state.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
void main(int argc, char *argv[])

{
int ret;
char *buf;
TPSTART_T *tpinfo;
tpinfo = (TPSTART_T *)tpalloc(“TPSTART”, NULL, sizeof(TPSTART_T));
if (tpinfo==NULL) { error processing }
strepy(tpinfo->cltname, “clil1”);
strepy(tpinfo->usrname, “navis”);
ret=tpstart(tpinfo);
if (ret==-1) { error processing }
buf=tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process::
tpbroadcast(“tmax”, NULL, NULL, buf, @, TPNOFLAGS);
data process....
tpfree(buf);
tpend();

}

* Related Functions

tpalloc(), tpend(), tpstart()

9.13. Environment Program

To develop services for general users, the client program is generally developed in Windows. For
development in Windows, Tmax provides interfaces for various development tools. Tmax also
provides various types of libraries for developer convenience. According to the library, APIs can be
added or replaced.

Tmax supports the following development tools: PowerBuilder, Delphi, VC++,
ﬂ BC++, VB, VB .Net, C#, and Net. For more information about each development
tool, refer to Tmax Programming Guide (4GL).

9. Client API | 151

The following describes the supported libraries.

Library Description
tmax.lib (dll) Used for VC++, Delphi, and C#. (cdecl)
tmax4gl. lib (dll) Used for BC++, PowerBuilder, VB, and VB.Net. (stdcall)
tmaxmt. lib (dll) Supports multi-thread type. (cdecl)
Wintmax. lib (dll) Supports multi-windows. (cdecl)
tmaxce.lib (dll) Supports Windows ce. (cdecl)
* tmaxmt.dll

APIs were added to process message-driven type service requests, which are used in the
Windows programming environment. The two APIs only differ in whether the message is
returned to Windows or to the specified Callback function. Whenever an API is run, a thread is
created to process the message. tmaxpi.h is used as the header file.

o WinTmaxAcall()
o WinTmaxAcall2()
* WinTmax.dll
APIs were added to process message-driven type service requests, which are used in the

Windows programming environment. Messages are processed by independent threads, so
WinTmaxStart() or WinTmaxEnd() is used instead of tpstart() or tpend().

o

WinTmaxStart()

o WinTmaxEnd()

o

WinTmaxSetContext ()

o

WinTmaxSend ()

WinTmax.dll works similarly to tmaxmt.dll but it does not connect to/disconnect from the
Tmax system automatically. Also, a thread processes all messages instead of creating a
thread for each APL. If Windows is not set separately to process error messages and
unrequested messages, the messages are ignored.

For debugging and management, logs can be left in the file specified in the MAX_DEBUG
environment variable. WinTmax.h is used as the header file.

9.13.1. WinTmaxAcall

Available in a client in a Windows system environment. This funciton performs the same functions as
a tpacall() in a multi-threaded environment. It creates a new thread and invokes a tpstart() -
tpacall() - tpgetrply() in the thread. After calling a tpgetrply(), it invokes a SendMessage(wHandle,
msgType, (UINT) &MSG, tperrno).

152 | Application Development Guide

* Prototype

include <tmaxapi.h>
int WinTmaxAcall(TPSTART_T *sinfo, HANDLE wHandle, unsigned int msgtype,

* Parameters

Parameter

sinfo

wHandle

msgtype

SvC

sndbuf

len

flags

char *svc, char *sndbuf, int len, int flags)

Description

The structure that is used when sending client information to a Tmax
system. Identical to the parameter of a tpstart().

A Windows Handler used to receive messages.

An arrival message. Generally, a WM_USER is freely defined by a developer.
Specify a service name registered in a svc Tmax configuration file.

A service to send a request.

Data to be sent when calling a service. If not null, it must use a buffer
allocated using a tpalloc().

The length of data to be sent. It must be specified for CARRAY, X_OCTET, and
Structure array types.

Identical to the flags of a tpacall().
The following values are available.
* TPBLOCK

If a tpacall was used without flags, a normal result will be returned even

if a called service does not exist in a svc or an invalid result is returned If
a tpacall() is called using a TPBLOCK, a service state can be checked if it is
normal or not.

* TPNOTRAN

If a service does not support transactions in a transaction mode, flags
must be set to a TPNOTRAN for a tpacall() to be called in the transaction
mode. If a tpacall() caller requests a svc service by setting a TPNOTRAN in
a transaction mode, a svc service will be executed by being excluded
from the transaction mode. When calling a tpacall() in a transaction
mode, a call will still affected by a transaction timeout even if a tpacall() is
set to TPNOTRAN. In other words, calling a tpacall that is set as a
TPNOTRAN after a transaction timeout will fail except when calling a
tpacall that has been set as a TPNOTRAN | TPNOREPLY. If a service with a
flag set to a TPNOTRAN fails, this does not affect a caller’s transaction.

9. Client API | 153

Parameter Description
flags « TPNOREPLY

If a tpacall() is used to send a service request, a tpacall will return
immediately without waiting for a response. A client can retrieve results
by using a tpgetrply() with a descriptor returned by a tpacall(). If a
TPNOREPLY is set, a response for a service request will not be received. If
set to a TPNOREPLY, a tpacall() will return a 0 if a service is called
normally. If a function caller is in a transaction mode, a TPNOREPLY must
be set along with a TPNOTRAN. In case of a TPNOREPLY, to check if a
service state is normal or not, a TPBLOCK also must be set. If a TPBLOCK
is not set, an error will not be returned even a service is NRDY.

+ TPNOBLOCK

Upon encountering a blocking condition with this flag, for example, an
internal buffer is filled with messages to be transmitted, a service
request will fail. When calling a tpacall() function without setting a
TPNOBLOCK flag, if a blocking condition is encountered, a function caller
must wait until blocking is released or a timeout (transaction timeout or
blocking timeout) occurs.

* TPNOTIME

A function caller must wait indefinitely until a response is received and
blocking timeouts are ignored. If a tpacall() is called during a transaction
timeout, a transaction timeout will be applied.

» TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, a function will fail and a tperrno will be set to a

TPGOTSIG.
* Return Values
Value Description
Descriptor A function call was successful. A returned descriptor is used to receive a

response for a sent service request.

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a WinTmaxAcall() fails to execute, a tperrno will be set to one of the following values:

154 | Application Development Guide

Error Code
[TPEINVAL]

[TPENOENT]
[TPEITYPE]

[TPELIMIT]

[TPETIME]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]

[TPESYSTEM]
[TPEOS]

+ Example

Description

An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

A specified svc does not exist.

A svc does not support a data type or subtype. For a structure, this error
occurs when the structure is not declared in a SDLFILE file.

A maximum number of unprocessed asynchronous service requests was
reached. Service requests from a caller cannot be sent.

A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, a transaction will be rolled back. If a function caller is
not in a transaction mode, a block timeout will occur if neither a TPNOTIME
nor a TPNOBLOCK is set.

In these cases, a *data content and a *len will not be changed. If a
transaction timeout occurs, new service requests and processes waiting for a
response will fail with a [TPETIME] error until a transaction is rolled back.

A blocking state occurred when a TPNOBLOCK was set.
A signal that is received when a TPSIGRSTRT is not set.

A WinTmaxAcall() was called from an invalid state. For example, a
TPNOREPLY was called in a transaction mode, but a TPNOTRAN was not set.

A Tmax system error occurred.

An operating system error occurred.

#include <usrinc/tmaxapi.h>
f#idefine WM_WINTMAX_RECV WM_USER + 1

BEGIN_MESSAGE_MAP(CWinTmaxAcall2TestDlg, CDialog)

ON_MESSAGE (WM_WINTMAX_RECV, OnWinTmaxAcall)

END_MESSAGE_MAP()

BOOL CWinTmaxAcall2TestD1g::0nInitDialog()

(Dialog::0nInitDialog();

ret = tmaxreadenv(“tmax.env”, “TMAX”);

DA

AfxMessageBox(“tmaxreadenv fail...”);
return FALSE;

{

if (ret

}

return TRUE;
}

// return TRUE unless you set the focus to a control

9. Client API | 155

void CWinTmaxAcall2TestD1g: :0n0K()
{

GetDlgIltemText(IDC_EDITT, m_Input);
Istrepy((LPTSTR)buf, (LPCTSTR)m_Input.operator const char *());

buf = tpalloc(“STRING”, NULL, Q);

if (buf == NULL){
AfxMessageBox(“buf alloc fail...”);
return FALSE;

}

ret = WinTmaxAcall((TPSTART_T *)NULL, m_hWnd, WM_WINTMAX_RECV,
“TOUPPER”, buf, @, TPNOFLAGS);
if (ret == -1){
error processing
}
+

LRESULT CWinTmaxAcall2TestDlg: :OnWinTmaxAcall(WPARAM wp, LPARAM 1p)
{
char msg[100];
memset(msg, 0x00, 100);
TPSVCINFO *get = (TPSVCINFO *)wp;
if (1p < 0){
error processing

}

SetDlgItemText(IDC_EDIT2, get->data);
return 0;

* Related Functions

tpacall(), WinTmaxAcall2()

9.13.2. WinTmaxAcall2

Available in a client in a Windows system environment. This function performs the same function as a
tpacall() in a multi thread environment. It issues a new thread and invokes a tpstart() — tpacall() -
tpgetrply() in the thread. After calling a tpgetrply(), it delivers received data to a specified Callback
function.

* Prototype

include <tmaxapi.h>
int WinTmaxAcall2(TPSTART_T *sinfo, WinTmaxCallback fn, char *svc,
char *sndbuf, int len, int flags)

* Parameters

156 | Application Development Guide

Parameter

sinfo

fn
SvC

sndbuf

len

flags

Description

The structure used when sending information about a client to a Tmax
system. Identical to the parameters of a tpstart().

Sets a Callback function to receive a response for a service request.
Sets a service name registered in a Tmax environment configuration file.

Data to be sent when calling a service. If not null, it must use a buffer
allocated through a tpalloc().

The length of data to be sent. It must be specified for CARRAY, X_OCTET, and

Structure array types.

Identical to the flags of a tpacall().
The following values are available.
+ TPBLOCK

If tpacall was used without flags, a normal result is returned even if a

called service does not exist in a svc or an invalid result is returned. If a
tpacall() is called using a TPBLOCK, a service state can be checked if it is
normal or not.

* TPNOTRAN

If a service does not support transactions in a transaction mode, flags
must be set to a TPNOTRAN for a tpacall() to be called in the transaction

mode. If a tpacall() caller requests a svc service by setting a TPNOTRAN in

a transaction mode, a svc service will be executed by being excluded
from the transaction mode. When calling a tpacall() in a transaction

mode, a call will still affected by a transaction timeout even if a tpacall() is

set to TPNOTRAN. If a service with a flag set to a TPNOTRAN fails, this
does not affect a caller's transaction.

* TPNOREPLY

If a tpacall() is used to send a service request, a tpacall will return
immediately without waiting for a response. A client can retrieve results
by using a tpgetrply() with a descriptor returned by a tpacall().

If a TPNOREPLY is set, a response for a service request will not be
received. If set to a TPNOREPLY, a tpacall() will return a 0 if a service is
called normally. If a function caller is in a transaction mode, a
TPNOREPLY must be set along with a TPNOTRAN. In case of a

TPNOREPLY, to check if a service state is normal or not, a TPBLOCK also
must be set. If a TPBLOCK is not set, an error will not be returned even a
service is NRDY.

9. Client API | 157

Parameter Description
flags * TPNOBLOCK

Upon encountering a blocking condition with this flag, for example, an
internal buffer is filled with messages to be transmitted, a service
request will fail. When calling a tpacall() function without setting a
TPNOBLOCK flag, if a blocking condition is encountered, a function caller
must wait until blocking is released or a timeout (transaction timeout or
blocking timeout) occurs.

* TPNOTIME

A function caller must wait indefinitely until a response is received and
blocking timeouts are ignored. If a tpacall() is called during a transaction
timeout, a transaction timeout will be applied.

* TPSIGRSTRT

Allows signal interrupts. If a system function is interrupted by a signal,
the system function will be executed again. If a signal interrupt occurs
without this flag, a function will fail and a tperrno will be set to a

TPGOTSIG.
* Return Values
Value Description
1 A function call was successful.
-1 A function call failed. A tperrno is set to an error code.

* Errors

When a WinTmaxAcall2() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a svc is NULL, data points to a buffer that
was not allocated by a tpalloc(), or a flag is invalid.

[TPENOENT] A specified svc does not exist.

[TPEITYPE] A svc does not support a data type or subtype. For a structure, this error

occurs when the structure is not declared in a SDLFILE file.

[TPELIMIT] A maximum number of unprocessed asynchronous service requests was
reached. Service requests from a caller cannot be sent.

[TPETRAN] A svc does not support transactions, and a TPNOTRAN was not set.

158 | Application Development Guide

Error Code
[TPETIME]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]

[TPESYSTEM]
[TPEOS]

* Examples

Description

A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, a transaction will be rolled back. If a function caller is
not in a transaction mode, a block timeout will occur if neither a TPNOTIME
nor a TPNOBLOCK is set.

In these cases, a *data content and a *len will not be changed. If a
transaction timeout occurs, new service requests and processes waiting for a
response will fail with a [TPETIME] error until a transaction is rolled back.

A blocking state occurred when a TPNOBLOCK was set.
A signal that is received when a TPSIGRSTRT is not set.

A WinTmaxAcall2() was called from an invalid state. For example, a
TPNOREPLY was called in a transaction mode, but a TPNOTRAN was not set.

A Tmax system error occurred.

An operating system error occurred.

#include <usrinc/tmaxapi.h>
#define WM_WINTMAX_RECV WM_USER + 1
int mycallfn(unsigned int, long);

BEGIN_MESSAGE _MAP(CWinTmaxAcall2TestDlg, CDialog)

END_MESSAGE_MAP()

BOOL CWinTmaxAcall2TestD1g::0nInitDialog()

ret = tmaxreadenv(“tmax.env”, “TMAX”);

AfxMessageBox(“tmaxreadenv fail...”);

// return TRUE unless you set the focus to a control

{
(Dialog::0nInitDialog();
if (ret == -1){
return FALSE;
}
return TRUE;
}

void CWinTmaxAcall2TestD1g::0n0K()

{

GetDlgItemText(IDC_EDITT, m_Input);
Istrepy((LPTSTR)buf, (LPCTSTR)m_Input.operator const char *());

buf = tpalloc(“STRING”, NULL, 0);

if (buf == NULL){
AfxMessageBox(“buf alloc fail...”);
return FALSE;

}

ret = WinTmaxAcall2((TPSTART_T *)NULL, (WinTmaxCallback)mycallfn,

9. Client API | 159

“TOUPPER”, (char *)buf, @, TPNOFLAGS);
if (ret == -1){
error processing

}

int mycallfn(unsigned int msg, long retval)

TPSVCINFO *svcinfo;
char infomsg[30];
memset(infomsg, 0x00, sizeof(infomsg));
sveinfo = (TPSVCINFO *)msg;
strncpy(infomsg, svcinfo->data, svcinfo->len);
if (retval != 0){
strepy(infomsg, tpstrerror(retval));
AfxMessageBox(infomsg);
return -1;
} else {
strncpy(infomsg, svcinfo->data, sizeof(infomsg) - 1);
AfxMessageBox(infomsg);
return 1;

* Related Functions

tpacall(),WinTmaxAcall()

9.13.3. WinTmaxStart

Available in a client in a Windows system environment. This function is used to connect to a Tmax
system in a multi-Windows environment. This function is identical to a tpstart(). When using multiple
threads, connections must be respectively established per thread through a WinTmaxStart().

* Prototype

include <WinTmax.h>
int WinTmaxStart(TPSTART_T *tpinfo)
* Parameters

Refer to tpstart for more information about a TPSTART_T.

¢ Return Values

Value Description
1 A function call was successful.
-1 A function call failed. A tperrno is set to an error code.

160 | Application Development Guide

* Errors

When a WinTmaxStart() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPEINVAL]

[TPEITYPE]

[TPEPROTO]

[TPESYSTEM]

[TPEOS]

* Related Functions

Description

An invalid parameter. For example, a tpinfo is NULL or not a pointer for a
TPSTART_T.

A tpinfo is not a pointer for a TPSTART_T structure.

A WinTmaxStart() was called in an inappropriate condition. For example, a
WinTmaxStart() was called in a server program, or it was called after a
connection was already established.

A Tmax system error occurred. Detailed error information is recorded in a
system log file.

An operating system error occurred. Environment variables may be invalid.
For example, a connection failed because a TMAX_BACKUP_ADDR or
TMAX_BACKUP_PORT was invalid.

tpstart(), WinTmaxEnd(), WinTmaxSend(), WinTmaxSetContext()

9.13.4. WinTmaxEnd

Available in a client in a Windows system environment. This funciton closes a connection to a Tmax
system. It functions identically to a tpend(). In a multi-threaded environment, a client is connected to
each thread via a WinTmaxStart(), so a WinTmaxEnd() must be used for each thread to close the

connection.

* Prototype

include <WinTmax.h>
int WinTmaxEnd(void)

e Return Values

Value
1

-1

* Errors

Description

A function call was successful.

A function call failed. A tperrno is set to an error code.

When a WinTmaxEnd() fails to execute, a tperrno will be set to one of the following values:

9. Client API | 161

Error Code Description

[TPETIME] Cannot access a critical section due to an internal system error. Check the
system status.

[TPEPROTO] A WinTmaxEnd() was called from an invalid state. For example, a
WinTmaxEnd() was called after a connection was already closed.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

¢ Related Functions

tpend(), WinTmaxStart()

9.13.5. WinTmaxSetContext

Available in a client in a Windows system environment. This function controls window handles and
message types.

This function, used in a Windows environment, manages specified Windows handles and message
types by storing them in a vacant slot of a library. Using this information, when a working thread
receives a reply, it will send data to the specified Windows in the specified type. The following is the
data transmission format:

SendMessage(winhandle, msgType, (UINT) &msg, callRet)

In a Windows environment, a WARM corresponds to a msg and a LARA corresponds to a callRet. A
msg is @ TPSVCINFO structure and a callRet indicates a result of the process. If a proper message is
received, a callRet is 0, and if an improper message is received, a callRet is -1.

For example, if a service is processed as atpreturn (TPSUCCESS, ...), or a service fails with a tpreturn
(TPFAILL, ...), or an unrequested message is received, a callRet becomes 0, since it will be considered
as a proper message was received. However, if a synchronous or conversational message is
delivered, a callRet will be -1 because those message types cannot be used in a multi Window
environment. If a callRet value is -1, a tperrno value can be checked to know the error cause.

* Prototype

include <WinTmax.h>
int WinTmaxSetContext(void *winhandle, unsigned int msgType, int slot)

* Parameters

162 | Application Development Guide

Parameter Description

winhandle A windows handle to process received data.

msgType A message type.

slot

Indicates a slot used to allocate a specified Windows handle and message
type. The maximum available number of slots is 256, and 0 and 1 are
internally specified in a system for a default display and error respectively.
Thus, if an error occurs while receiving data or a Windows for display is not
specified, a default Windows is used.

The default slots can be redefined by a user. In case of an unrequested
message, a user defined Windows will not exists, so messages are delivered
to the number 0 default display Windows.

The following values are available.

+ -1: Allocates a specified Windows handle and message type by
automatically searching for vacant slots in a system.

* Avalue greater than or equal to O: Allocates a specified Windows and
message type to a slot specified with a given index.

¢ Return Values

Value Description

index A function call was successful and an index for a slot was returned. As well,

an index is used as a first parameter of a WinTmaxSend().

A function call failed. A tperrno is set to an error code.

* ErrorsWhen a WinTmaxSetContext() fails to execute, a tperrno will be set to one of the following

values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred.

[TPEOS] An operating system error occurred.
* Examples

int CTMaxGwView: :Connect()

{

(String szTemp, Fname;
WinTmaxEnd();
int Ret = tmaxreadenv(TMAXINI, “TMAX117”);
if(Ret<0)
{
szTemp.Format(“tmaxreadenv error”);
LogDisplay2(2, (char *)(const char *)szTemp, szTemp.GetLength());

9. Client API | 163

return FALSE;

}

if (WinTmaxStart((TPSTART_T *)NULL) == -1) {
szTemp.Format(“WinTmaxStart error = [%s]”, tpstrerror(tperrno));
LogDisplay2(2, (char *)(const char *)szTemp, szTemp.GetlLength());
return FALSE;

}

WinTmaxSetContext(m_hWnd, WM_TMAX_RECV_RDP, 0);
WinTmaxSetContext(m_hWnd, WM_TMAX_RECV_ERR, 1);
WinTmaxSetContext(m_hWnd, WM_TMAX_RECV, 2);

return TRUE;

* Related Functions

WinTmaxStart(),WinTmaxEnd(), WinTmaxSend()

9.13.6. WinTmaxSend

Available in a client in a Window system environment. This function sends data and requests a
service in a multi-windows environment.

* Prototype

include <WinTmax.h>
int WinTmaxSend(int recvContext, char *svc, char *data, long len, long flags)

* Parameters

Parameter Description

recvContext Sets a Windows for receiving a response from a Tmax system. It is the return
value of a WinTmaxSetContext().

svC A service name.

data A buffer allocated through a tpalloc(). The data used to request a service is
stored.

len Data length. The length must be correctly defined when using a CARRAY or a

multiple Structure buffer.

flags Flag values are listed in the following table.

A WinTmaxSend() works similarly to a tpacall() function. It requests a service and is returned
immediately without waiting for a response. A response is processed by the thread that was
created when calling a WinTmaxStart(), and the response result will be sent to a Windows set by a
WinTmaxSetContext(), so a separate API is not provided to receive the response.

164 | Application Development Guide

The following example finds a vacant slot to store (hwd, 0x300) and returns an index. The return
value a rc of a WinTmaxSetContext() is used as a recvContext parameter of a WinTmaxSend(). If a
response is received after calling a WinTmaxSend(rc, svc, data, len, 0), a 0 x 300 message and a
response result will be sent to a hwd windows.

rc = WinTmaxSetContext(hwd, 0x300, -1);
int nSendResult = WindTmaxSend(rc, (LPSTR)(LPCSTR)strService, (Char*)tpbuf, nLen, TPNOFLAGS);
/*
The internal thread processes the response message and sends the result to the Windows
SendMessage(hwd, 0x300, (UINT) &msg, callRet);
*
/

A Windows that receives a message will receive a response data through a WPARAM and a
response result through a LPARAM. If a callRet is O, it means the response will be normal, and -1
means that an error occurred. The cause of an error can be known through a tperrno value.

A WinTmaxSend() does not support transactions due to its structure and is not affected by a
BLOCKTIME in a Tmax configuration file or a tpsettimeout(). However, when calling a
WinTmaxSend(), if a TPBLOCK flag is given, a BLOCKTIME will be applied according to a
corresponding flag.

The following are possible flag values.

Flag Description

TPBLOCK If a WinTmaxSend() function is used without this flag, a normal result will be
returned even if a called service did not exist in a svc or an invalid result was
returned. Errors can be checked at the time of receiving a result.

Using this flag, it is possible to check whether a service status is normal or
not normal at the time of calling a function. In other words, a
WinTmaxSend() checks if a request service can be processed normally within
a BLOCKTIME and returns the result. If a service cannot be processed, an
error will be stored in a tperrno and a -1 will be returned.

If it is impossible to check if a requested service can be processed within a
BLOCKTIME, a TPETIME error will be returned. In this case, a client cannot

know whether a requested service is processed or not, so an error routine
must be written carefully. If a request must be sent again, an error routine
must be to check if a previous request was processed.

TPNOREPLY Immediately returns a service request sent with a WinTmaxSend() function
without waiting for a response. A worker thread receives the result and
sends it to the specified Windows. However, a TPNOREPLY flag will be set to
not receive a response for the service.

9. Client API | 165

Flag
TPNOTRAN

TPNOBLOCK

TPNOTIME

TPSIGRSTRT

* Return Values

Value

Descriptor

* Errors

Description

If a WinTmaxSend() function caller requests a svc service by setting this flag
in a transaction mode, the svc service will be executed while being excluded
from the transaction mode.

If a svc does not support transactions in a transaction mode, a flag must be
set to a TPNOTRAN when a WinTmaxSend() function is called in the
transaction mode. If called in the transaction mode, the WinTmaxSend()
function will still be affected by a transaction timeout even though a service
flag was set to TPNOTRAN. If the service called with a TPNOTRAN fails, it will
not affect a caller’s transaction.

Upon encountering a blocking condition with this flag set (for example, an
internal buffer is filled with messages to be transmitted), a service request
will fail. When calling a WinTmaxSend() function without setting a
TPNOBLOCK flag and encountering a blocking condition, a function caller will
wait until blocking is released or a timeout (transaction timeout or blocking
timeout) occurs.

A function caller must wait indefinitely until a response is received and
blocking timeouts are ignored. If a WinTmaxSend() is called during a
transaction timeout, a transaction timeout will be applied.

Allows signal interrupts. If a system function is interrupted by a signal, the
system function will be executed again. If a signal interrupt occurs without
this flag, a function will fail and a tperrno will be set to a TPGOTSIG.

Description

A function call was successful and a descriptor is returned. Currently this
descriptor is not used.

A function call failed. A tperrno is set to an error code.

When a WinTmaxSend() fails to execute, a tperrno will be set to one of the following values:

Error Code
[TPENOENT]

[TPEITYPE]

[TPELIMIT]

Description

A specified svc does not exist.

A svc does not support a data type or subtype. For a structure, this error
occurs when the structure is not declared in a SDLFILE file.

A maximum number of unprocessed asynchronous service requests was
reached. Service requests from a caller cannot be sent.

166 | Application Development Guide

Error Code
[TPETIME]

[TPEBLOCK]
[TPGOTSIG]
[TPEPROTO]

[TPESYSTEM]
[TPECLOSE]

[TPEOS]

Description

A timeout occurred. If a transaction timeout occurs when a function caller is
in a transaction mode, a transaction will be rolled back. If a function caller is
not in a transaction mode, a block timeout will occur if neither a TPNOTIME
nor a TPNOBLOCK is set.

In these cases, a *data content and a *len will not be changed. If a
transaction timeout occurs, new service requests and processes waiting for a
response will fail with a [TPETIME] error until a transaction is rolled back.

A blocking state occurred when a TPNOBLOCK was set.
A signal that is received when a TPSIGRSTRT is not set.

A WinTmaxSend() was called from an invalid state. For example, a
TPNOREPLY was called in a transaction mode, but a TPNOTRAN was not set.

A Tmax system error occurred.

Disconnected from a Tmax system due to various reasons (for example,
network issues).

An operating system error occurred.

If a LPARAM of a message sent to Windows is -1, a tperrno will be set to one of the following

values:

Error Code
[TPEBADDESC]

[TPEOTYPE]

[TPEPROTO]
[TPESYSTEM]
[TPECLOSE]

[TPEOS]

* Examples

Description

Occurs when a valid descriptor cannot be found when a response message is
received.

Occurs when the buffer types of client and server programs do not match
when a response message is received.

A WinTmaxStart() or a WinTmaxEnd() was called from an invalid state.
A Tmax system error occurred.

Disconnected from a Tmax system due to various reasons (for example,
network issues).

An operating system error occurred.

int CTMaxGwView::SendData2(char *data, long nlLen)

{

(String szTemp;
m_send_length.Format(“%d”,nLen);
UpdateData(FALSE);

char *tpbuf = tpalloc(“STRING”, NULL, nLen);
if (tpbuf == NULL) {
szTemp.Format(“tpalloc Error [%s]”, tpstrerror(tperrno));

9. Client API | 167

LogDisplay2(2, (char *)(const char *)szTemp, szTemp.GetlLength());
return -1;

}
memcpy(tpbuf, data, nlLen);

(String strService;
strService.Format(“TOUPPER_STRING”);

int nSendResult=WinTmaxSend(2, (LPSTR)(LPCSTR)strService, (char*)tpbuf, nlLen, 0);
tpfree(tpbuf);

¢ Related Functions

WinTmaxStart(),WinTmaxEnd()

9.14. Multithread and Multicontext

Describes functions that are related to multithread/multicontext. Multithread and multicontext
server libraries are different from client libraries in the multicontext type.

9.14.1. tpgetctxt
Returns a context ID, which is set in a thread that calls a function, as its first parameter.

In a multithread/multicontext server, a tpgetctxt returns a value of 1 or greater when the context set
in a thread is valid. A tpgetctxt returns a TPNULLCONTEXT(-2) when a context is invalid or not set. A
context is valid only while a service thread is processing a service request. If a tpreturn() is called

after completing a service request, a context will no longer be valid and a user created thread can no
longer use the context.

A tpgetctxt() is used differently in client and server programs. The following information describes
the function by separating examples by server and client.

6 A MultiThread/MultiContext server does not support a Singlecontext.

* Prototype

#include <usrinc/atmi.h>
int tpgetctxt(int *ctxtid, long flags)

* Parameters

168 | Application Development Guide

Parameter Description

ctxtid Retrieves a current context at the time a function is called.

* multicontext: Returns a value of 1 or greater.
* singlecontext: Returns 0.

flags Not currently supported. Set to TPNOFLAGS.

¢ Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpgetctxt() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a first parameter is a pointer or a second
parameter is not set to 0.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

* Examples - Client Program

int newContext()
{
int i;
int id;
i = tpstart(tpinfo);
if (i <0)
{
printf(“\t[newContext]tpstart fail[%d][%s]\n",tperrno,tpstrerror(tperrno));
tpfree((char *)tpinfo);
return -1;
}
i = tpgetctxt(&id, TPNOFLAGS);
if (i <0)
{
printf("\t[newContext]tpgetctxt fail[%d][%s]\n",tperrno,tpstrerror(tperrno));
return -1;
}

return id;

* Examples - Server Program

9. Client API | 169

typedef param {
int ctxtid;
TPSVCINFO *svcinfo;
} param_t;

MSERVICE(TPSVCINFO *svcinfo)

{
pthread_t tid;
param_t param,;
printf("MSERVICE service is started!");
tpgetctxt(¶m.ctxtid, TPNOFLAGS);
param.svcinfo = svcinfo;
pthread_create(&tid, NULL, THREAD_ROUTINE, ¶m);
pthread_join(tid, NULL);
printf("MSERVICE service is finished!");
tpreturn(TPSUCCESS, @, svcinfo->data, OL, TPNOFLAGS);
}
void *THREAD_ROUTINE(void *arg)
{
param_t *param;
TPSVCINFO *svcinfo;
param = (param_t *)arg;
svcinfo = param->svcinfo;
if (tpsetctxt(param->ctxtid, TPNOFLAGS) == -1) {
printf("tpsetctxt(%d) failed, [tperrno:%d]", param->ctxtid, tperrno);
return NULL;
}
tpcall("MTOUPPER", sndbuf, @, &rcvbuf, &rcvlen, TPNOFLAGS);
if (tpsetctxt(TPNULLCONTEXT, TPNOFLAGS) == -1) {
printf("tpsetctxt(TPNULLCONTEXT) failed, [tperrno:%d]", tperrno);
return NULL;
}
return NULL;
}

¢ Related Functions

tpsetctxt()

9.14.2. tpsetctxt

Sets a current context. The way the function is used differs in a client program and a server program
as follows:

* Client Program

170 | Application Development Guide

A client can assign a different previously created context to a current client using a function. Most
ATMI functions are based on per-context. To know the current context of a client, the return value
of a tpgetctxt() can be checked.

A client can use multiple contexts, but only one context is used at a time. For example, if a
tpacall() is called in context1, tpgetrply() must be called in context1 even though another context
has been used.

* Server Program

A service thread processes a service by getting a context, but a user created thread does not have
its own context. Most ATMI functions can work after getting a context. Therefore a user created
thread must share a context with a service thread if required. A user created thread can share a
context with other service threads by using a tpsetctxt().

A user created thread that calls a tpsetctxt() shares context information with a service thread. For
example, if a service thread calls a tpacall(), after that it is possible for a user created thread to
receive a response for a request through a tpgetrply().

A tpsetctxt() cannot be used in a service thread. A service thread has its own context by default,
and cannot replace the context with other one. Therefore, if a service thread calls a tpsetctxt(), an
error will be returned with a TPEPROTO error code.

If a user created thread shares a context with a service thread through this function, the user
created thread must call a tpsetctxt (TPNULLCONTEXT) before the service thread calls a tpreturn().
In other words, at the time that the service thread calls tpreturn(), the context of the service
thread must be changed not to be shared by other user created threads. If this is not kept,
tpreturn() will fail and aTPESVCERR error code will be returned to the client. Therefore, the
process flow between threads must be controlled through synchronization. The ctxtid parameter
of a tpsetctxt() uses the Context-ID which that is retrieved by calling a tpgetctxt() from a service
thread.

With consideration of the different ways how a function is written depending on the program, the
basic information of a tpsetctxt() is as follows:

* Prototype

#include <usrinc/atmi.h>
int tpsetectxt(int ctxtid, long flags)

* Parameters

Parameter Description

ctxtid Sets a current context at the time point of a function call. In a client
program, new context IDs created using a tpstart() can be used. In a server
program, the Context-ID of a service thread can be used.

Other contexts such as a TPNULLCONTEXT can be used but not a
TPINVALIDCONTEXT.

9. Client API | 171

Parameter Description
flags Not currently supported. Set to TPNOFLAGS.

e Return Values

Value Description
-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpsetctxt() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEPROTO] A function was called from an invalid state. For example, a service thread
called a function or a Context ID was delivered as a parameter that was
invalid in a server program.

[TPEINVAL] An invalid parameter. A ctxid is set to 0 or TPINVALIDCONTEXT, or flags are
set to non-zero.

In a client program, a tpsetctxt() is called before the program calls a tpstart().
A buffer flag is not set to TPMULTICONTEXTS when this function is called
before the tpstart() is called.

This error occurs when a context ID is set to TPINVALIDCONTEXT or 0.
[TPENOENT] A ctxtid value is not a configurable context.

[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.

[TPEOS] An operating system error occurred.

+ Examples - Client Program

int altContext(int id)
{
int 1;
int ret;
ret = tpsetctxt(id, TPNOFLAGS);
if (ret < 0)
{
printf(“\t[altContext]tpsetctxt fail[%d][%s]\n"tperrno,
tpstrerror(tperrno));
tpfree((char *)tpinfo);
return -1;
}

return 1;

172 | Application Development Guide

* Examples - Server Program

typedef param {

int ctxtid;
TPSVCINFO *svcinfo;

} param_t;

MSERVICE(TPSVCINFO *svcinfo)

{

}

pthread_t tid;
param_t param;

printf("MSERVICE service is started!");
tpgetctxt(¶m.ctxtid, TPNOFLAGS);
param.svcinfo = svcinfo;

pthread_create(&tid, NULL, THREAD_ROUTINE, ¶m);
pthread_join(tid, NULL);

printf("MSERVICE service is finished!");
tpreturn(TPSUCCESS, @, svcinfo->data, OL, TPNOFLAGS);

void *THREAD_ROUTINE(void *arg)

{

param_t *param;
TPSVCINFO *svcinfo;

param = (param_t *)arg;
svcinfo = param->svcinfo;

if (tpsetctxt(param->ctxtid, TPNOFLAGS) == -1) {
printf("tpsetctxt(%d) failed, [tperrno:%d]", param->ctxtid, tperrno);
return NULL;

}

tpcall("MTOUPPER", sndbuf, @, &rcvbuf, &rcvlen, TPNOFLAGS);
if (tpsetctxt(TPNULLCONTEXT, TPNOFLAGS) == -1) {

printf("tpsetctxt(TPNULLCONTEXT) failed, [tperrno:%d]", tperrno);
return NULL;

}

return NULL;

¢ Related Functions

tpgetctxt()

9. Client API | 173

10. Server API

This chapter describes functions that are used in a Tmax server and functions that are required to
write a server program in ATML. A server can act as a client, so functions that are used in a client also

can be used.

10.1. TCS
The following describe the functions that are used in a TCS type server program.

* Service completion functions

tpreturn() sends a response to a client. tpforward() forwards a request to another server and ends

the service.

Function Description

tpreturn Sends a response to a service request and ends the service routine.
tpforward Forwards a request to another server to process a service.

e Server initialization and termination functions

Opens or closes a database that is connected to the application, and provides a function to
process command line options. This subroutine is provided by default.

Function Description
tpsvrinit Initializes a server.
tpsvrdone Ends a server process.

¢ Multithread/Multicontext

Function Description

tpsvrthrinit Provides an initialization function to each thread when a service thread is
created in a STD_MT type server. Supported in Tmax 5 SP2 and later.

tpsvrthrdone Called when a service thread is terminated in a STD_MT type server.
Supported in Tmax 5 SP2 and later.

tpgetctxt Returns the currently set context ID as the first parameter of the thread that
called this function.

tpsetctxt Sets the context of the thread that called this function as the ID of the first
parameter.

* Unrequested message functions

A server can send unrequested messages to clients unilaterally in Tmax. This feature is used

174 | Application Development Guide

when there is information that all clients connected to Tmax must be notified of. The clients that
can receive the unrequested message must be connected to Tmax with flags set.

Function Description

tpsendtocli A server sends a message, which was registered in advance by clients, to the
clients automatically without client request.

tpgetclid Returns the ID of the client that is connected to the Tmax system. The ID is
used for tpsendtocil().

tpchkclid Checks if the client that corresponds to the client ID of the node where the
server process resides is connected.

o For more information about each function, refer to Tmax Reference Guide.

Service Routine Parameters

A server program consists of main(), which is provided by Tmax, and service routines. main() consists
of routines that process database connections, disconnections, and command line options. Service
routines receive and process requests from a client.

The server main() receives a request from a client and calls the corresponding service routine with a
TPSVCINFO structure to process the request. The TPSVCINFO structure has data to be processed and
information about the client that sent the request.

The TPSVCINFO structure is defined in the atmi.h header file. The following are the components of
the TPSVCINFO structure.

fidefine XATMI_SERVICE_NAME_LENGTH 16

struct tpsvcinfo {
char name[XATMI_SERVICE_NAME_LENGTH]; /* Requested service name */

char *data; /* Request data */

long len; /* Request data length */
long flags; /* Service property */

Int cd; /* Connection descriptor */

IH
typedef struct tpsvcinfo TPSVCINFO

Member Description

name Name of the service routine requested by a client.

data Buffer to receive requested data from a client. This is allocated in advance with tpalloc() in
the server main().

len Length of the requested data.

10. Server API | 175

Member Description

flags Notifies a service if it is in a transaction state or the caller requires a response. For
example, if flags is TPTRAN, the service is in transaction mode. If flags is TPNOTRAN, the
service can participate in the current transaction.

cd Connection Descriptor. Sets the clients the response must be sent to. The server allocates
the buffer in advance in main() to process the service requested by a client. It is
recommended to use data in TPSVCINFO when communicating through tpreturn() or
tpforward(). When accessing data in TPSVCINFO, the buffer types of the server program
and the client program must be the same.

Client Program

The following is an example client program.

#include <usrinc/atmi.h>
main()
{
struct strdata *cltdata;
if ((cltdata = (strcut strdata *)tpalloc(“STRUCT”, “strdata”,

sizeof(struct strdata))) == NULL){
error processing routine

}

if ((tpcall (“SEL_SVC”, cltdata, @, (char **)&cltdata, &len,
TPNOFLAGS))== -1){
error processing routine

Server Program

The following is an example service routine. main() is provided by Tmax.

#include <usrinc/atmi.h>

SEL_SVC(TPSVCINFO *msg)
/* A structure that contains client information and client request*/

{

struct strdata *svcdata;

/* Change the data type to match the buffer type */

svcedata = (struct strdata *)msg->data;

svedata->ip = sip;

strepy(msg ->data, svcdata);

tpreturn(TPSUCCESS, @, msg->data, sizeof(struct strdata), TPNOFLAGS);
b5

176 | Application Development Guide

10.1.1. tpreturn

Means the completion of a service routine. It works the same as a return sentence in the C language.
When a tpreturn() is called, a service routine is returned to a Tmax system. To return a service routine
correctly to a Tmax system, call a tpreturn() in a service routine.

A tpreturn() function sends a reply message for a service. If a program to receive a reply is waiting
with a tpcall(), tpgetrply(),or tprecv(), the reply will be transferred through a receiver’s buffer after a
tpreturn() is successfully called.

A tpreturn() also allows interactive services to terminate interactive communication. A service routine
cannot call a tpdiscon() directly. To ensure a correct result, a program connected to an interactive
service must not to call a tpdiscon(). Rather, it must wait for a completion notification from an
interactive service, for example, an event like a TPEV_SVCSUCC or a TPEV_SVCFAIL transmitting with a
tpreturn().

If a service routine is in a transaction mode, and a client or service that called a service does not start
a transaction explicitly (if tx_begin is not used), then a tpreturn will be committed or rolled back as a
part of a transaction when tpreturn is TPSUCCESS. A service can be called to multiply as a part of a
same transaction (global transaction), therefore, it is will not be completely committed or rolled back
until a transaction beginner calls either a tx_commit or a tx_rollback to complete a transaction.

A tpreturn() function must be called after all replies are received from services requested by a service
routine. Otherwise, a [TPESVCERR] error or a TPEV_SVCERR event will be returned to the program
that communicated with a service routine that depended on the service characteristics. Replies that
are not received are automatically ignored by a Tmax system. In addition, the descriptors used for
these replies will also be invalidated.

A tpreturn() function must be called after all connections that began from a service used for
interactive communication are ended. Otherwise, either a [TPESVCERR] error or a TPEV_SVCERR event
will be returned to the program that communicated with a service routine that depended on the
service characteristics. In addition, a forcible disconnection event, such as a TPEV_DISCONIMM, will
be transferred to a service and all items that are connected to the service.

In an interactive communication, if a service routine does not have communication control when it
calls a tpreturn(), two results may happen:

1. If a service routine calls a tpreturn() with a rval of a TPFAIL and data is NULL, a TPEV_SVCFAIL
event will be transferred to a communication starter.

2. When a tpreturn() is called in other ways, a TPEV_SVCERR event will be transferred to a
communication starter. Because an interactive service must have only one interactive
communication that does not start from a service, a Tmax system knows the descriptor to which
data or an event that is to be transmitted. For this reason, a descriptor is not transferred to a
tpreturn() as a parameter.

> Prototype

include <atmi.h>
void tpreturn (int rval, long rcode, char *data, long 1len, long flags)

10. Server API | 177

o Parameters

Parameter Description

rval The following values are available.
« TPSUCCESS

The service is successfully completed. If data exists and no error occurs
during tpreturn() execution, the data will be transmitted. If the callerisin a
transaction mode, a part of this transaction will be determined as it can be
committed. It allows the other services belonging to the transaction to be
committed if all of them are successfully completed and ready for commit.
But the transaction will be rolled back if any of them fails. Note that calling
the tpreturn() does not mean to complete the entire transaction. In
addition, if there is any waiting reply or inter active connection or a job
performed in the service tries to roll back the transaction, the message will
be sent as a failure even though the caller has returned TPSUCCESS. That
is, the receiver of the reply will receive [TPESVCERR] error or TPEV_SVCERR
event. Note that, if transaction is rolled back in a service routine, rval is set
to TPFAIL. If TPSUCCESS returns in an interactive, TPEV_SVCSUCC even will
occur.

* TPFAIL

The service is ended due to an error in an application program. The error
is returned to the program that receives the reply. That is, the call to
receive the reply fails and the receiver receives [TPSVCFAIL] value or
TPEV_SVCFAIL event. This value cannot sent data. If the callerisin a
transaction mode and is autotransaction, tpreturn() will roll back the
transaction. The transaction might have already been determined to be
rolled back.

« TPEXIT

When a service is returned, this flag is used to forcibly terminate the server
process. The process closed via tpexit() can be restarted through TMM.

+ TPDOWN

Similar to TPEXIT, but the process terminated through TPDOWN is not
restarted using TMM.

* TMSUCCESS

Same as TPSUCCESS.

178 | Application Development Guide

Parameter

rval

rcode

data

len

flags

Description
* TMFAIL

Same as TPFAIL.

Other values are considered as TPFAIL.

The return code a rcode defines in an application program can be transmitted
to a program that receives a service reply. This code will be transmitted,
regardless of a rval value, as long as a reply can be transmitted to a client
successfully. The client is considered to have received a reply successfully in
the following cases: A receiving call was a success or a reply was returned
through a [TPSVCFAIL], or the client received either a TPEV_SVCSUCC or a
TPEV_SVCFAIL event.

A rcode value is transferred to a receiver with a tpurcode global variable.

Reply data to be sent. If it is not NULL, it must indicate a buffer that was
allocated by tpalloc() before. If the buffer is the same as the one transferred to
the service routine, the Tmax systems will handle it.

Therefore, the service routine writer does not need to take care of whether to
or not to free the buffer. Indeed, if a user attempts to free the buffer, the
attempts will fail. However, if the buffer transferred with tpreturn() is not the
same as the one transferred along with the service request, the tpreturn() will
free the buffer.

Data length to be sent.

If data indicates a buffer that does not require specifying the length, the len
will be ignored (0 is used in general). But if data indicates a buffer that needs
to specify the length, the len must not be 0. If data is NULL, the len is ignored.
In this case, if the program that calls the service is waiting for a reply, the reply
without any data will be transmitted. If no reply is expected, the tpreturn() will
free the data and returns without transmitting any reply, accordingly.

Not currently supported. Set to 0.

If the service is an interactive type, data would not be transferred in the
following two cases.

* The interactive service was already disconnected when tpreturn() is called.
That is, the caller receives TPEV_DISCONIMM event. In this case, the
tpreturn() simply ends the service routine and if it is in a transaction mode,
it will roll back the current transaction. In this case, the caller’s data cannot
be transferred.

¢ If the caller does not have the communication control, either
TPEV_SVCFAIL or TPEV_SVCERR event will be transferred to the
communication starter as mentioned earlier.

10. Server API | 179

Parameter Description
flags Regardless of the event that the communication starter receives, no data is

transferred. If the communication starter receives the TPEV_SVCFAIL event,
the return code could be used as a tpurcode variable of the starter.

o Return Values

The service routine does not return any value to the caller, that is, the Tmax systems. It is a
rule that the service routine returns with tpreturn(). If the service routine returns using return
sentence of C language, rather than using the tpreturn(), the server will return a service error
to the service requester. In addition, connection that has been kept for interactive
communication is disconnected forcibly and all the replies that are waiting asynchronously
waiting are ignored.

If the server is in a transaction mode, the transaction will be rolled back. In addition, if
tpreturn() is used outside the service routine, it will simply return without performing
anything.

o Errors

Since tpreturn() ends a service routine, if an error occurs while a parameter is being
processed, it cannot be not transferred to the service routine, the caller. Errors are sent as
follows:

Classification Description

Synchronous and tperrno is set to [TPESVCERR] for a program that receives a service result
Asynchronous through tpcall() or tpgetrply().
communication

Interactive Generates a TPEV_SVCERR event for the program that uses tpsend() or
communication tprecv().

o Examples

#include <stdio.h>
#include <usrinc/atmi.h>

SERVICET(TPSVCINFO *msg)
{

char *buf;
long len;

buf=tpalloc(“STRING”, NULL, 0);

if (buf==NULL) { error processsing }
buf=msg->data;

data process....

ret=tpcall(“SERVICE2”, buf, sizeof(buf), &buf, &len, TPNOFLAGS);

if (ret==-1) { error processing }
data process....

180 | Application Development Guide

if (buf !="SUCCESS”) {
printf(“sve fail..\n”);
tpreturn (TPFAIL, -1, NULL,9,0);

}
else {

tpreturn(TPSUCCESS, @, msg->data, msg->len, 0);
}

o Related Functions

tpalloc(), tpcall(), tpconnect(), tpdiscon(), tpgetrply(), tprecv(), tpsend()

10.1.2. tpforward
Ends its own service processing, and forwards a client’s request to a svc service routine.

This function is called at the end of a service routine, which acts like a tpreturn(). Like a tpreturn(), a
tpforward() must be called in a service routine controlled by a Tmax system to be correctly returned
to the system.

This function forwards a service request to a service named svc using data. The service routine that
forwards the request will not receive a reply. After forwarding the request, a service routine returns
to the Tmax system. Then, the service can perform other operations. Because a tpforward() does not
expect any response from a requester, it can forward a service request to any service without any
particular errors.

If a service routine is in a transaction mode, the transaction can be completed only when the
transaction originator completes the transaction by executing either a tx_commit() or a tx_rollback().
In other words, like a tpreturn(), a tpforward() does not complete a transaction. If a transaction is
originated in a service routine that uses a tx_begin(), the transaction must be completed before a
tpforward() is called, either by using a tx_commit() or a tx_rollback(). This means that all services
connected by a tpforward() must be or not be in a transaction mode. The finally forwarded server
process sends a reply to a client that requested the service first, using a tpreturn(). In other words, a
tpforward() shifts the responsibility of sending a reply for a waiting requester, to another server
process. This service is available even in between nodes.

A tpforward() must be called after a service routine receives replies for all services requested. The
descriptors of unreceived replies are invalidated and a forward request is not transmitted. A
tpforward() cannot be called in a interactive communication.

The following shows the tpforward function flow:

10. Server API | 181

Serveri
tpforward()

Service request for

Service call : .
continuous processing

Response transfer Server2
tpreturn()

tpforward

* Prototype

include <atmi.h>
void tpforward (char *svc, char *data, long len, long flags)

* Parameters

Parameter Description

SvC The name of a service to receive a buffer.

data If data is NULL, it must indicate a buffer that has been allocated with a tpalloc().

If a buffer is the same as the one transmitted to a service routine, ta Tmax system
must handle this buffer. If a service routine writer attempts to release the buffer,
this attempt will fail. However, if the buffer transmitted to a tpforward() is not the
same as the one transferred at the time of calling the service, a tpforward() will
release the buffer.

len A len is the length of data to be transmitted. If data indicates a buffer that does not
require a specific length (for example, a STRUCT Type buffer), len will be ignored
and is set to 0. If data is NULL, len will be ignored and a request that has a data
length of O will be transmitted.

A service routine writer cannot regain control after calling a tpforward(), blocking
transmission in the form that a TPSIGRSTRT is defined implicitly is used. Therefore,
if a signal is generated during a tpforward() operation to stop an operation,
processing will continued later. If a blocking condition is encountered, it will wait
until a timeout occurs and then sends a service request.

flags Not currently supported. Set to TPNOFLAGS.

182 | Application Development Guide

* Return Values

A service routine does not return any value to a Tmax system, that is, a caller. In other words, a
service routine will be declared as void.

* Errors

When a tpforward() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESVCERR] Occurs when an invalid buffer is used; a tpacall()/tpconnect() returns a cd; a
tpforward() was used instead of a tpreturn() during interactive communication;
a TPEV_DISCONIMM event occurred; or an XA operation (tx_begin(),
tx_rollback(), and a tx_commit()) failed in a transaction mode.

[TPETIME] Occurs when a transaction timeout occurs during a service routine or while a
service request is being transmitted.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>

SWITCH(TPSVCINFO *msg)

{
int switch;
char *buf;
buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
strepy(buf, msg->data);
data process::
if (switch>5)
tpforward(“SERVICE1”, buf, @, 0);
else
tpforward(“SERVICE2”, buf, @, 0);
}

* Related Functions

tpalloc(), tpconnect(), tpreturn()

10.1.3. tpsvrinit

Processes an initialization of a service routine. This function is called for initializing the main
procedure of a Tmax application server program. This routine is called after a server process is
executed but no service request has been processed. It is possible to execute Tmax communications
or define a transaction in the tpsvrinit() routine.

10. Server API | 183

If the application program does not provide tpsvrinit(), default routine provided by the Tmax is called
instead. If the server belongs to a server group that processes transactions, tpsvrinit() calls tx_open()
and userlog(), to inform that the server has started successfully.

Command line parameters (CLOPT) of an application program can be transferred to the server, to be
processed by tpsvrinit(). See CLOPT item of SERVER section of tmax configuration file. The
parameters are transferred through argc and argv.

As getopt() is used in the Tmax server main, optarg, optind and opterr are used for parameter
parsing and error detection in the tpsvrinit() .

* Prototype

include <tmaxapi.h>
int tpsvrinit (int argc, char **argv)

* Parameters

Parameter Description
argc The number of command line parameters.

argv A command line parameter.

¢ Return values

Value Description

0 A function call was successful.

Negative A function call failed. No service requests are received and a server process is
number terminated without generating an error.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

EXEC SQL INCLUDE sqlca.h;
tpsvrinit(int argc, char **argv)
{
EXEC SQL begin declare section;
char user_name[30];
char user_passwd[30];
EXEC SQL end declare section;
EXEC SQL CONNECT scott IDENTIFIED BY tiger;
return(@);

}
SERVICE(TPSVCINFO *msg)
{

int ret, cd;

184 | Application Development Guide

char *buf;
buf=tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }

data process....

cd=tpgetclid();

if (cd==-1) { error processing }
ret=tpsendtocli(cd, buf, @, TPNOFLAGS);
if (ret==-1) { error processing }

data process....

printf(“ Sevice end\n”);

EXEC SQL COMMIT WORK RELEASE;
tpreturn(TPSUCCESS, buf, strlen(buf), 0);

* Related Functions

tx_open(), tpsvrdone()

10.1.4. tpsvrdone

Sets a routine to be executed when a UCS server process is terminated. Tmax application server
program’s main() provided by the Tmax systems calls tpsvrdone() before ending a process after
finishing all service request handling. When this routine is executed, a server process will still be a
part of Tmax but the process will not provide service. It is possible to execute a Tmax communication
or define a transaction in the tpsvrdone() routine.

If the tpsvrdone() is keeping an interactive connection, is waiting for asynchronous replies, or returns
during a transaction mode, Tmax will disconnect the interactive connection, ignore the asynchronous
replies that have been waiting, and stop the transaction. Then, the server will be terminated
immediately.

If a program does not provide a tpsvrdone() routine, a default routine provided by Tmax can be called
instead. If a server belongs to a server group that processes transactions, the default tpsvrdone()
routine will call tx_close() and userlog() to notify that a server will be terminated. If either tpreturn()
or tpforward() are called in tpsvrdone(), a routine will simply return without performing any
operations.

* Prototype

include <tmaxapi.h>
int tpsvrdone(void)

* Return Values

A tpsvrdone() is a function used to perform necessary jobs before a developer ends a server
process. Due to this, it does not have a return value and an error cannot be generated.

10. Server API | 185

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>

EXEC SQL INCLUDE sqlca.h;

SERVICE(TPSVCINFO *msg)
{

int ret, cd;
char *buf;

EXEC SQL begin declare section;

EXEC SQL end declare section;

EXEC SQL CONNECT : scott IDENTIFIED BY : tiger;
buf=tpalloc(“STRING”, NULL, 0);

if (buf==NULL) { error processing }

data process:.

cd=tpgetclid();

if (cd==-1) { error processing }
ret=tpsendtocli(cd, buf, @, TPNOFLAGS);
if (ret==-1) { error processing }

data process....

tpsvrdone();
}

void tpsvrdone()

{

printf(“ Sevice end\n”);
EXEC SQL COMMIT WORK RELEASE;

* Related Functions

tx_close(), tpsvrinit()

10.1.5. tpsvrthrinit

Available only in multithread and multicontext servers. A Tmax server provides a tpsvrinit function
that performs an initialization process when a server process starts. Multithread and multicontext
servers provide an initialization function for each thread when a thread is created for service threads
managed by a thread pool after a tpsvrinit function is called.

A thread pool works according to MINTHR and MAXTHR fields, so when a server process initially
starts, the same number of service threads will be created as the number set in MINTHR and they will
call a tpsvrthrinit(). After that, if there are no idle service threads in a thread pool, service threads will
be created as needed up to a value set as a MAXTHR. If MINTHR is O, no service threads will be
created when a process starts, so only a upsvrinit() will be called and the process will wait until a
service request is received.

186 | Application Development Guide

This function is processed after a tpsvrinit() is called and before each thread handles a service
request. The same parameters with those delivered to a tpsvrinit() are delivered. These parameters
are set in a CLOP field in the SERVER section of a configuration file. When writing this function, a user
must remember that the parameters delivered to a spsvrinit() and a tpsvrthrinit() must be the same.
For more information, refer to tpsvrinit.

* Prototype

include <tmaxapi.h>
int tpsvrthrinit (int argc, char **argv)

* Parameters

Parameter Description
argc The number of command line parameters.

argv A command line parameter.

¢ Return Values

When performing an initialization using a tpsvrthrinit(), if a process fails, a user will return -1.
After a server process calls a tpsvrthrinit(), if -1 is returned, the server process will cancel the
starting process and will be terminated.

Value Description
0 A function call was successful.

Negative A function call failed.
number

* Examples

#include <stdio.h>
#include <pthread.h>
#include <usrinc/atmi.h>

void tpsvrthrinit(int argc, char **argv)
{
param_t *param;
param = get_threadspecificdata();
if (pthread_create(¶m->tid, NULL, THREAD_ROUTINE, (void *)param) != @) {
printf("user_create_thread failed\n");
return -1;
}
pthread_mutex_init(¶m->mutex, NULL);
pthread_cond_init(¶m->cond, NULL);
return 0;

}

void tpsvrthrdone()
{

10. Server API | 187

void *ret;
param_t *param;

param = get_threadspecificdata();
param->state = EXIT;
pthread_cond_signal(¶m->cond);
pthread_join(param->tid, &ret);

pthread_mutex_destroy(¶m->mutex);
pthread_cond_destroy(¶m->cond);
printf("user_create_thread destroyed\n");

}

SERVICE(TPSVCINFO *msg)
{
param_t *param;
param = get_threadspecificdata();

ret
ret

tpgetctxt(¶m->ctxtid, TPNOFLAGS);
pthread_cond_signal(¶m->cond);

}

void *THREAD_ROUTINE(void *arg)
{

param_t *param;

param = (param_t *)arg;

while(1) {
pthread_mutex_lock(¶m->mutex); {

pthread_cond_wait(¶m->cond, ¶m->mutex);

if (param->state == EXIT)
break;

if (tpsetctxt(param->ctxtid, TPNOFLAGS) == -1) {
printf("tpsetctxt(%d) failed, [tperrno:%d]", param->ctxtid,

tperrno);

return NULL;

Iy

tpcall("MTOUPPER", sndbuf, @, &rcvbuf, &rcvlen, TPNOFLAGS);
if (tpsetctxt(TPNULLCONTEXT, TPNOFLAGS) == -1) {
printf("tpsetctxt(TPNULLCONTEXT) failed, [tperrno:%d]", tperrno);

return NULL;
}

} pthread_mutex_unlock(¶m->mutex);

}
return NULL;

* Related Funcitons

tpsvrthrdone()

188 | Application Development Guide

10.1.6. tpsvrthrdone

Available only in multithread and multicontext servers. Multithread and multicontext servers
terminate service threads before performing a tpsvrdone when a server process is terminated. If this
function is defined, a service thread will call this function automatically when it is terminated.
Developers need to write a routine to process required jobs before a thread is terminated. In this
function, a Tmax communication or a transaction can be performed. If a function is returned without
completing jobs, all incomplete jobs will be ignored when a thread is terminated.

A client can allocate other previously created context to a current client using a function. Most ATMI
functions are per-context based. A client can use multiple contexts, but only one context is used at a
time. For example, if context1 calls a tpacall(), context1 must be set as the current context at the
moment of calling a tpgetrply() to perform a tpgetrply() normally even when other context was used.
For more information, refer to tpsvrdone.

* Prototype

include <tmaxapi.h>
int tpsvrthrdone(void)

¢ Return Values

A tpsvrthrdone() is written by a developer to perform necessary jobs before terminating a server
process. This function neither has any return value nor generates an error.

* Examples
Refer to the example in tpsvrthrinit.
* Related Functions

tpsvrthrinit()

10.1.7. tpgetctxt

This function returns the context ID, which is currently set in a thread, as the first parameter. This
function is used differently in the client and server. For more information, refer to tpgetctxt.

10.1.8. tpsetctxt

This function sets the current context. This function is used differently in the client and server. For
more information, refer to tpsetctxt.

10. Server API | 189

10.1.9. tpsendtocli

Available only in a server. This function sends an unrequested message to a specified client. While a
tpbroadcast() function sends an unrequested message to any client connected to a Tmax systems,
this function sends a message only to a client that has requested a service provided by a server

process.

* Prototype

include <tmaxapi.h>
int tpsendtocli (int clid, char *data, long 1len, 1long flags)

* Parameters

Parameter
clid

data

len

flags

Description

A unique client number obtained with a tpgetclid().

A buffer allocated by a tpalloc(). If data indicates a buffer that does not require
a specific length, a len is ignored (0 is used in general). If data indicates a
buffer that needs to have a length specified, a len must not be 0. In addition,
when data is NULL, a len will be ignored.

A buffer length to be transmitted.

Operation method.
The following values are available.
* TPNOFLAG(0)

Messages must be received by a client. However it might take a long time
for a client to receive a requested result if a client cannot process received
messages fast enough.

- TPUDP

This flag does not mean that data communication with a client is UDP.
When a caller transmits data, it is impossible to transfer the data because
the internal buffer that the data is transmitted to is filled with messages to
be transferred. This flag means that data may be discarded in that
situation. In other words, it means that data might be lost similarly to a
communication in a UDP.

+ TPFLOWCONTROL

Checks the status of a client to decide whether another request message
can be sent or not. If there are too many accumulated messages, a
tpsendtocli() will return a value of -1 and a tperrno will be set to TPEQFULL.
This flag is used to reduce the load of a Tmax system.

190 | Application Development Guide

* Return Values

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpsendcli() fails to execute, a tperrno will be set to one of the following values.

Error Code Description
[TPEBADDESC] Aninvalid clid.

[TPEPROTO] A tpsendcli() was called from an invalid state.

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in a
system log file.

[TPEOS] An operating system error occurred.
[TPEQFULL] A duplicate message exists.
« Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

SERVICE(TPSVCINFO *msg)
{

int ret, clid;
char *buf;

buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
strepy(buf, msg->data);

data process:.

clid = tpgetclid();

if (clid==-1) { error processing }

ret=tpsendtocli(clid, (char *)buf, @, 0);
if (ret==-1) { error processing }
tpreturn(TPSUCCESS, @, @, 0);

* Related Functions

tpbroadcast()

10. Server API | 191

10.1.10. tpgetclid

Retrieves the ID of a client connected to a Tmax system. This ID is a unique number in a domain
system. In other words, even though a domain system is built up with multiple nodes, unique
numbers are given to each client. This function is available only for a server. An ID is retrieved so that
other functions, such as a tpsendtocli() function, can use it for sending a message to a client.

* Prototype

#include <tmaxapi.h>
int tpgetclid(void)

¢ Return Values

Value Description

A positive

integer client number is returned.
-1

A function call failed. A tperrno is set to an error code.

* Errors

When a tpgetclid() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM]

[TPEOS]

client program.

* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tmaxapi.h>

SERVICE(TPSVCINFO *msg)

{

int ret, clid;

char *buf;

buf = (char *)tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
strepy(buf, msg->data);

data process:

clid = tpgetclid();
if (clid==-1) { error process }

ret=tpsendtocli(clid, buf, strlen(buf), 0);
if (ret==-1) { error processing }
data process:.

192 | Application Development Guide

A function call was successful and a positive integer value that corresponds to a

A tpgetclid() was called from an invalid state. For example, it was used in a

An operating system error occurred.

tpreturn(TPSUCCESS,@,buf, strlen(buf), 0);

* Related Functions

tpsendtocli()

10.1.11. tpchkclid

Checks if a client corresponding to an ID is connected to a node where a server process resides in.
When developing a RDP type server program, if a service routine stores a connected client ID and a
usermain() routine sends a message to a tpsendtocli(), unnecessary errors can be prevented.

If a client is not directly connected to the node where a server process resides in a
0 RDP type, a tpsendtocli() cannot be used.

* Prototype

#include <tmaxapi.h>
int tpchkelid(int clid)

* Parameters

Parameter Description

clid A unique client number obtained with a tpgetclid().

¢ Return Values

Value Description
-2 A client is not the client that is connected to a local node.
-1 A client is not connected.
1 A client is connected normally.
* Errors

When a tpchkclid() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPEINVAL] A client is not connected in a local node or an invalid client number was
entered.

[TPENOREADY] A client is not normally connected to a server.

10. Server API | 193

* Examples

int _discon(char **buf)

{
int clid, n;
clid = tpgetclid();
n = tpchkelid(clid);
if (n<0) {
printf(“Invalid Client\n”);
return -1;
}
+

* Related Functions

tpgetclid()

10.2. UCS

The following describes the functions that are used in a UCS type server program.

* API Schedule related API

In a UCS type, the user-developed usermain() routine is used like the main() routine so the
usermain() routine must handle various messages received from TMM and CLH using a

scheduling API.

Function Description

tpschedule Checks if a message is received in CLH or in a user-defined FD within a
specified amount of time (sec).

tpuschedule Checks if a message is received in CLH or in a user-defined FD within a
specified amount of time (microsec).

» Socket FD related macros

Socket related macros are used to use a user socket FD in a USC scheduler such as tpschedule().
These macros are similar to FD_SET, FD_CLR, and FD_ISSET, which are used in a regular network

program.
Function Description

tpsetfd Registers the socket FD in an external socket scheduler of the UCS process.
tpissetfd Checks if a message is received in the FD.

tpclrfd Releases the FD from a USC scheduler.

* Service Forwarding

194 | Application Development Guide

When operating with a general host system, a server program, instead of a client, opens a socket
to send and receive data. If the connection to an external host system is unstable or the service
runtime is long, the server program enters a blocking state and cannot perform additional
services.

To resolve this situation, a service routine stores only the client information after receiving a
client request. The service routine then sends the request to an external host. The usermain()
routine is used to send the response to another service routine with the stored client information.
If the service routine sends the result value to a client, a server program can perform all
processes without being blocked.

SVC_A()

{
fd[] = network_connect()
ctx[] = savectx()
write_to_host()
tpreturn()

}

usermain()

{
while(1)

{

— [

tpschedule(0)
tpsetfd(fd[])
if(tpisset(fd[])=0) {
read_from_host()
tprelay(ctx[])
AL — | tpcirfd(fd[])

{
— __tpreturn() close(fd[])

}

UCS Type Service Forwarding

Function Description

tpsavectx Stores the client information in a server library.

tpgetctx Stores the CTX_T structure value of the server library to a user variable.
tpcancelctx Deletes the CTX_T structure content from a server library.

tprelay Sends client maintenance to another service routine with the client

information/transaction information, which was obtained using tpgetctx() or
tpsavectx(). Similar to tpforward(), which is used in a TCS type server
program.

* Asynchronous communication in the usermain() routine

10. Server API | 195

If asynchronous communication that requires a long service time is used in the usermain()
routine, tpgetreply() may cause blocking, which prolongs the schedule. If the service result is
processed through a callback function instead of tpgetreply(), the result value can be processed
without affecting the schedule. However, if asynchronous communication occurs every time in
the usermain(), which has a short loop time, the maximum number of asynchronous services may
be exceeded, which generates an error.

Function Description
tpregcb Sets a callback function that processes asynchronous service requests.

tpunregcb Releases the set callback function.

o For more information about each function, refer to Tmax Reference Guide.

10.2.1. tpschedule
Waits for data to be received in a UCS server process. This function is available only in a UCS server
process. It sleeps until a maximum timeout value and returns data immediately when data is

received.

This function is returned after a corresponding service is automatically executed when data is
received. Therefore, a user must not execute any service after data is received.

6 Services including UCS services are performed by systems unconditionally.

* Prototype

#include <ucs.h>
int tpschedule(int timeout)
* Parameters

Parameter Description

timeout The amount of time to wait in seconds.

+ -1: Only checks whether data arrives or not and then returns immediately.

+ 0: Waits indefinitely until data arrives.

¢ Return Values

Value Description
Positive A function was performed successfully so data will be received.
Integer

196 | Application Development Guide

Value Description

-1 Data was not received until a timeout or an error occurred due to a function
execution failure. If data was not received until a timeout, -1 will be returned and
the number 13 error (TPETIME) will be set in a tperrno. In other cases, an error code

will be set in a tperrno.

* Errors

When a tpschedule() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS] An operating system error occurred.
[TPETIME] Data was not received before a timeout.
* Examples

#include <stdio.h>

#include <usrinc/atmi.h>

#include <usrinc/ucs.h>

int usermain(int argc, char *argv[])

{
while(1)
{
tpschedule(3);
ret = tpcall(“SERVICE”, (char *)buf, strlen(buf), (char **)&buf,
(Llong *)&rlen, TPNOFLAGS);
if (ret == -1) { error processing}
}
}

* Related Functions

tpsleep(), tp_sleep(), tp_usleep()

10.2.2. tpuschedule

Waits for data to be received in a UCS server process. It is available only in UCS server processes. A
tpuschedule() will sleep until a maximum timeout value is reached and will return data immediately

when data is received.

* Prototype

10. Server API | 197

#include <ucs.h>
int tpuschedule (int timeout)

* Parameters

Parameter Description

timeout The amount of time to wait in microseconds.

* -1: Only checks whether data arrives or not and then returns immediately.

+ 0: Waits indefinitely until data arrives.

¢ Return Values

Value Description

0 Data was not received before a timeout.

Positive Data was received before a timeout.

integer

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpuschedule() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPESYSTEM] A Tmax system error occurred. Detailed error information is recorded in a
system log file.
[TPEOS] An operating system error occurred.
* Examples

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/ucs.h>

int usermain(int argc, char *argv[])

{
while(1)
{

tpuschedule(3000000);

ret = tpcall(“SERVICE”, (char *)buf, strlen(buf), (char **)&buf,
(long *)&rlen, TPNOFLAGS);
if (ret == -1) { error processing }

198 | Application Development Guide

* Related Functions

tpschedule()

10.2.3. tpsetfd

Registers a socket FD in an external socket scheduler of a UCS process. This is used to turn on a
socket FD, which uses a UCS type process. A UCS scheduler tests a message received in a socket FD
as well as messages received in a TMM and a CLH. If a message is received in a user defined socket, a
tpschedule() will return a normal result (UCS_USER_MSG) without a separate process. To know in
which socket a message has been received, a tpistfd() must be used.

Prototype

#include <ucs.h>
int tpsetfd (int fd)

* Parameters

Parameter Description

fd Sets a socket FD to be registered.

¢ Return Values

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.
* Errors

When a tpsetfd() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
the system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>

10. Server API | 199

#include <errno.h>
#include <usrinc/ucs.h>

#idefine SERV_ADDR “168.126.185.129”
#tdefine SERV_PORT 1500

int fd_read(int, char *, int);
extern int errno;

int usermain(int argc, char *argv[])

{

int listen_fd, n, newfd;
struct sockaddr_in my_addr, child_addr;
socklen_t child_len;
buf = tpalloc(“STRING”, NULL, 0);
if (buf == NULL){
error processing

}

memset((void *)&my_addr, NULL, sizeof(my_addr));
memset((void *)&child_addr, NULL, sizeof(child_addr));
listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd == -1){

error processing

}

my_addr.sin_family = AF_INET;
inaddr = inet_addr(SERV_ADDR);
my_addr.sin_port = htons((unsigned short)SERV_PORT);

if (inaddr !'= -1){
memcpy((char *)&my_addr.sin_addr, (char *)&inaddr, sizeof(inaddr));
}
ret = bind(listen_fd, (struct sockaddr *)&my_addr, sizeof(my_addr));
if (ret == -1){
error processing
}
ret = listen(listen_fd, 5);
if (ret == -1){
error processing

}

ret = tpsetfd(listen_fd);
if (ret == -1){
error processing

}

while(1) {
n = tpschedule(10);

if (n == UCS_USER_MSG){
if (tpissetfd(listen_fd)) {
child_len = sizeof(child_addr);
newfd = accept(listen_fd, &child_addr, &child_len);
if (newfd == -1){
error processing

}

200 | Application Development Guide

ret = tpsetfd(newfd);
if (ret == -1){
error processing
¥
}

if (tpissetfd(newfd)){
/* Reads a buffer from a socket */
fd_read(newfd, buf, 1024);
ret = tpcall(“SERVICE”, (char *)buf, sizeof(buf), (char **)&buf,
(long *)&rlen, TPNOFLAGS);
if (ret == -1){
error processing

}
tpelrfd(newfd);
close(newfd);
}
}
return 1;

* Related Functions

tpclrfd(), tpissetfd()

10.2.4. tpissetfd

Used to check if data is received in a socket FD in a UCS process. It is used for scheduling an external
socket in a UCS server process.

* Prototype

#include <ucs.h>
int tpissetfd (int fd)

* Parameters

Parameter Description

fd An internal FD of a fdset to be tested.

e Return Values

Value Description

A positive A message was received.
number

0 A message was not received.

10. Server API | 201

Value Description

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a tpissetfd() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <usrinc/ucs.h>

#define SERV_ADDR “168.126.185.129”
fidefine SERV_PORT 1500

int fd_read(int, char *, int);
extern int errno;

int usermain(int argc, char *argv[])

{

int listen_fd, n, newfd;
struct sockaddr_in my_addr, child_addr;
socklen_t child_len;

buf = tpalloc(“STRING”, NULL, 0);
if (buf == NULL){ error processing }

memset((void *)&my_addr, NULL, sizeof(my_addr));
memset((void *)&child_addr, NULL, sizeof(child _addr));

listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd == -1){ error processing }

my_addr.sin_family = AF_INET;
inaddr = inet_addr(SERV_ADDR);
my_addr.sin_port = htons((unsigned short)SERV_PORT);
if (inaddr !'= -1)
memcpy((char *)&my_addr.sin_addr, (char *)&inaddr, sizeof(inaddr));

ret = bind(listen_fd, (struct sockaddr *)&my_addr, sizeof(my_addr));

if (ret == -1){ error processing }
ret = listen(listen_fd, 5);
if (ret == -1){ error processing }

202 | Application Development Guide

tpsetfd(listen_fd);

while(1) {
n = tpschedule(10);

if (n == UCS_USER_MSG){
if (tpissetfd(listen_fd)) {
child_len = sizeof(child_addr);
newfd = accept(listen_fd, &child_addr, &child_len);
if (newfd == -1){ error processing }
tpsetfd(newfd);
}
if (tpissetfd(newfd)){
/* Reads a buffer from a socket */
fd_read(newfd, buf, 1024);
ret = tpcall(“SERVICE”, (char *)buf, sizeof(buf), (char **)&buf,
(long *)&rlen, TPNOFLAGS);

if (ret == -1){ error processing }
tpelrfd(newfd);
close(newfd);
}
}
}
return 1;

* Related Functions

tpissetfd(), tpsetfd()

10.2.5. tpcirfd

Turns off a socket FD in an internal fdset of a UCS process. It is used for scheduling an external
socket in a UCS server process.

* Prototype

#include <ucs.h>
int tpclrfd (int fd)

* Parameters

Parameter Description

fd The socket of an internal fdset to be turned off.

* Return Values

10. Server API | 203

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a tpclrfd() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS]an An operating system error occurred.

« Examples

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <usrinc/ucs.h>

#define SERV_ADDR “168.126.185.129”
fidefine SERV_PORT 1500

int fd_read(int, char *, int);
extern int errno;

int usermain(int argc, char *argv[])

{

int listen_fd, n, newfd;

struct sockaddr_in my_addr, child_addr;
socklen_t child_len;

buf = tpalloc(“STRING”, NULL, 0);

if (buf == NULL){ error processing }

memset((void *)&my_addr, NULL, sizeof(my_addr));
memset((void *)&child_addr, NULL, sizeof(child_addr));
listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd == -1){ error processing }
my_addr.sin_family = AF_INET;
inaddr = inet_addr(SERV_ADDR);
my_addr.sin_port = htons((unsigned short)SERV_PORT);
if (inaddr !'= -1){
memcpy((char *)&my_addr.sin_addr, (char *)&inaddr, sizeof(inaddr));
}

ret = bind(listen_fd, (struct sockaddr *)&my_addr, sizeof(my_addr));
if (ret == -1){ error processing }

ret = listen(listen_fd, 5);

if (ret == -1){ error processing }

tpsetfd(listen_fd);

204 | Application Development Guide

while(1) {
n = tpschedule(10);

if (n == UCS_USER_MSG){

if (tpissetfd(listen_fd)) {
child_len = sizeof(child_addr);
newfd = accept(listen_fd, &child_addr, &child_len);
if (newfd == -1){ error processing }
tpsetfd(newfd);

}

if (tpissetfd(newfd)){
/* Reads a buffer from a socket */
fd_read(newfd, buf, 1024);
ret = tpcall(“SERVICE”, (char *)buf, sizeof(buf), (char **)&buf,
(long *)&rlen, TPNOFLAGS);
if (ret == -1){ error processing }

ret = tpclrfd(newfd);

if (ret == -1){ error processing }
close(newfd);

}

return 1;

* Related Functions

tpissetfd()

10.2.6. tpsavectx

Manages client information in a UCS process. This function is used along with a tprelay(), which
forwards a request to another service. It works in the same way as a general service program, which
calls for other services as a tpforward(). Consequently, a called service sends a processing result to a
client.

A tpsavectx() function can be used to communicate with an external process that has heterogeneous
protocols that are time-consuming and can block channels.

The function can be used in the following format:

Client » svcl » svc2(service, tpsavectx) » External Channel
Client ¢ svc3 <« sve2(usermain, tprelay) < External Channel

1. A client makes a service request to svc1.

2. svc1 calls svc2 using a tpforward (...TPNOREPLY).

3. sve2 is a service which runs in a UCS process, and it calls a tpsavectx() in a service routine to save

10. Server API | 205

client information to communicate with an external system.
4. Aresultis sent to a usermain and forwarded to svc3 via a tprelay(). svc3 considers that svc2 has

called it via a tpforward(), so it finally sends a result to the client.

In this process, because svc1 calls a service via a tpforward with a flag set to TPNOREPLY, it can
prevent channel congestion. This enables a large numbers of clients to be handled with a small
number of processes. Additionally, a single UCS process can act as both a sending and receiving
process. It can organize a relatively simple system with efficient system management.

* Prototype

#include <ucs.h>
CTX_T * tpsavectx(void)

¢ Return Values

Value Description

CTX.T A function call was successful.

NULL A function call failed. A tperrno is set to an error code.
* Errors

When a tpsavectx() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEPROTO] A tpsavectx() must be used in a service routine. Otherwise, TPEPROTO will be
returned. Accordingly, it cannot be used with a tpsvrinit() or a tpsvrdone().

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file. The error occurred during memory allocation.

* Examples

#include <stdio.h>
#include <usrinc/ucs.h>

CTX_T *ctx = NULL;
usermain(int argc, char *argv[])
{

int ret, 1i;

char *rcvbuf, *sndbuf;
long sndlen;

rcvbuf = (char *)tpalloc(“CARRAY”,NULL, 1024);
if (revbuf == NULL){ error processing }

i=0;

206 | Application Development Guide

while(1) {

tpschedule(1);
if (ctx != NULL)
{

i++;

if ((sndbuf = (char *)tpalloc(“CARRAY”,NULL, 1024)) == NULL)
{ error processing }
else

{

ret = tprelay(“TPRETURN”, sndbuf, sndlen, @, ctx);
if (ret==-1) { error processing }
data process...

ctx = NULL;
tpfree(sndbuf);
}
}
}
+
int RELAY(TPSVCINFO *rgst)
{
ctx = tpsavectx();
tpreturn(TPSUCCESS, @, rqst->data, rgst->len, 0);
}

* Related Functions

tpreturn(), tpforward(), tprelay()

10.2.7. tpgetctx

Copies current client information to a CTX_T structure that was declared and allocated by a user. If a
tpgetctx() is used, and if a tprelay() is not used to use information, a client will keep waiting for a
response even after a service routine completes.

The information obtained by a tpgetctx() cannot be canceled with a tpcancelctx(), so a tprelay() must
be used only in a service routine.

* Prototype

#include <tmaxapi.h>
int tpgetetx (CTX_T *ctxp)

* Parameters

Parameter Description

ctxp Receives client information that was stored with a tpsavectx(), to a CTX_T structure.

10. Server API | 207

* Examples

RELAY_SVC(TPSVCINFO *msg)

{
CTX_T *ctxp;
ctxp=(CTX_T *)malloc(sizeof(CTX_T);
ret = tpgetctx(ctxp);
if (ret<@) {
error process routine
}
}

10.2.8. tpcancelctx

Cancels a corresponding structure content among information saved using a tpsavectx(). Even when
a tprelay() is not performed, if a service routine is terminated, a result will be returned normally.

A tpgetctx() can be used only in a service routine.

* Prototype

#include <ucs.h>
int tpcancelctx(CTX_T *ctxp);

* Parameters

Parameter Description

ctxp Deletes a CTX_T structure saved in a library.

The following is a CTX_T structure definition:

typedef struct {

int version[4];

char data[CTX_USR_SIZE - 16];
} CTX_T;

* Examples

RELAY_SVC(TPSVCINFO *msg) {

ctxp = (CTX_T *)tpsavectx();
ret=tpcancelctx(ctxp);
if (ret<0) {

error process routine

208 | Application Development Guide

tpreturn(TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);

10.2.9. tprelay

Available only in a UCS server process. It can be used in multiple nodes. When a client requests a
service, this function requests another service with information about the client. Since the service
called by the function notices that it was called by the client, not the function, it returns a result to the
client.

A service execution result can be sent to a client that called for a request, so a fast response can be
induced with a simple structure in a UCS process. In general, this function is useful when processing
a service, because it is integrated with an external application which is a program routine that can
obtain results after calling a service two or three times.

If a server process is terminated after saving client information using a tpsavcctx() or a tpgetctx() but
before a request is sent to another service using a tprelay(), an error response will be sent to a
service caller automatically. For more information about error responses, refer to the CTX_EREPLY
option in the SERVER section of an environment configuration. These operations are supported for
Tmax versions v5.0 SP2 or later. In earlier versions, an error response will not be sent to a service
caller.

* Prototype

#include <ucs.h>
int tprelay(char *svc, char *data, long len, long flags, CTX_T *ctxp);

* Parameters

Parameter Description

svC A service name registered in a Tmax configuration file.

data Data to be transmitted when a service is called. If data is not NULL, it must indicate
a buffer that has been allocated with a tpalloc().

len The length of data to be sent. It must be specified for CARRAY, X_OCTET, and
Structure array Types.

flags Not currently supported. Set to TPNOFLAGS.

ctxp An information structure retrieved through a tpgetctx() or a tpsavectx().

¢ Return Values

Value Description
1 A function call was successful.
-1 A function call failed. A tperrno is set to an error code.

10. Server API | 209

* Errors

When a tprelay() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPEINVAL] An invalid parameter. For example, a ctxp is NULL or an incorrect buffer was
used.

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in

a system log file.

* Examples

#include <stdio.h>
#include <usrinc/ucs.h>
CTX_T *ctx = NULL;

DUMMY (TPSVCINFO *msg)
{
data process -

}

usermain(int argc, char *argv[])
{

int ret, i;

char *rcvbuf, *sndbuf;

long sndlen;

rcvbuf = (char *)tpalloc(“CARRAY”,NULL, 1024);
if (revbuf == NULL){ error processing }
i=20;

while(1) {

tpschedule(1);

if (ctx != NULL)

{
i++;
if ((sndbuf = (char *)tpalloc(“CARRAY”,NULL, 1024)) == NULL)
{ error processing }
else

{

ret = tprelay(“TPRETURN”, sndbuf, sndlen, 0, ctx);
if (ret==-1) { error processing }

data process...

ctx = NULL;

tpfree(sndbuf);

}

int RELAY(TPSVCINFO *rqst)
{

210 | Application Development Guide

ctx = tpsavectx();
tpreturn(TPSUCCESS, @, rqst->data, rgst->len, 0);
}

* Related Functions

tpreturn(), tpforward()

10.2.10. tpregcb

Sets a routine that receives a response for an asynchronous UCS request from a server. This routine
is used when a UCS type process receives a response from a server program. It is used instead of a
tpgetrply() in a UCS server process.

Prototype

include <ucs.h>
int tpregeb (UcsCallback)

Parameters

Parameter Description

UcsCallback Sets a Callback function that handles a response for an asynchronous request in a
UCS.
* Values

Return Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a tpregchb() fails to execute, a tperrno will be set to one of the following values:

Error Code Description
[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS] An operating system error occurred.

* Examples

#include <stdio.h>

10. Server API | 211

#include <usrinc/atmi.h>
#include <usrinc/ucs.h>

void reply_receive(UCSMSGINFO *reply);
DUMMY (TPSVCINFO *msg)

{
data process
}
int usermain(int argc, char *argv[])
{
int ret;
char *buf
ret = tpregceb(reply_receive);
if (ret == -1){ error processing }
buf=tpalloc(“STRING”, NULL, 0);
if (buf==NULL) { error processing }
data process:
while(1)
{
tpschedule(3);
cd = tpacall(“SERVICE”, buf, strlen(buf), TPNOFLAGS);
if (cd < @) { error processing }
}
}
void reply_receive(UCSMSGINFO *reply)
{
printf(“data....%s\n”, reply->data);
}

¢ Related Functions

tpunregchb()

10.2.11. tpunregcb

Used to reset a routine that receives a response for an asynchronous request. It is used in a UCS
server process.

* Prototype

#include <ucs.h>
int tpunregeb (void)

 Values

212 | Application Development Guide

Value Description

1 A function call was successful.

-1 A function call failed. A tperrno is set to an error code.

* Errors

When a tpunregcb() fails to execute, a tperrno will be set to one of the following values:

Error Code Description

[TPESYSTEM] A Tmax system error occurred. Detailed error information will be recorded in
a system log file.

[TPEOS] An operating system error occurred.

« Examples

#include <usrinc/atmi.h>
#include <usrinc/ucs.h>
void reply_receive(UCSMSGINFO *reply);

int usermain(int argc, char *argv[])

{
ret = tpregeb(reply_receive);
if (ret == -1){ error processing }
ret = tpunregcb();
if (ret == -1){ error processing }
while(1)
{
tpschedule(3);
cd = tpacall(“SERVICE”, buf, strlen(buf), TPNOFLAGS);
if (cd < @) { error processing }
}
}
void reply_receive(UCSMSGINFO *reply)
{
printf(“first reply receive\n”);
printf(“data....%s\n”, reply->data);
}

* Related Functions

tpregchb()

10. Server API | 213

11. Error Handling

This chapter describes error handling and debugging.

11.1. Overview

Tmax APIs set an error number based on the situation in which an error occurs. Error messages help
you find the cause of the errors. In order to know the system call level error information, refer to the
error messages and APIs defined in tuxinc/Uunix.h.

Tmax provides CLH, which displays information about the console, to help find the problems that
occur in the Tmax system, not at the application level.

For more information about error messages that can occur during the operation
ﬂ of the Tmax system, refer to Tmax Error Message Reference Guide.

11.2. API Level Error Processing

The return value of the Tmax API failure differs depending on the APIL. The error number of each
error situation is set in tperrno.

11.2.1. tpstrerror

Available in both a server and a client. This function displays a message corresponding to an error
number. When an error occurs while using Tmax APIs, a relevant error code will be specified in a
tperrno, which is a global variable. A tpstrerror() displays messages about an error specified in a
tperrno.

* Prototype

include <atmi.h>
char *tpstrerror (int tperrno)

* Parameters

Parameter Description

tperrno An error code that will display an error message.

e Return Values

214 | Application Development Guide

Value Description

Error Message A message exists for an error code.
NULL A message does not exist for an error code.
* Examples

#include <stdio.h>
#include <usrinc/atmi.h>

void main(int arge, char *argv[])

{

int ret;
char buf;
TPSTART_T *tpinfo;

tpinfo = (TPSTART_T *)tpalloc(“TPSTART”, NULL, sizeof(TPSTART_T));

if (tpinfo==NULL) { error processing }
strepy(tpinfo->dompwd, “tuxedo”);

if (tpstart(tpinfo) == -1){
printf(“tpstart fail , err = %s\n”, tpstrerror(tperrno));
exit(1);

}

buf = (char *)tpalloc(“CARRAY”, NULL, 20);
if (buf==NULL) {error processing };
data process....

tpfree((char *) buf);
tpend();

11.3. System Level Error Processing

Tmax APIs use many system calls. To check a specific system call error generated due an operating
system or platform error or to port error messages to heterogeneous platforms, the error messages
can be integrated and managed by using the API explained in the following.

The following is the location of the header file.

TMAXDIR/tuxinc/Uunix.h

11.3.1. Uunixerr

Variable that is set to an integrated error number if a system call error occurs.

11. Error Handling | 215

int Uunixerr

11.3.2. Uunix_err

Writes the type of system error to a stderr when an ATMI API call fails and a tperrno is set to a TPEOS.

* Prototype

include <Uunix.h>
void Uunix_err (char *msq)
* Parameters

Parameter Description

msg The messages that follow the name of a system call that failed. Generally, a
program name is recorded.

One of the following is displayed.

* UCLOSE, UCREAT, UEXEC, UFCTNL, UFORK, ULSEEK, UMSGCTL, UMSGGET,
UMSGSND, UMSGRCV, UOPEN, UPLOCK, UREAD, USEMCTL, USEMGET, USEMOP,
USHMCTL, USHMGET, USHMAT, USHMDT, USTAT, UWRITE, USBRK, USYSMUL,
UWAIT, UKILL, UTIME, UMKDIR, ULINK, UUNLINK, UUNAME, UNLIST

* Examples

ret=tmaxreadenv("NO THAT FILE", "TMAX");
if (ret<0) {

Uunix_err("myprog");

exit(1);
ks

The following is the result of executing the previous example.

mypog: UOPEN

11.3.3. Ustrerror
Returns an integrated error message for a system error code (errno).

* Prototype

include <Uunix.h>

216 | Application Development Guide

char * Ustrerror(int err);

* Parameters

Parameter Description

err An integrated error number for an error message.

¢ Return Values

When a system call is succeeded, a pointer to an integrated error message for an errno is
returned.

One of the following is returned through a chr * pointer.

o UCLOSE, UCREAT, UEXEC, UFCTNL, UFORK, ULSEEK, UMSGCTL, UMSGGET, UMSGSND,
UMSGRCV, UOPEN, UPLOCK, UREAD, USEMCTL, USEMGET, USEMOP, USHMCTL, USHMGET,
USHMAT, USHMDT, USTAT, UWRITE, USBRK, USYSMUL, UWAIT, UKILL, UTIME, UMKDIR, ULINK,
UUNLINK, UUNAME, UNLIST

* Examples

ret=tmaxreadenv("NO THAT FILE", "TMAX");
if (ret<0)
{

printf("%d->%s\n", Uunixerr, Ustrerror(Uunixerr));
exit(1);

The following is the result of executing the previous example.

11->UOPEN

11.3.4. tmaxoserrno

Variable that is set to an integrated error number if a system call error occurs. The error number can
be changed if another error occurs, which makes difficult to find a reason. tmaxoserrno has a system
error number at the point in time when TPEOS or TPESYSTEM occurs. Windows saves GetLastError()
values and Unix saves errno values.

include <atmi.h>
int tmaxoserrno;

11. Error Handling | 217

11.4. Debug

11.4.1. Debug CLH

If changing clh.dbg, which is located in TMAXDIR/bin, to CLH, all the messages handled in CLH can be
checked. The original CLH file must be backed up.

/home/navis/tmax/bin> tmboot

TMBOOT for node(aix51) is starting:
Welcome to Tmax demo system: it will expire 2002/9/15
Today: 2002/7/16
TMBOOT: TMM is starting: Tue Jul 16 22:39:13 2002
TMBOOT: CLL is starting: Tue Jul 16 22:39:13 2002
TMBOOT: CLH is starting: Tue Jul 16 22:39:13 2002
COM: waiting for TMM reply
LIB: read 96 bytes
(I) CLH Current Tmax Configuration:
Number of client handler (MINCLH) = 1
Supported maximum user per node = 3944
Supported maximum user per handler = 3944
LIB: read 96 bytes
CLH: bootpid = 31202
TMBOOT: SVR(sub) is starting: Tue Jul 16 22:39:13 2002
TMBOOT: SVR(svr2) is starting: Tue Jul 16 22:39:13 2002
CLH: request_from_server: clh = @, ind = 0, fd = 8
CLH: msg from server: msgtype = 101, svcname = , len = 0
CLH: register_from_server, spri = 32, svri = @, maxtms = 32
CLH: reply_to_server: clh = @, ind = 32, fd =8
CLH: msg to server: msgtype = 1101, svcname = , len
CLH: request_from_server: clh = @, ind = 0, fd = 9
CLH: msg from server: msgtype = 135, svcname = , len = 0

=0

11.4.2. Debug Library

The libsvrd.a and libsvr.so libraries exist in the TMAXDIR/Ilib directory. If these libraries are used
instead of libsvr.a and libsvr.so, various data values are displayed on the console screen that help the
user grasp the flow in the server library and find the point where the error occurred. For libsvrd.so,
only the name must be changed. libsvrd.a must be recompiled.

/oracle/navis/tmax385/1ib> tmboot

TMBOOT for node(tmaxc1) 1is starting:

Welcome to Tmax demo system: it will expire 2002/9/30
GETOPT1: -b 255859

GETOPTT: -s svr2

GETOPT1: -d -1

SVR: delay = -1, _use_lock =1

COM: waiting for TMM reply

LIB: read 96 bytes

218 | Application Development Guide

register_to_tmm success
init_shm(78990, 139364) success
init_svctab success

SVR: my info--132 0 0 -3
init_clh success

LIB: read 96 bytes
register_to_clh success
init_txinfo success

check_node success

_tmax_init = 1

GETOPT1: -b 255859

GETOPT1: -s fdltest

GETOPT1: -d -1

SVR: delay = -1, _use_lock =1
COM: waiting for TMM reply
LIB: read 96 bytes
register_to_tmm success

11. Error Handling | 219

12. Examples

This chapter describes examples of Tmax programs developed in various environments.

12.1. Programs for Each Communication Type

This section describes examples of synchronous, asynchronous, and interactive programs.

12.1.1. Synchronous Communication

In the following example, a client copies a string to a STRING buffer and calls a service. The service
routine of a server receives the string, converts it to all upper case, and then returns the converted
string.

Program Files
+ Common program
File Description
sample.m Tmax configuration file.
* Client program
File Description

sync_cli.c Client program.

+ Server program

File Description
syncsvc.c Service program that converts a string to all upper case.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature Description

Tmax connection Basic connection (no client information).
Buffer type STRING.

Communication type Synchronous communication using tpcall().

220 | Application Development Guide

+ Server program

Feature Description
Service TOUPPERSTR.
Database connection None.

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR = "/home/tmax/path",
TLOGDIR = "/home/tmax/log/tlog",
ULOGDIR = "/home/tmax/log/slog",
SLOGDIR = "/home/tmax/log/ulog"

*SVRGROUP

svgl NODENAME = tmax

*SERVER

syncsvce SVGNAME = svq1,
MIN = 1, MAX = 5,
CLOPT = " —e $(SVR).err —o $(SVR).out "

*SERVICE

TOUPPERSTR SVRNAME = syncsvc

Client Program

The following is an example.

<sync_cli.c>

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>

main(int argc,char *argv[])

{
char *sendbuf, *recvbuf;
long rlen;

if (argc != 2)

{
fprintf(stderr,"Usage: $ %s string \n",argv[0]);

12. Examples | 221

exit(1);

}

if (tpstart((TPSTART_T*)NULL) == -1)

{
fprintf(stderr,"Tpstart failed\n");
exit(1);

}

if ((sendbuf = tpalloc("STRING",NULL,0)) == NULL) {
fprintf(stderr,"Error allocation send buffer\n");
tpend();
exit(1);

}

if ((recvbuf = tpalloc("STRING",NULL,@)) == NULL) {
fprintf(stderr,"Error allocation recv buffer\n");
tpend();
exit(1);
}

strcepy(sendbuf ,argv[1 1) ;

if (tpcall("TOUPPERSTR",sendbuf,@,&sendbuf,&rlen, TPNOFLAGS) == -1)
{
fprintf(stderr,"Can’t send request to service TOUPPER->%s!\n",
tpstrerror(tperrno)) ;
tpfree(sendbuf) ;
tpfree(recvbuf) ;
tpend();
exit(1);
}
printf("Sent value:%s\n ",sendbuf);
printf("Returned value:%s\n ",recvbuf);
tpfree(sendbuf);
tpfree(recvbuf);
tpend();

Server program
The following is an example.

<syncsvc.c>

#include <stdio.h>
#include <usrinc/atmi.h>

TOUPPERSTR(TPSVCINFO *msg)
{

int i;

for (i = 0; i < msg->len ; i++)
msg->data[i] = toupper(msg->datalil);
msg->data[i] = \0’;

tpreturn(TPSUCCESS, @, msg->data, @, TPNOFLAGS);

222 | Application Development Guide

12.1.2. Asynchronous Communication

In the following example, a client copies a string to a STRUCT buffer and calls a service. The service
routine of a server receives the string, converts it to upper or lower case, and then returns the
converted string. The client requests the TOUPPER service through asynchronous communication
and then calls the TOLOWER service through synchronous communication. The client receives the
TOLOWER service result first and then receives the TOUPPER service result.

Program Files

+ Common program

File
demo.s

sample.m

* Client program
File

async_cli.c

+ Server program

File
asyncsvc.c

Makefile

Program Feature

+ Client program

Feature

Tmax connection
Buffer type

Communication type

+ Server program

Feature

Service

Description

Defines a struct buffer.

Tmax configuration file.

Description

Client program.

Description

Service program converts a string to upper or lower case.

Tmax makefile that must be modified.

Description

Basic connection.
STRUCT.

Synchronous and asynchronous.

Description
TOUPPER, TOLOWER.

12. Examples | 223

Feature Description

Database connection None.

Communication type Synchronous and asynchronous.

Struct Buffer
The following example is a struct buffer used for asynchronous communication.

<demo.s>

struct strdata {
int flag;
char sdata[20];
b5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR = "/home/tmax/path"

*SVRGROUP

svgl NODENAME = tmax

*SERVER

asyncsvce SVGNAME = svg1, MIN = 1, MAX = 5

*SERVICE

TOUPPER SVRNAME = asyncsvc

TOLOWER SVRNAME = asyncsvc

Client Program

The following is an example.

<async_cli.c>

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>

224 | Application Development Guide

#include "../sd1/demo.s"

main(int argc,char *argv[1)

{

struct strdata *sendbuf, *sendbufi;
long dlen,clen;
int cd;

if (arge != 3) {
fprintf(stderr, "Usage: $ %s string STRING\n", argv[@], arqv[1]);
exit(1) ;

}

if (tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "TPSTART_T failed\n");
exit(1) ;

}

sendbuf = (struct strdata *)tpalloc("STRUCT", "strdata", 0);
if (sendbuf == NULL) {
fprintf(stderr, "Error allocation send buffer\n");
tpend () ;
exit(1) ;
}

sendbuf1 = (struct strdata *)tpalloc("STRUCT", "strdata", 0);
if (sendbufl == NULL) {
fprintf(stderr, "Error allocation send1 buffer\n");
tpend();
exit(1) ;
}

strepy(sendbuf->sdata, argv[1]);
strcpy(sendbuf1->sdata, argv[2]);

if ((cd = tpacall("TOUPPER", (char *)sendbuf, @, TPNOFLAGS)) == -1)
{

0,

fprintf(stderr, "Toupper error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
if (tpcall("TOLOWER",(char *)sendbuf1,@,(char **)&sendbuf1, &dlen,
TPSIGRSTRT) == -1) {
fprintf(stderr, "Tolower error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
if (tpgetrply(&cd, (char **)&sendbuf, &clen, TPSIGRSTRT) == -1) {
fprintf(stderr, "Toupper getrply error -> %s", tpstrerror(tperrno));
tpfree((char *)sendbuf);
tpend();
exit(1) ;
}
printf("Return value %s\n %s\n", sendbuf -> sdata, sendbufl -> sdata);
tpfree((char *)sendbuf);
tpfree((char *)sendbuf1);
tpend() ;

12. Examples | 225

Server program

The following is an example.

<asyncsvc.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

TOUPPER(TPSVCINFO *msg)

{

}

int i = 0;
struct strdata *stdata;

stdata = (struct strdata *)msg -> data;

while (stdata->sdatal i] !'= \0’) {
stdata->sdatal i] = toupper(stdata->sdatal i]1);
i+t

}

tpreturn(TPSUCCESS, @, (char *)stdata, @, TPNOFLAGS);

TOLOWER(TPSVCINFO *msg)

{

int i = 0;

struct strdata *stdata;

stdata = (struct strdata *)msg -> data;

while (stdata->sdatal 1] !'= \@’) {
stdata->sdatal i] = tolower(stdata->sdatal i 1);
it++;

}

tpreturn(TPSUCCESS, @, (char *)stdata, @, TPNOFLAGS);

12.1.3. Interactive Communication

A client receives user input and sends a number through a STRING buffer. The service routine of a
server returns customer information with a number that is greater than the sent numberin a

database table.

The client sends the number along with a communication control to the server through interactive
communication. The server reads all database data through a cursor and sends data that meets the
condition to the client. The client can check that the data is successfully fetched through

226 | Application Development Guide

TPEVSVCSUCC.

Program Files
+ Common program
File
demo.s
sample.m

mktable.sq]l

sel.sql

* Client program
File

conv_cli.c

* Server program

File
convsvc.pc

Makefile

Program Feature

+ Client program

Feature

Tmax connection
Buffer type

Communication type

+ Server program

Feature

Service

Database connection

Struct Buffer

Description

Defines a structure.
Tmax configuration file.
Script for creating a database table.

Script for outputting tables and data.

Description

Client program.

Description

Server program.

Tmax makefile that must be modified.

Description

Basic connection.

STRING for transmission and STRUCT for reception.

Interactive.

Description
MULTL

Oracle is used.

The following example is a struct buffer used for interactive communication.

12. Examples | 227

<demo.s>

struct sel o {

char seqno[10];
char corpno[10];
char compdate[8];

int totmon
float gquar

!

at;

float quamon;

Tmax Configuration File

The following is an example.

<sample.m>

* DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR = "/home/tmax",
APPDIR = "/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
* SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms
*SERVER
convsve SVGNAME = svg1, CONV =Y
*SERVICE
MULTI SVRNAME = convsvc

The following items are added.

Item
DBNAME

OPENINFO
TMSNAME
CONV

Description

Database name.
Oracle database connection information.
Name of the process that handles global transactions.

Interactive mode server.

Database Script

The following creates an Oracle table.

228 | Application Development Guide

<mktable.sql>

sqlplus scott/tiger << EOF
create table multi_sel

(
seqno VARCHAR(10),
corpno VARCHAR(10),
compdate VARCHAR(8),
totmon NUMERIC(38),
guarat FLOAT,
guamon FLOAT

s

create unique index idx_tdb on multi_sel(segno);

EOF

The following outputs the Oracle table and data.

<sel.sql >

sqlplus scott/tiger << EOF
Desc multi_sel;

select * from multi_sel;
EOF

Client Program
The following is an example.

<conv_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

main(int argc, char *argv[])
{
struct sel_o *rcvbuf;
char *sndbuf;
long sndlen, rcvlen, revent;
int cd;

if (arge !=2) {
printf("Usage: client string\n");
exit(1);

}

/* connects to Tmax with tpstart() */

if (tpstart((TPSTART_T *) NULL) == -1) {
printf("tpstart failed\n");
exit(1);

12. Examples | 229

if ((sndbuf = tpalloc("STRING", NULL, 12)) == NULL) {
printf("tpalloc failed:sndbuf\n");
tpend();
exit(1);

}

if ((rcvbuf = (struct sel_o *)tpalloc("STRUCT", "sel_o", 0)) == NULL) {
printf("tpalloc failed:rcvbuf\n");
tpfree(sndbuf);
tpend();
exit(1);
}
strepy(sndbuf, argv[1]);

if ((cd = tpconnect ("MULTI", sndbuf, @, TPRECVONLY)) == -1){
printf("tpconnect failed:CONVER service, tperrno=%d\n", tperrno);
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);

}

/* dinteractive communication connection, The interaction control is sent
to a server. */
printf("tpconnect SUCESS \"MULTI\" service\n");
while (1) { /* receives multiple data */
printf("tprecv strat\n");
if(tprecv(ed, (char **)&rcvbuf, &rcvlen, TPNOTIME, &revent) < @) {
/* If ends with tpreturn() in a server */
if (revent == TPEV_SVCSUCC){
printf("all is completed\n");
break;
}
printf("tprecv failed, tperrno=%s, revent=%x\n",
tpstrerror(tperrno), revent);
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);
}
printf("seqno = %s\t\t corpno =%s\n", rcvbuf->seqno, rcvbuf->corpno);
printf("compdate = %s\t\t totmon =%d\n", rcvbuf->compdate, rcvbuf->totmon);
printf("quarat = %f\t\t quamon =%f\n\n\n", rcvbuf->quarat, rcvbuf->quamon) ;

+
tpfree(sndbuf);
tpfree((char *)rcvbuf);
tpend();
printf("FINISH\n");

+

Server program

The following is an example.

<convsvc.pc>

230 | Application Development Guide

#include <stdio.h>
#include <string.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

EXEC SQL begin declare section; /* Oracle global variables declaration */
char seq[10];
struct sel_o *sndbuf;

EXEC SQL end declare section;

EXEC SQL include sqlca;

MULTI(TPSVCINFO *msg)

{
int i, cd;
long sndlen, revent;
memset(seq, @, 10);
strcpy(seq, msg->data);
if ((sndbuf = (struct sel_o *) tpalloc ("STRUCT", "sel_o", 0)) == NULL) {
printf("tpalloc failed:\n");
tpreturn (TPFAIL, -1, NULL, @, TPNOFLAGS);
}
/* declares a cursor for large amount of data */
EXEC SQL declare democursor cursor for
select *
from corp
where seqno > :seq;
EXEC SQL open democursor;
EXEC SQL whenever not found goto end_of_fetch;
if (sqlca.sqlcode !'= 0){
printf("oracle sqlerror=%s", sqlca.sqlerrm.sqlerrmc);
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}
/* sends data while there is no Oracle error */
while (sqlca.sqlcode == 0){
EXEC SQL fetch democursor into :sndbuf;
if (tpsend (msg->cd, (char *)sndbuf, @, TPNOTIME, &revent) == -1){
printf("tpsend failed, tperrno=%d, revent=%x\n", tperrno,
revent) ;
tpfree ((char *)sndbuf);
tpreturn (TPFAIL, -1, NULL, @, TPNOFLAGS);
}
}
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
end_of_fetch:
exec sql close democursor;
printf("tpreturn before");
tpreturn (TPSUCCESS, @, NULL, @, TPNOFLAGS);
}

12. Examples | 231

12.2. Global Transaction Programs

A global transaction is when multiple resource managers (databases) and physical entities participate
in processing one logical unit. Tmax regards all transactions as global transactions, and two-phase
commit (2PC) is used for data integrity.

A client receives user input and sends a unique number and data through a struct buffer. A server
updates any data that has the unique number and adds it to a table by calling a service that uses
another database. If an error occurs, the client can simultaneously roll back both databases because
the client specifies the whole process as a single transaction.

Client{
tpstart

tx_begin

tpeall TPSUCCESS

X _commit

tpend

SVC_A{ SVC_B {
: /".__-___-_‘-‘"‘-.\ P ..-"'"'_.___-_"""'\._‘\..
(UPDATE DB1) (UPDATE DB1)
\‘\""'--___.--""fl -“"‘"-—.___.—-"""—-

tpcall TPSUCCESS tpreturn

tpreturn

Connection to 2 Databases

Program Files

+ Common program

File
demo.s
sample.m

mktable.sql

* Client program
File
client.c

+ Server program

File
update.pc

Description

Struct buffer configuration file.
Tmax configuration file.

SQL script for creating a database table.

Description

Client program.

Description

Server program that executes UPDATE for a database.

232 | Application Development Guide

File Description

insert.pc Server program that executes INSERT for a database.

Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description

Server program 2 server programs that use different databases.
Service UPDATE, INSERT.

Database connection 2 types of Oracle databases.

Struct Buffer

The following example is a struct buffer used for global transactions.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN
res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

12. Examples | 233

tmax1 TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

tmax2 TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax1, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms

svg2 NODENAME = tmax2, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg2_tms

*SERVER

update SVGNAME=svg1

insert SVGNAME=svg2

*SERVICE

UPDATE SVRNAME=update

INSERT SVRNAME=1insert

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
drop table ACCOUNT;

create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char(1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)

ik

quit

234 | Application Development Guide

EOF

Client Program

The following is an example.

<client.c >

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *rcvbuf;
int acnt_id, n, timeout;
long len;

if (arge !=2) {
fprintf(stderr, "Usage:%s account_id \n", argv[0]);

exit(1);
}
acnt_id = atoi(argv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail! tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart faill tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));

if (sndbuf == NULL) {

fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);

tpend();

exit(1);
}
rcvbuf = (char *)tpalloc("STRING", NULL, 0);
if (revbuf == NULL) {

fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);

tpend();

exit(1);
}
sndbuf->account_id = acnt_id;
sndbuf->branch_id = acnt_id;
strepy(sndbuf ->phone, TEMP_PHONE);

12. Examples | 235

strepy(sndbuf ->address, TEMP_ADDRESS);

tx_set_transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

n = tpcall("UPDATE", (char *)sndbuf, sizeof(struct input),
(char **)&rcvbuf, (long *)&len, TPNOFLAGS);

if (n<0) {
fprintf(stderr, "tpcall faill tperrno = %d\n", tperrno);
tpend();
exit(1);

}

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail! tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following example is a server program that executes UPDATE for a database.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

f#tdefine OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

UPDATE(TPSVCINFO *msg)
{

struct input *rcvbuf;
int ret;
long acnt_id, rcvlen;

236 | Application Development Guide

char *send;

rcvbuf = (struct input *)(msg->data);
send = (char *)tpalloc("STRING", NULL, 9);
if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, 0, 0);
}
account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT
SET BRANCH_ID = :branch_id,
PHONE = :phone,
ADDRESS = :address,
SSN = :ssn
WHERE ACCOUNT_ID = :account_id;
if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403) {
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);
}
rcvbuf->account_id++;
ret = tpcall("INSERT", (char *)rcvbuf, @, (char **)&send, (long *)&rcvlen,
TPNOFLAGS);
if (ret < 0) {
fprintf(stderr, "tpcall fail tperrno = %d\n", tperrno);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);
}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

The following example is a server program that executes INSERT for a database.

<insert.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

f#idefine OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

INSERT(msg)

12. Examples | 237

TPSVCINFO *msg;
{
struct input *rcvbuf;
int ret;
long acnt_id;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, @);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", tpstrerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

/* Declare && Open Cursor for Fetch */

EXEC SQL INSERT INTO ACCOUNT (

ACCOUNT_ID,

BRANCH_ID,

SSN,

PHONE,

ADDRESS)

VALUES (

:account_id, :branch_id, :ssn, :phone, :address);

if (sqlca.sqlcode !'= @ && sqlca.sqlcode != 1403)

{
printf("insert failed sqlcode = %d\n", sqlca.sqlcode);

tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

12.3. Database Programs

This section describes several examples that illustrate the use of Oracle and Informix databases.

12.3.1. Oracle Insert Program

A client receives user input and calls a service through a struct buffer. A server receives the input and
adds it to a corresponding table. If an error occurs, a client can roll back the database by specifying
the process as a single transaction.

Program Files

+ Common program

238 | Application Development Guide

File Description

demo.s Struct buffer configuration file.
sample.m Tmax configuration file.

mktable.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.

* Client program

File Description

oins_cli.c Client program.

* Server program

File Description
oinssvc.pc Oracle source of a service program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description
Service ORAINS.
Database connection Oracle database.

Struct Buffer

The following is an example.

<demo.s>

struct ktran {
int no;
char name[20];

12. Examples | 239

b5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN
resrc SHMKEY = 7799@, MAXUSER = 256
*NODE
tmax TMAXDIR = /home/tmax,
APPDIR = /home/tmax/appbin,
PATHDIR = /home/tmax/path
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=60",
TMSNAME = svg1_tms
*SERVER
oinssvc SVGNAME = svg1, MIN = 1, MAX = 5
*SERVICE
ORAINS SVRNAME = oinssvc

The following items are added.

Item Description
DBNAME Database name.

OPENINFO Oracle database connection information. CLOSEINFO does not need to be specified
for an Oracle database because It is called by tpsvrinfo().

TMSNAME Name of the process that handles automatic transactions that meet OPENINFO. The
service included in svg1 is handled as automatic transitions.

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
create table testdbl (
no number(7),
name char(30)

) &

240 | Application Development Guide

EOF

The following outputs the Oracle table and data.

<sel.sql>

sqlpus scott/tiger << EOF
desc testdbl;

select * from testdbl;

select count (*) from testdbl;
EOF

Client Program
The following is an example.

<oins_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

main(int argc, char *argv[])

{
struct ktran *sndbuf, *rcvbuf;
long sndlen, rcvlen;
int cd;

if (arge != 3) {

printf("Usage: client no name\n");
exit(1);

}

printf("tpstart-start \n");

if(tpstart ((TPSTART_T *) NULL) == -1) {
printf("Tpstart failed\n");
exit(1);

}

printf("tpstart-ok \n");

if((sndbuf=(struct ktran *) tpalloc("STRUCT","ktran",@))==NULL) {
printf("tpalloc failed:sndbuf, tperrno=%d\n", tperrno);
tpend();
exit(1) ;

}

if((revbuf = (struct ktran *) tpalloc("STRUCT", "ktran", @0))== NULL) {
printf("tpalloc failed:rcvbuf, tperrno=%d\n", tperrno);
tpfree((char *)sndbuf);
tpend();
exit(1);

12. Examples | 241

sndbuf->no = atoi(argv[1]);
strcepy(sndbuf->name, argv[2]);
printf("tpcall-start \n");
tx_begin();

if(tpcall("ORAINS", (char *)sndbuf,@, (char **)&rcvbuf,&rcvlen, TPNOFLAGS)==-1)

{
printf("tpcall failed:0RA service, tperrno=%d", tperrno);
printf("sql code=%d\n", tpurcode);
tx_rollback();
tpfree ((char *)sndbuf);
tpfree ((char *)rcvbuf);
tpend();
exit(1);
}

printf("tpcall-success \n");
tx_commit();

tpfree ((char *)sndbuf);
tpfree ((char *)rcvbuf);
tpend();

Server program

The following is an example.

<oinssvc.pc>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

EXEC SQL begin declare section;
char name[20];
int no;

EXEC SQL end declare section;
EXEC SQL include sqlca;

ORAINS(TPSVCINFO *msq)
{
struct ktran *stdata;
stdata = (struct ktran *)msg->data;
strepy(name, stdata->name);
no = stdata->no;
printf("Ora service started\n");

/* inserts to a database */
EXEC SQL insert into testdb1(no, name) values(:no, :name);

if (sqlca.sqlcode != 0){

printf("oracle sqlerror=%s",sqlca.sqlerrm.sqlerrmc);
tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);

242 | Application Development Guide

tpreturn (TPSUCCESS, sqlca.sqlcode, stdata, @, TPNOFLAGS);

12.3.2. Oracle Select Program

A client receives user input and calls a service through a struct buffer. A server receives all
corresponding data and returns it using a structure array. If an error occurs, a client can roll back the
database by specifying the process as a single transaction.

Program Files

+ Common program

File
demo.s
sample.m
mktable.sql

sel.sql

+ Client program

File
oins_cli.c

cdata.c

+ Server program
File
oselsvc.pc

Makefile

Program Feature

* Client program

Feature

Tmax connection
Service
Buffer type

Communication type

Description

Struct buffer configuration file.
Tmax configuration file.
SQL script for creating a database table.

Script for outputting tables and data.

Description

Client program.

Function module used by a client.

Description

Oracle source of a service program.

Tmax makefile that must be modified.

Description

Basic connection.
ORASEL.
STRUCT.

Synchronous communication using tpcall().

12. Examples | 243

Feature Description

Transaction handling Transaction scope is specified by a client.

* Server program

Feature Description

Service ORASEL.

Database connection Oracle database.

Buffer usage Buffer size can be changed if necessary.

Struct Buffer

The following is an example.

<demo.s>

struct stru_his{
long ACCOUNT_ID ;
long TELLER_ID ;
long BRANCH_ID ;
long AMOUNT ;

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR ="/home/tmax",
APPDIR ="/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = ORACLE,
OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=600",
TMSNAME = svg1_tms
*SERVER
oselsvc SVGNAME = svg1, MIN = 1, MAX = 5
*SERVICE
ORASEL SVRNAME = oselsvc

244 | Application Development Guide

The following items are added.

Item
DBNAME

OPENINFO

TMSNAME
AUTOTRAN

Description

Database name.

Oracle database connection information. CLOSEINFO does not need to be specified
for an Oracle database. Available options are described in the following table.

Name of the process that handles transactions.

Corresponding service is automatically processed in transaction status.

The following options are available for OPENINFO.

Option
LogDir

DbgFl

Description

Records XA-related log in a specified location.
If unspecified, the <xa_NULLdate.trc> file is created in $ORACLE_HOME/rdbms/log or
a current directory.

Level of the debug flag. 0x01 (basic level), 0x04 (OCI level), and other levels can be
used.

The following uses the LogDir and DbgFl options for OPENINFO.

OPENINFO="0Oracle_XA+Acc=P/account/password +SesTm=60+LogDir=/tmp+DbgF1=0x01"

To avoid disk full issues, disalbe the dequg mode during development.

Database Script

The following creates an Oracle table.

<mktable.sql>

sqlplus scott/tiger << EOF
create table sel_his(
account_id number(6),
teller_id number(6),
branch_id number(6),
amount number(6)

D

create unique index idx_tdb1 on sel_his(account_id);

EOF

The following outputs the Oracle table and data.

12. Examples | 245

<sel.sql>

sqlplus scott/tiger << EOF
desc sel_his;

select * from sel_his;

EOF

Client Program
The following is an example.

<oins_cli.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "../sd1/demo.s"
#define NARRAY 10
#define NOTFOUND 1403

main(int argc,char *argv[])
{
struct stru_his *transf;
int i, j;
long urcode, nrecv, narray = NARRAY;
long account_id, teller_id, branch_id, amount;

if (arge 1= 2) {
fprintf(stderr,"Usage:$%s ACOUNT_ID !\n", argv[0]);
exit(0);

}

if (tpstart((TPSTART_T *) NULL) == -1) { /* connects to Tmax */
fprintf(stderr,"TPSTART_T(tpinfo) failed -> %s!\n",
tpstrerror(tperrno)) ;
exit(1) ;

}

/* creates a ¢ struct buffer */
transf = (struct stru_his *) tpalloc("STRUCT", "stru_his",0);
if (transf == (struct stru_his *)NULL) {
fprintf(stderr,"Tpalloc failed->%s!\n",
tpstrerror(tperrno)) ;
tpend();
exit(1);
}

memset(transf, 0x00, sizeof(struct stru_his));

account_id = atoi(argv[1]);
transf->ACCOUNT_ID = account_id;

/* sets transaction timeout */
tx_set_transaction_timeout(30);

/* starts global transactions */

246 | Application Development Guide

if (tx_begin() < @) {
fprintf(stderr, "tx_begin() failed ->%s!\n",
tpstrerror(tperrno));
tpfree((char*)transf);
tpend();
exit(0) ;
}

if (tpcall("ORASEL",(char *)transf, @, (char **)&transf, &nrecv,
TPNOFLAGS)== -1){
/* request the"ORASEL" service with synchronous communication */
fprintf(stderr,"Tpcall(SELECT...)error->%s ! ",
tpstrerror(tperrno)) ;
tpfree((char *)transf);
/* cancels a transaction if failed */
tx_rollback();
tpend();
exit(0) ;
}
/* commits a transaction if successful */
if (tx_commit() == -1) {
fprintf(stderr, "tx_commit() failed ->%s!\n",
tpstrerror(tperrno)) ;
tpfree((char *)transf);
tpend();
exit(0) ;
}
/* Received data is an array of a structure. */
for (j =0 ; j < tpurcode ; j++) {
/* prints data selected by Oracle */
if (j == 0)
printf("%-12s%-10s%-10s%-10s\n",
"ACCOUNT_ID","TELLER_ID", "BRANCH_ID", "AMOUNT");
account_id=transf[j].ACCOUNT_ID;
teller_id=transf[j].TELLER_ID;
branch_id=(*(transf+j)).BRANCH_ID;
amount=transf[j].AMOUNT;
printf("%-12d %-10d %-10d %-10d\n", account_id,
teller_id,branch_id, amount);
}
/* if there is not selected data or it is the end */
if (urcode == NOTFOUND) {
printf("No records selected!\n");
tpfree((char *)transf);

tpend();
return 0;
}
tpfree((char *)transf);
tpend();
}

Server program
The following is an example.

<oselsvc.pc>

12. Examples | 247

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"
#idefine NARRAY 10
#tdefine TOOMANY 2112
#tdefine NOTFOUND 1403
EXEC SQL include sqlca.h;

EXEC SQL begin declare section;
long key, rowno= NARRAY;
long account_id[NARRAY],teller_id[NARRAY], branch_id[NARRAY],
amount[NARRAY] ;

EXEC SQL end declare section;

ORASEL(TPSVCINFO *msg)
{
struct stru_his *transf;
int i , lastno;
transf=(struct stru_his *) msg->data;

/* transfers contents of the msg buffer to a program variable */
key = transf->ACCOUNT_ID;

/* adjusts the size of the transf buffer */
if((transf=(struct stru_his *) tprealloc((char*)transf,
sizeof(struct stru_his) * NARRAY))==(struct stru_his*)NULL){
fprintf(stderr, "tprealloc error ->%s\n",
tpstrerror(tperrno));
tpreturn(TPFAIL, tperrno, NULL, @, TPNOFLAGS);
}
EXEC SQL select account_id, teller_id, branch_id, amount
into :account_id, :teller_id, :branch_id, :amount from sel_his
where account_id > :key
/* puts data that has account_id greater than the key value sent */
order by account_id; /* by a client to a global variable */

/* sql error check (excludes no data or too many data) */

if (sqlca.sqlcode!=0 && sqlca.sqlcode!=NOTFOUND && sqlca.sqlcode!=TOOMANY) {
fprintf(stderr,"SQL ERROR ->NO(%d):%s\n", sqlca.sqlcode,
sqlca.sqlerrm.sqlerrmec) ;
tpreturn(TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);

}

/* puts the number of access to lastno */
lastno = sqlca.sqlerrd[2];

/* too many selected data */
if (sqlca.sqlcode == TOOMANY)
lastno =rowno;

/* No records */
if (lastno == 0)
transf->ACCOUNT_ID = 0;

/* puts data selected by Oracle to a buffer to be sent */
for (1 =0 ; i< lastno; i++) {
transf[i].ACCOUNT_ID = account_id[i];
transf[i].TELLER_ID = teller_id[i];
transf[i].BRANCH_ID = branch_id[i];

248 | Application Development Guide

transf[i].AMOUNT = amount[i];

}
tpreturn(TPSUCCESS, lastno, transf, i * sizeof(struct stru_his),
TPNOFLAGS);

12.3.3. Informix Insert Program

A client receives user input and calls a service through a struct buffer. A server receives the input and
adds it to a corresponding table. A client can roll back by specifying the process as a single

transaction when an error occurs.
Check the following before compiling Informix applications.
1. Unix environment (.profile, .login, and .cshrc)

Set the following items.

INFORMIXDIR=/home/informix

INFORMIXSERVER=tmax

ONCONFIG=onconfig

PATH=$INFORMIXDIR/bin: -
LD_LIBRARY_PATH=/home/informix/1ib:/home/informix/1lib/esql:

2. Makefile

Check the following operations and settings.

Server esql makefile

TARGET = <target filename>
APOBJS = $(TARGET).o
SDLFILE = info.s

LIBS = -lsvr -linfs

For Solaris, add -1nsl -1socket.

0BJS = $(APOBJS) $(SDLOBJ) $(SVCTOBI)
SDLOBJ = ${SDLFILE:.s=_sdl.o}
SpLC = ${SDLFILE:.s= sdl.c}

SVCTOBJ = $(TARGET) svctab.o

CFLAGS =-0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
Solaris 32bit, Compaq, Linux: CFLAGS = -0 -I$(INFORMIXDIR)/incl/esql
—I$(TMAXDIR)

Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

HP 32bit: CFLAGS = -Ae -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(INFORMIXDIR)/incl/esql
—-I$(TMAXDIR)

IBM 32bit: CFLAGS = -q32 -brtl -0 -I$(INFORMIXDIR)/inc1/esql -I$(TMAXDIR)

IBM 64bit: CFLAGS = -q64 -brtl -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)

12. Examples | 249

INFLIBD = $(INFORMIXDIR)/1ib/esql

INFLIBDD = $(INFORMIXDIR)/1ib

INFLIBS = -lifsql -lifasf -lifgen -lifos -lifgls -lm -1d1 -lcrypt
$ (INFORMIXDIR)/1ib/esql/

checkapi.o -lifglx -lifxa

APPDIR = $(TMAXDIR)/appbin
SVCTDIR = $(TMAXDIR)/svct
TMAXLIBDIR = $(TMAXDIR)/1ib

#
.SUFFIXES : .ec .s .c .0

.ec.c :
esql -e $*.ec

#

server compile

#

all: $(TARGET)

$(TARGET) : $(0BJS)
$(CC) $(CFLAGS) -L$(TMAXLIBDIR) -L$(INFLIBD) -L$(INFLIBDD) -o $(TARGET)
$(0B1S) $(LIBS) $(INFLIBS)
mv $(TARGET) $(APPDIR)/.
rm -f $(0BJS)

$(APOBIS): $(TARGET).ec
esql -e -I$(TMAXDIR)/usrinc $(TARGET).ec
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
touch $(SVCTDIR)/$(TARGET) svctab.c
$(CC) $(CFLAGS) -c $(SVCTDIR)/$(TARGET) svctab.c

$(SDLOBJ):
$(TMAXDIR)/bin/sdlc -i ../sd1/$(SDLFILE)
$(CC) $(CFLAGS) -c ../sd1/$(SDLC)

#
clean:
-rm -f *.0 core $(TARGET) $(TARGET).lis

<TMS Makefile>

#
TARGET = info_tms

INFOLIBDIR = ${INFORMIXDIR}/1ib
INFOELIBDIR = ${INFORMIXDIR}/esql
INFOLIBD = ${INFORMIXDIR}/1lib/esql
INFOLIBS = -lifsql -lifasf -lifgen -lifos -lifgls -1m -1dl -lcrypt
/opt/informix/1ib/esql/checkapi.o
-lifglx -lifxa
For Solaris, add -1nsl -1socket -laio -lelf

250 | Application Development Guide

CFLAGS =-0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
Solaris 32bit, Compag, Linux: CFLAGS = -0 -I§(INFORMIXDIR)/incl/esql
—-I$(TMAXDIR)
Solaris 64bit: CFLAGS = -xarch=v9 -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
HP 32bit: CFLAGS = -Ae -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR)
HP 64bit: CFLAGS = -Ae +DA2.0W +DD64 +DS2.0 -0 -I$(INFORMIXDIR)/incl/esql
-I$(TMAXDIR)
-q32 -brtl -0 -I$(INFORMIXDIR)/inc1/esql -I$(TMAXDIR
-q64 -brtl -0 -I$(INFORMIXDIR)/incl/esql -I$(TMAXDIR

IBM 32bit: CFLAGS
IBM 64bit: CFLAGS

TMAXLIBDIR = $(TMAXDIR)/1ib
TMAXLIBS = -1tms -linfs
CC = /opt/SUNWspro/bin/cc : solaris only

$(TARGET): $(APOBJ)
$(CC) $(CFLAGS) -0 $(TARGET) -L$(TMAXLIBDIR) -L$(INFOLIBD)
-L$(INFOLIBDIR) -L

$(INFOELIBDIR) $(INFOLIBS) $(TMAXLIBS)
mv $(TARGET) $(TMAXDIR)/appbin

#

clean:
-rm -f *.o core $(TARGET)

Program Files

+ Common program

File Description

demo.s Struct buffer configuration file.

sample.m Tmax configuration file.

mkdb.sql SQL script for creating a database. XA mode is supported when a database is

created in logging mode.

mktable.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.
info.s SDLFILE.

* Client program

File Description

client.c Client program.

* Server program

File Description
tdbsvr.ec Server program.
Makefile Modifies the Makefile provided by Tmax.

12. Examples | 251

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Communication type

Transaction handling

+ Server program

Feature

Service

Database connection

Struct Buffer

The following is an example.

<demo.s>

struct info {
char seq[8];
char data®1[128];
char data®@2[128];
char data®@3[128];
¥

Tmax Configuration File

The following is an example.

<sample.m>

Description

Basic connection.
STRUCT.
Synchronous communication using tpcall().

Transaction scope is specified by a client.

Description
INSERT.

Informix database.

*DOMAIN

resrc SHMKEY = 77990, MAXUSER = 256

*NODE

tmax TMAXDIR ="/home/tmax", A
APPDIR ="/home/tmax/appbin”,
PATHDIR ="/home/tmax/path"

*SVRGROUP

svgl NODENAME = tmax,

DBNAME = INFORMIX,
OPENINFO = "stores7",

252 | Application Development Guide

CLOSEINFO = "",
TMSNAME = info_tms

*SERVER

tdbsvr SVGNAME = svg1, MIN =1, MAX = 5
*SERVICE

INSERT SVRNAME = tdbsvr

The following items are added.

Item Description
DBNAME Database name.
OPENINFO, CLOSEINFO Informix database connection and disconnection information.

tpsvrinfo() and tpsvrdone() use the information.

TMSNAME Name of the process that handles transactions. Automatic
transactions that become available due to OPENINFO are handled.
The corresponding service included in svg1 is handled in the
automatic transaction state.

Database Script

The following creates an Informix table.

<mktable.sql>

dbaccess << EOF
create database stores7 with buffered log;
grant connect to public;

database stores7;

drop table testdb1;

create table testdbl (
seq VARCHAR(8) ,
data01 VARCHAR(120) ,
data0? VARCHAR(120) ,
data03 VARCHAR(120)

) lock mode row;

create unique index idx_tdb1 on testdb1(seq);
EOF

The following outputs the Informix table and data.

<sel.sql>

dbaccess << EOF
database stores7;
select * from testdbl;

12. Examples | 253

EOF

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "info.s"
main(int arge, char **argv)
{

struct info *transf;

char data[256];

long nrecv;

/* connects to Tmax */

if ((tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "tpstart(TPINFO...) failed ->%s!\n",
tpstrerror(tperrno)) ;
exit(1) ;

}

/* allocates buffer memory to be used in an application program */
if ((transf=(struct info *)tpalloc ("STRUCT","info",@))==(struct info *)NULL){
fprintf(stderr, "tpalloc(struct info, ...) failed ->%s!\n",
tpstrerror(tperrno)) ;
tpend();
exit(1) ;
}

/* fills the data fields to be transferred */
strepy(transf->seq, "000001");
strepy(transf->data@1, "Hello");
strepy(transf->data@2, "World");
strepy(transf->data@3, "1234");

/* sets transaction timeout * /
tx_set_transaction_timeout (30);

/* informs of transaction starts */
if (tx_begin() < @) {
fprintf(stderr, "tx_begin() failed ->%s!\n",
tpstrerror(tperrno)) ;
tpfree ((char *)transf);
tpend(); exit(9);
}

/* calls a service */
if (tpcall("INSERT",(char*) transf,@, (char **)&transf,&nrecv, TPNOFLAGS)==-1){
fprintf(stderr,"tpcall(struct info, ...)
failed ->%s!\n",tpstrerror(tperrno)) ;
tx_rollback ();
tpfree ((char *)transf),

254 | Application Development Guide

}

/*

tpend();
exit(0);

Transactions are complete. */

if (tx_commit () < 0) {

}

fprintf(stderr, "tx_commit() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree ((char *)transf);

tpend();

exit(0);

tpfree ((char *)transf);
/* disconnects from Tmax */
tpend() ;

Server program

The following is an example.

< tdbsvr.ec>

#include
#include
#include
#include

EXEC SQL

<stdio.h>
<ctype.h>
<usrinc/atmi.h>
"info.s"

include sqlca.h;

/* a service name */
INSERT(TPSVCINFO *msg)

{
/*

declares a buffer type for the program */

struct info *INFO;

/* declares a buffer type for SQL statements */
EXEC SQL begin declare section;

varchar seq[8],buf@1[128],buf@2[128],buf03[128];
EXEC SQL end declare section;

/* receives data in a structure format from the message buffer */
INFO = (struct info *)msg -> data;

/* copies data received in a structure format to a database buffer */
strcpy(seq, INFO->seq);

strepy(buf@1, INFO->data1);

strepy(buf@2, INFO->datad?2);

strepy(buf@3, INFO->data@3);

/*

performs an Insert SQL statement */

EXEC SQL insert into testdbl (seq,datad1,datad2,datab3)
values(:seq, :buf@1, :buf@2, :buf@3);

/*

if an error occurs */

if (sqlca.sqlcode ! = 0) {

12. Examples | 255

/* informs Insert is failed */

printf("SQL error => %d !" ,sqlca.sqlcode);

tpreturn (TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}

/* when Insert successfully completes */
tpreturn (TPSUCCESS, @, NULL, @, TPNOFLAGS);

12.3.4. Informix Select Program

A client receives user input and calls a service through a struct buffer. A server receives all
corresponding data and returns it using a structure array. If an error occurs, a client can roll back the
database by specifying the process as a single transaction.

Program Files

+ Common program

File Description

acct.s SDLFILE.

sample.m Tmax configuration file.

mkdb.sq| SQL script for creating a database.
mktables.sql SQL script for creating a database table.
sel.sql Script for outputting tables and data.

* Client program

File Description
client.c Client program.
cdate.c Function module used by client.c.

* Server program

File Description
sel_acct.ec Informix source of a service program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

256 | Application Development Guide

Feature Description

Tmax connection Basic connection.

Buffer type STRUCT.

Communication type Synchronous communication using tpcall().
Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description

Service SEL_ACCT.

Database connection Informix database.

Buffer usage A buffer can be resized if necessary.

Struct Buffer

The following is an example.

<acct.s>

struct stru_acct {
int ACCOUNT_ID;
char PHONE[20];
char ADDRESS[80];
i

Tmax Configuration File

The following is an example.

<sample.m>
*DOMAIN
resrc SHMKEY = 77990, MAXUSER = 256
*NODE
tmax TMAXDIR ="/home/tmax",
APPDIR ="/home/tmax/appbin",
PATHDIR ="/home/tmax/path"
*SVRGROUP
svgl NODENAME = tmax,
DBNAME = INFORMIX,
OPENINFO = "stores7",
CLOSEINFO = "",
TMSNAME = info_tms
*SERVER
SEL_ACCT SVGNAME = svg1, MIN = 1, MAX = 5

12. Examples | 257

*SERVICE
SEL_ACCT SVRNAME = sel_acct

The following items are added.

Item Description
DBNAME Database name.
OPENINFO, CLOSEINFO Informix database connection and disconnection information.

tpsvrinfo() and tpsvrdone() use the information.

TMSNAME Name of the process that handles transactions. Automatic
transactions appointed by OPENINFO are handled. The
corresponding service included in svg1 is handled in automatic
transaction status.

Database Script

The following creates an Informix table.

<mkdb.sql>

dbaccess << EOF
create database stores7 with buffered log;
grant connect to public;

database stores7;
drop table ACCOUNT;

create table ACCOUNT (
account_id INTEGER,
phone VARCHAR(20),
address VARCHAR(80)
) lock mode row;

create unique index idx_tdb1 on ACCOUNT(account_id);
EOF
The following outputs the Informix table and data.

<sel.sql>

dbaccess << EOF
database stores7;
select * from ACCOUNT;
EOF

258 | Application Development Guide

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <time.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "acct.s"
#define NOTFOUND 1403

void htime(char *, int *);

main(int argc, char *argv[1)

{
struct stru_acct *transf;
float tps;
int i, j, loop, cnt_data = @, secl, sec2;
long urcode, nrecv, narray;
char ts[30], te[30], phone[20], address[80];
int account_id, key;

if(arge = 2) {
fprintf(stderr,"Usage:$%sLOOP (NARRAY = 30) !\n", arqv[0]);
exit(0) ;

}

/* repeats the loop as many as times a user wants */
loop = atoi(argv[1]);

/* connects to Tmax */

if (tpstart((TPSTART_T *)NULL) == -1) {
fprintf(stderr, "tpstart(tpinfo) failed ->%s!\n",
tpstrerror(tperrno));
exit(1) ;

}

/* secl = start time */
htime(ts,&sec1); key=0;

/* allocates a message buffer */
for(i = 0; i < loop; i++) {
if ((transf=(struct stru_acct *)tpalloc("STRUCT","stru_acct",0))
==(struct stru_acct *)NULL) {
fprintf(stderr,"Tpalloc(STRUCT..)failed->%s!\n" ,
tpstrerror(tperrno)) ;
tpend(); exit(1);
}
transf -> ACCOUNT_ID = key;

/* time-out value= 30 */
tx_set_transaction_timeout(30) ;

if (tx_begin() < @) { /* starts transactions */
fprintf(stderr, "tx_begin() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree((char*)transf);

12. Examples | 259

tpend();
exit(0);
}

/* calls a select service */
if (tpcall("SEL_ACCT", (char *)transf, @, (char **)&transf, &nrecv,
TPNOFLAGS)== -1) {
/* service error: the message buffer is freed, the transaction is
cancelled, and the connection is terminated */
fprintf(stderr,"Tpcall(SELECT...)error->%s! " ,
tpstrerror(tperrno)) ;
tpfree ((char *)transf);
tx_rollback () ;
tpend() ;
exit (1) ;
}

urcode = tpurcode;

/* The service is successfully completed.
The actual resource is changed as a result of the transaction */
if (tx_commit() < 0) {

fprintf(stderr, "tx_commit() failed ->%s!\n", tpstrerror(tperrno)) ;
tpfree((char *)transf);
tpend();
exit(0);

}

/* if data is selected */
if (urcode !'= NOTFOUND) {
narray =urcode;
/* the last record of selected data */
key=transf[narray-1].ACCOUNT_ID;
/* outputs results to a user as many as the number of selected data */
for (j =0 ; j <narray ; j++) {
if (j==0)
printf("%-10s%-14s%s\n", "ACCOUNT_ID", "PHONE","ADDRESS") ;
account_id = transf[j].ACCOUNT_ID;
strepy(phone, transf[j].PHONE);
strepy(address, transf[j].ADDRESS);
printf("%-10d %-14s %s\n", account_id, phone, address);
}/* for2 end */

/* increases the number of results */
cnt_data += j;

/* message buffer free */
tpfree ((char *)transf);
if(urcode == NOTFOUND) {
printf("No records selected!\n");
break ;

}
}/* for1 end */

/* message buffer free */
tpfree ((char *)transf);

/* disconnects from Tmax */
tpend ();

/* sec2 = end time */

260 | Application Development Guide

htime(te,&sec2);

/* calculates processing time for each data */
printf("TOT.COUNT = %d\n", cnt_data);
printf("Start time = %s\n", ts);
printf("End time = %s\n", te);
if ((sec2-sec1) ! = 0)
tps = (float) cnt_data / (sec2 - secl);
else
tps = cnt_data;
printf("Interval = %d secs ==> %10.2f T/S\n", sec2-secl,tps);

}

htime(char *cdate, int *sec)
{
long time(), timef, pt;
char ct[20], *ap;
struct tm *localtime(), *tmp;

pt = time(&timef);

*sec = pt;

tmp = localtime(&timef);
ap = asctime(tmp);

sscanf(ap, "%*s%*s%*s%s",ct);
sprintf(cdate, "%02d. %02d. %02d %s", tmp->tm_year, ++tmp->tm_mon,
tmp->tm_mday, ct);

Server program

The following is an example.

<sel_acct.pc>

#include <stdio.h>
#include <usrinc/atmi.h>
#include <usrinc/tx.h>
#include "acct.s"
#define NFETCH 5

f#define NOTFOUND 100

EXEC SQL include sqlca.h;

EXEC SQL begin declare section;
long account_id, key;

varchar phone[20], address[80];
EXEC SQL end declare section;

SEL_ACCT(TPSVCINFO *msg)
{
int i , j , nfetch;
int return_code;
struct stru_acct *ACCT_V;

/* receives client data */
ACCT_V = (struct stru_acct *) msg->data;

12. Examples | 261

/* moves an accound ID value to be selected to the key */
key = ACCT_V->ACCOUNT_ID;

/* reallocates the size of the client buffer */

if ((ACCT_V = (struct stru_acct *)tprealloc((char *)ACCT_V,
sizeof(struct stru_acct)*NFETCH)) == (struct stru_acct *)NULL) {
fprintf(stderr, "tprealloc error =%s\n", tpstrerror(tperrno));
tpreturn (TPFAIL, tperrno, NULL, @, TPNOFLAGS);

}

/* initializes a buffer */
ACCT_V->ACCOUNT_ID = 0;
strcpy(ACCT_V->PHONE," ") ;
strepy(ACCT_V->ADDRESS," ") ;

/* extracts phone and address fields from the ACCOUNT table */
EXEC SQL declare CUR_1 cursor for
select account_id,phone,address
into :account_id, :pfone, :address
from ACCOUNT
where account_id > :key;/* if an account ID is larger than
a field key */

/* cursor open */
EXEC SQL open CUR_1;
/* cursor open error */
if (sqlca.sqlcode ! = 0) {
printf("open cursor error !\n");
tpreturn(TPFAIL, sqlca.sqlcode, NULL, @, TPNOFLAGS);
}

nfetch=0 ;
return_code = NOTFOUND;

/* cursor open success */

while (sqlca.sqlcode == 0) {
/* fetches data from the location a cursor points one at a time */
EXEC SQL fetch CUR_1;

/* fetch error */
if (sqlca.sqlcode ! = @) {
if (sqlca.sqlcode == NOTFOUND)
break ;
break ;

}

ACCT_V[nfetch].ACCOUNT_ID = account_id;
strepy(ACCT_V[nfetch].PHONE, phone);
strepy(ACCT_V[nfetch].ADDRESS, address);

/* increases the number of selected data */
nfetch++;
return_code = nfetch

/* exits from "while"

if data is selected as many as the number of NFETCH */
if (nfetch > NFETCH) {

nfetch = NFETCH;

262 | Application Development Guide

return_code = nfetch;

break ;

}
}

/* cursor close */
EXEC SQL close CUR_1;

/* returns the result and its data to a client */
tpreturn (TPSUCCESS, return_code, (char *)ACCT_V,
sizeof(struct stru_acct)*nfetch, TPNOFLAGS);

12.3.5. DB2 Program

A client receives user input, saves EMPNO to a STRING buffer, and calls a service. A server receives all
the data and adds it to the table. If an error occurs, a client can roll back the database by specifying
the process as a single transaction.

Program Files

+ Common program

File
sample.m

Create.ers

* Client program

File
clidb2tx.c

+ Server program

File
svr_db2.sqc
Makefile

Program Feature

* Client program

Feature

Tmax connection

Buffer type

Description

Tmax configuration file.

SQL script for creating a database table.

Description

Client program.

Description

DB2 source of a service program.

Makefile for compiling TMS and the server program.

Description

Basic connection.

STRING.

12. Examples | 263

Feature Description
Communication type Synchronous communication using tpcall().

Transaction handling Transaction scope is specified by a client.

+ Server program

Feature Description
Service XASERVICE2.
Database connection DB2 database.

Considerations before the DB2 integration test

Check the following when integrating to DB2.

1. DB2 client engine (32-bit or 64-bit).

2. DB2 client version.

3. Set the XAOPTION item in the SVRGROUP section of the Tmax configuration file.
> When the DB2 client version is 8.0 or previous

= When the DB2 client engine is 32-bit

XAOPTION = "DYNAMIC"

= When the DB2 client engine is 64-bit and OS is Unix or Linux

XAOPTION = "DYNAMIC XASWITCH32"

= When the DB2 client engine is 64-bit and OS is Windows

XAOPTION = "DYNAMIC"

> When the DB2 client version is 9.0 or later (regardless of the DB2 client engine and OS)

Do not set XAOPTION.

4. Link appropriate libraries when compiling TMS and the server program.
> When the DB2 client version is 8.0 or previous

= When the DB2 client engine is 32-bit

-1db2s or $(TMAXDIR)/1ib/1ibdb2s.a

264 | Application Development Guide

= When the DB2 client engine is 64-bit and OS is Unix or Linux

-1db2_64s or $(TMAXDIR)/1ib64/1ibdb2_64s.a

= When the DB2 client engine is 64-bit and OS is Windows

-1db2s or $(TMAXDIR)/1ib/1ibdb2s.a

> When the DB2 client version is 9.0 or later (regardless of the DB2 client engine and OS)

-1db2s_static or $(TMAXDIR)/1ib/1ibdb2s static.a

When the DB2 client version is 9.0 or later, you can link the library used for 8.0 or
ﬂ previous versions for dynamic registration. However, it is not recommended.

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
tmax1 SHMKEY = 71990, MINCLH = 1, MAXCLH = 3,
TPORTNO = 7789, BLOCKTIME = 30,
MAXCPC = 150
*NODE
phk TMAXDIR = "/home/tmaxha/tmax",
APPDIR = "/home/tmaxha/tmax/appbin",
PATHDIR = "/home/tmaxha/tmax/path",
TLOGDIR = "/home/tmaxha/tmax/log/tlog",
ULOGDIR = "/home/tmaxha/tmax/log/ulog",
SLOGDIR = "/home/tmaxha/tmax/1log/slog"
*SVRGROUP
xa_svg_db2 NODENAME = "phk",
DBNAME = IBMDB2,
XAOPTION = "DYNAMIC XASWITCH32",
XAOPTION = "DYNAMIC",
OPENINFO = "db=test,uid=tmaxha, pwd=ha0115",
TMSNAME = tms_db2,
RESTART=N
*SERVER
svr_db2 SVGNAME = xa_svg_db2
*SERVICE
XASERVICE? SVRNAME = svr_db2

12. Examples | 265

The following items are added.

Item Description

DBNAME Database name.

OPENINFO DB2 database connection information.

TMSNAME Name of the process that handles transactions that meet OPENINFO.

Database Script

The following creates a DB2 table.

#'db2start' execution
$ db2start

Creating a database named TPTEST
$ db2 "CREATE DATABASE TPTEST"

Connecting to the TPTEST databse
$ db2 "CONNECT TO TPTEST"

Creating a table named EMP
$ db2 -vf create.ers -t

<create.ers>
CREATE TABLE EMP (

EMPNO DECIMAL(8) NOT NULL,
ENAME VARCHAR(16),

JoB VARCHAR(16),

SAL DECIMAL(8),

HIREDATE DECIMAL(8),

XID CHAR(32)

)

Checking the table creation
$ db2 "LIST TABLES"

The following shows the DB2 table and sample data.

$ db2 "DESCRIBE TABLE EMP"

Column Type Type

name schema name Length Scale Nulls
EMPNO SYSIBM DECIMAL 8 0 No
ENAME SYSIBM VARCHAR 16 0 Yes
JoB SYSIBM VARCHAR 16 0 Yes
SAL SYSIBM DECIMAL 8 0 Yes
HIREDATE SYSIBM DECIMAL 8 0 Yes
XID SYSIBM CHARACTER 32 0 Yes

6 record(s) selected.

266 | Application Development Guide

Client Program

The following is an example.

<clidb2tx.

#include
#include
#include
#include
#include
int main
{

char
long
int

if (

}

if

}

if (

}

if (

}
strc

ret
if (

} el

if

c>

<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>
<usrinc/atmi.h>

(int argc, char *argv[])

*sndbuf, *rcvbuf;
rcvlen;
ret;

(ret = tmaxreadenv("tmax.env","TMAX")) == -1){
printf("tmax read env failed.[%s]\n", tpstrerror(tperrno));
exit(1);

tpstart((TPSTART_T *)NULL) == -1){
printf("tpstart failed.[%s]\n", tpstrerror(tperrno));
exit(1);

(sndbuf = (char *)tpalloc("STRING", NULL, ©)) == NULL) {
printf("sendbuf alloc failed! [%s]\n", tpstrerror(tperrno));
tpend();

exit(1);

(rcvbuf = (char *)tpalloc("STRING", NULL, @)) == NULL) {
printf("recvbuf alloc failed! [%s]\n", tpstrerror(tperrno));
tpfree(sndbuf);

tpend();

exit(1);

py(sndbuf, argv[1]);

= tx_begin();

ret < 0) {

printf("tx_begin is failed.[%s]\n", tpstrerror(tperrno));
resource_free(sndbuf, rcvbuf);

exit(1);

se

printf("tx_begin success.\n");

tpcall("XASERVICE2", sndbuf, strlen(sndbuf), &rcvbuf, &rcvlen, @) == -1){
printf("Can't send request to service XASERVICE2.[%s]\n", tpstrerror(tperrno))
ret = tx_rollback();
if (ret < 0)

printf("tx_rollback is failed. [%s]\n", tpstrerror(tperrno));

resource_free(&sndbuf, &rcvbuf);

I

12. Examples | 267

exit(1);
} else
printf("XASERVCE2 success.\n");

ret = tx_commit();
if (ret < 0) {

printf("tx_commit is failed. [%s]\n", tpstrerror(tperrno));

ret = tx_rollback();

if (ret < 0)

printf("tx_rollback is failed. [%s]\n", tpstrerror(tperrno));

} else

printf("tx_commit success.\n");
resource_free(sndbuf, rcvbuf);

return 0;
}
resource_free(char* sndbuf, char *rcvbuf)
{
if (revbuf != NULL)
tpfree((char*)rcvbuf);
if (sndbuf != NULL)
tpfree((char*)sndbuf);
tpend();
}

Server program

The following is an example.

<svr_db2.sqc>

#include <stdio.h>
#include <usrinc/atmi.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL begin declare section;
sqlint32 h_empno;
sqlint32 h_count;

EXEC SQL end declare section;

XASERVICE2(TPSVCINFO *msg)
{

char *res_msg;
int h_count=0;

h_empno = atoi(msg->data);
printf("h_empno = %d \n", h_empno);

EXEC SQL
INSERT into EMP (EMPNO) VALUES (:h_empno);
if (sqlca.sqlcode != 0) {
printf("insertion is failed : sqlcode[%d]%d\n", sqlca.sqlcode, sqlca.sqlstate);

268 | Application Development Guide

tpreturn(TPFAIL, -1, @, 0, 0);
} else

EXEC SQL SELECT COUNT(*)
INTO :h_count
FROM emp
WHERE empno = :h_empno;
if (sqlca.sqlcode != 0) {
printf("insertion is failed : sqlcode[%d]%d\n", sqlca.sqlcode, sqlca.sqlstate);
tpreturn(TPFAIL, -1, @, 0, 0);
} else
printf("insertion is success. selcnt(%d) \n", h_count);

tpreturn(TPSUCCESS, @, @, 0, 0);

Server Makefile

The following is an example.

Server makefile for DB2
Linux 64bit

DB2LIBDIR = $(DB2_HOME)/1ib

DB2LIBS = -1db2
DB = TEST

DB2USER = tmaxha

DB2PASS = ha0115

TARGET = $(COMP_TARGET)

APOB]S = $(TARGET).o
APOB]S2 = utilemb.o
NSDLOBJ = $(TMAXDIR)/1ib64/sdl.0

#0BJS = $(APOBJS) $(AP0OB]S2) $(SVCTOBJ)
0B3S = $(APOBIS) $(SVCTOBI)
SVCTOBJ = $(TARGET)_ svctab.o

#CFLAGS = -m64 -0 -I$(TMAXDIR) -I$(DB2_HOME)/include
CFLAGS -0 -I$(TMAXDIR) -I$(DB2_HOME)/include
LDFLAGS

TMAXAPPDIR = $(TMAXDIR)/appbin
TMAXSVCTDIR = $(TMAXDIR)/svct

TMAXLIBDIR = $(TMAXDIR)/1ib64

TMAXLIBS = -1svr -1db2s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 32bit or DB2
Client 64bit & Windows)

#TMAXLIBS = -lsvr -1db2_64s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 64bit &
Linux/Unix)

#TMAXLIBS = -1svr -1db2s_static #static XAOPTION=none (DB2 Client v9.0(above))

#

.SUFFIXES : .c

12. Examples | 269

$(CC) $(CFLAGS) $(LDFLAGS) -c $<

#

server compile
#

all: $(TARGET)

$(TARGET): $(0BJS)

$(CC) $(CFLAGS) $(LDFLAGS) -L$(TMAXLIBDIR) -o $(TARGET) -L$(DB2LIBDIR) $(DB2LIBS) $(OBIS)
$(TMAXLIBS) $(NSDLOBJ)

mv $(TARGET) $(TMAXAPPDIR)

rm -f $(0BIS)

$(APOBIS): $(TARGET).sqc
db2 connect to $(DB) user $(DB2USER) using $(DB2PASS)
db2 prep $(TARGET).sqc bindfile
db2 bind $(TARGET).bnd
db2 connect reset
db2 terminate
$(CC) $(CFLAGS) $(LDFLAGS) -c $(TARGET).c

$(SVCTOB]):
cp -f $(TMAXSVCTDIR)/$(TARGET) svctab.c .
touch ./$(TARGET) svctab.c
$(CC) $(CFLAGS) -c ./$(TARGET)_ svctab.c

#

clean:
:-rm -f *.0 core $(TMAXAPPDIR)/$(TARGET) $(TARGET).bnd

TMS Makefile

The following is an example.

TMS Makefile for DB2
Linux 64bit

TARGET = tms_db2

APOB] = dumy.o

APPDIR = $(TMAXDIR)/appbin

TMAXLIBD= $(TMAXDIR)/1ib64

TMAXLIBS = -1svr -1db2s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 32bit or DB2
Client 64bit & Windows)

#TMAXLIBS = -1svr -1db2_64s # dynmic XAOPTION=DYNAMIC (DB2 Client v8.0(below) 64bit &
Linux/Unix)

HTMAXLIBS = -1svr -1db2s_static #static XAOPTION=none (DB2 Client v9.0(above))

DB2PATH = $(DB2_HOME)
DB2LIBDIR= $(DB2PATH)/1ib
DB2LIB = -1db2

CFLAGS
LDFLAGS
SYSLIBS

270 | Application Development Guide

all: $(TARGET)

$(TARGET): $(APOBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $(TARGET) -L$(TMAXLIBD) $(TMAXLIBS) $(APOB]) -L$(DB2LIBDIR)

$(DB2LIB) $(SYSLIBS)
mv $(TARGET) $(APPDIR)/.

$(APOBJ):
$(CC) $(CFLAGS) -c dumy.c
#

clean:
-rm _f *_0 core $(APPDIR)/$(TARGET)

12.4. Database Integration Programs

This section describes actual programming that you can use when developing applications. A
database can be integrated with homogeneous or heterogeneous databases.

12.4.1. Synchronous Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in synchronous
mode.

Client{ SVC_A { SVC B |
tpstart — =
(UPDATE DB1) (UPDATE DB1)

tx_begin S~ ~——
tpaall TPSUCCESS tpreturn

tpaall TPSUCCESS

tpreturn
tx_commit

tpend

Synchronous Mode Flow (Homogeneous Database)

Program Files

+ Common program

12. Examples | 271

File
demo.s
sample.m
tmax.env

mktable.sql

* Client program

File

client.c

* Server program

Description
SDLFILE.

Tmax configuration file.
Configuration file.

SQL script for creating a database table.

Description

Client program.

File Description
update.pc, insert.pc Server program.
Makefile Tmax makefile that must be modified.

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Subtype

Transaction

+ Server program

Description

Connection with the NULL parameter.
STRUCT.

SDL file must be created by using sdlc to compile an input
structure file.

Transaction is specified by a client.

Feature Description
The number of services INSERT service is requested from the UPDATE service.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the Tmax configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit
Database Oracle 8.0.5

272 | Application Development Guide

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];
i

Tmax Configuration File
The following is an example.

<sample.m>

*DOMAIN
res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

tmax TMAXDIR = "/user/ tmax ",
APPDIR = "/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svg1

insert SVGNAME=svg1

*SERVICE

UPDATE SVRNAME=update

INSERT SVRNAME=1insert

Configuration File

The following is an example.

<tmax.env>

[tmax]
TMAX_HOST _ADDR=192.168.1.39

12. Examples | 273

TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sd1/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script

The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!
drop table ACCOUNT;
create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char(1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
ik
quit

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *revbuf;
int acnt_id, n, timeout;
long len;

if (arge 1= 2) {

fprintf(stderr, "Usage:%s account_id \n", arqv[0]);
exit(1);

274 | Application Development Guide

acnt_id = atoi(arqv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail! tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail! tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", °
sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();
exit(1);
}

rcvbuf = (char *)tpalloc("STRING", NULL, 0);

if (rcevbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acnt_id;
sndbuf->branch_id = acnt_id;
strepy(sndbuf ->phone, TEMP_PHONE);
strepy(sndbuf ->address, TEMP_ADDRESS);

tx_set _transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

n = tpcall("UPDATE", (char *)sndbuf, sizeof(struct input),
(char **)&rcvbuf, (long *)&len, TPNOFLAGS);
if (n<0) {
fprintf(stderr, "tpcall fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
by

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail! tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}

printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);

12. Examples | 275

tpfree((char *)rcvbuf);
tpend();

Server program

The following example is a server program that performs UPDATE in a database.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

UPDATE(TPSVCINFO *msg)

{
struct input *rcvbuf;
int ret;
long acnt_id, rcvlen;
char *send;

rcvbuf = (struct input *)(msg->data);
send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, 0);

}

account_id = rcvbuf->account_id;

branch_id = rcvbuf->branch_id;

The following example is a server program that performs INSERT in a database.

<insert.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include <usrinc/sdl.h>
#include "../sd1/demo.s"

276 | Application Development Guide

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

INSERT(msg)
TPSVCINFO *msg;
{
struct input *rcvbuf;
int ret;
long acnt_id;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", tpstrerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

/* Declare && Open Cursor for Fetch */
EXEC SQL INSERT INTO ACCOUNT (
ACCOUNT_ID,
BRANCH_ID,
SSN,
PHONE,
ADDRESS)
VALUES (:account_id, :branch_id, :ssn, :phone, :address);

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403)

{
printf("insert failed sqlcode = %d\n", sqlca.sqlcode);

tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strcpy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

12.4.2. Synchronous Mode (Heterogeneous Database)

The following shows a program flow when accessing a heterogeneous database in synchronous
mode.

12. Examples | 277

Client{ SVC_A {

tpstart —

(UPDATE |
DBl —— _

.

tx_begin
TPSUCCESS
tpaall TPSUCCESS tpaall

tx_commit tpreturn

tpend

SVC_B {
> ""H_'_.___‘_‘_Hﬁ‘-"\
(UPDATE |

DB2

tpreturn

Synchronous mode Flow (Heterogeneous Database)

Program Files

+ Common program

File Description

demo.s SDLFILE.

sample.m Tmax configuration file.

tmax.env Configuration file.

mktable.sql SQL script for creating a database table.

* Client program

File Description

client.c Client program.

+ Server program

File Description

update.pc, Server program.

insert.pc

Makefile Tmax makefile that must be modified.

A The client and server programs are the same as in Synchronous Mode
0‘ (Homogeneous Database). For more information about environment settings for

multiple nodes, refer to Tmax Administrator’s Guide.

278 | Application Development Guide

Program Feature

* Client program

Feature Description

Tmax connection Connection with the NULL parameter.

Buffer type STRUCT.

Subtype SDL file must be created by using sdlc to compile an input

structure file.

Transaction Transaction is explicitly specified by a client.

* Server program

Feature Description
The number of services INSERT service is requested from the UPDATE service.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the Tmax configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit, SunOS 5.8 32-bit
Database Oracle 8.0.5

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN
res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60
*NODE
tmax TMAXDIR="/user/ tmax ",
APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"
tmax2 TMAXDIR="/user/ tmax ",

APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

12. Examples | 279

*SVRGROUP

svgl NODENAME = tmax1, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

svg2 NODENAME = tmax2, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg2_tms

*SERVER

update SVGNAME=svqg1
insert SVGNAME=svg2
*SERVICE

UPDATE SVRNAME=update
INSERT SVRNAME=1insert

Configuration File

The following is an example.

<tmax.env>

[tmax1]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sd1l/tmax.sdl
TMAX_CONNECT_TIMEOUT=5

12.4.3. Asynchronous Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in asynchronous
mode.

280 | Application Development Guide

Client

Client{
tpstart

tx_begin

tpacall
__._,..-'—'___‘—'--..._“__\

(" ACTION

"“--..._‘_______,_...--"'
tpgetrply

tx_commit

tpend

., o

TPSUCCESS

Server

SVC_A {

1U PDATE D Br

tpreturn

}

Asynchronous Mode Flow (Homogeneous Database)

Program Files
+ Common program
File
demo.s
sample.m

tmax.env

mktable.sql

+ Client program
File
client.c

* Server program

File
update.pc
Makefile

Program Feature

* Client program

Description
SDLFILE.

Tmax configuration file.

Configuration file.

SQL script for creating a database table.

Description

Client program.

Description

Server program.

Tmax makefile that must be modified.

12. Examples | 281

Feature Description

Tmax connection Connection with the NULL parameter.
Buffer type STRUCT.
Subtype SDL file must be created by using sdlc to compile an input

structure file.

Transaction Transaction is specified by a client.

+ Server program

Feature Description
The number of services INSERT service is requested.
Database connection Oracle database is used. Database information is specified in the

SVRGROUP section of the system configuration file.

Program Environment

Classification Description
System SunOS 5.7 32-bit
Database Oracle 8.0.5

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

Tmax Configuration File

The following is an example.

<sample.m>

*DOMAIN

res SHMKEY=88000, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60
*NODE

tmax TMAXDIR="/user/ tmax ",

282 | Application Development Guide

APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svqg1

*SERVICE

UPDATE SVRNAME=update

Configuration File
The following is an example.

<tmax.env>

[tmax]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=8880
SDLFILE=/user/tmax/sample/sdl/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script

The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!
drop table ACCOUNT;
create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,
BALANCE number,
ACCT_TYPE char(1),
LAST_NAME char(21),
FIRST_NAME char(21),
MID_INIT char (1),
PHONE char(15),
ADDRESS char(61),
CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
e
quit

12. Examples | 283

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2114"
#define TEMP_ADDRESS "Korea"

int main(int argc, char *argv[])
{
struct input *sndbuf;
char *rcvbuf;
int acnt_id, n, cd, timeout;
long len;

if (arge !=2) {
fprintf(stderr, "Usage:%s account_id \n", argv[0]);

exit(1);
}
acnt_id = atoi(argv[1]);
timeout = 5;

n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv faill tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail! tperrno = %s\n", tperrno);
exit(1);

}

sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();
exit(1);
}

rcvbuf = (char *)tpalloc("STRING", NULL, 0);

if (revbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acnt_id;

284 | Application Development Guide

sndbuf->branch_id = acnt_id;
strepy(sndbuf->phone, TEMP_PHONE);
strepy(sndbuf->address, TEMP_ADDRESS);
tx_set_transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail! tperrno = %d\n", tperrno);

cd = tpacall("UPDATE", (char *)sndbuf, sizeof(struct input), TPNOFLAGS);

if (cd < 0) {
fprintf(stderr, "tpacall fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
}
n = tpgetrply(&cd, (char **)&rcvbuf, (long *)&len, TPNOFLAGS);
if (n<0) {
fprintf(stderr, "tpgetrply fail! tperrno = %d\n", tperrno);
tpend();
exit(1);
}

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit faill tx error = %d \n", n);
tx_rollback();
tpend();
exit(1);
}
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following is an example.

<update.pc>

#include <stdio.h>
#include <ctype.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;
int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];
EXEC SQL END DECLARE SECTION;

12. Examples | 285

UPDATE(TPSVCINFO *msg)

{
struct input *rcvbuf;
int ret, cd;
long acnt_id, rcvlen;
char *send;

rcvbuf = (struct input *)(msg->data);

send = (char *)tpalloc("STRING", NULL, 0);

if (send == NULL) {
fprintf(stderr, "tpalloc fail errno = %s\n", strerror(tperrno));
tpreturn(TPFAIL, @, (char *)NULL, @, TPNOFLAGS);

}

account_id = rcvbuf->account_id;

branch_id = rcvbuf->branch_id;

strepy(phone, rcvbuf->phone);

strepy(address, rcvbuf->address);

strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT

SET BRANCH_ID = :branch_id,
PHONE = :phone,

ADDRESS = :address,

SSN = :ssn

WHERE ACCOUNT_ID = :account_id;

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403) {
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);

}
strepy(send, OKMSG);
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

12.4.4. Interactive Mode (Homogeneous Database)

The following shows a program flow when accessing a homogeneous database in interactive mode.

286 | Application Development Guide

Client{
tpstart

TPSENDONLY while (true)
tx_begin]
tPCﬂﬂﬂECt . Tprecv
TPRECVONLY
while (true) ' tpsend

D E

- -
tprecv
TPSUCCESS

tprecv }

tpreturn

X commit

tpend

Interactive Mode Flow (Homogeneous Database)

Program Files

+ Common program

File Description

demo.s SDLFILE.

sample.m Tmax configuration file.

tmax.env Configuration file.

mktable.sql SQL script for creating a database table.

* Client program

File Description

client.c Client program.

+ Server program

12. Examples | 287

File
update.pc
Makefile

Program Feature

* Client program

Feature

Tmax connection
Buffer type
Subtype

Transaction

+ Server program

Feature

The number of services

Database connection

Program Environment

Classification

System

Database

Struct Buffer

The following is an example.

<demo.s>

struct input {
int account_id;
int branch_id;
char phone[15];
char address[61];

Description

Server program.

Tmax makefile that must be modified.

Description

Connection with the NULL parameter.
STRUCT.

SDL file must be created by using sdlc to compile an input
structure file. (necessary to run an application)

Transaction is specified by a client.

Description

UPDATE service is requested.

Oracle database is specified. Database information is specified in
the SYRGROUP section of the Tmax configuration file.

Description
SunOS 5.7 32-bit
Oracle 8.0.5

288 | Application Development Guide

Tmax Configuration File

The following is an example.

*DOMAIN
res SHMKEY=8800@, MINCLH=1, MAXCLH=5, TPORTNO=8880, BLOCKTIME=60

*NODE

tmax TMAXDIR="/user/ tmax ",
APPDIR="/user/ tmax /appbin",
PATHDIR = "/user/ tmax /path",
TLOGDIR = "/user/ tmax /log/tlog",
ULOGDIR="/user/ tmax /log/ulog",
SLOGDIR="/user/ tmax /log/slog"

*SVRGROUP

svgl NODENAME = tmax, DBNAME = ORACLE,
OPENINFO = "ORACLE_XA+Acc=P/bmt/bmt+SesTm=60",
TMSNAME = svg1_tms

*SERVER

update SVGNAME=svg1, CONV=YES

*SERVICE

UPDATE SVRNAME= update

Configuration File

The following is an example.

<tmax.env>

[tmax]

TMAX_HOST_ADDR=192.168.1.39
TMAX_HOST_PORT=88830
SDLFILE=/user/tmax/sample/sd1/tmax.sdl
TMAX_CONNECT _TIMEOUT=5

Database Script
The following creates a database table.

<mktable.sql>

$ORACLE_HOME/bin/sqlplus bmt/bmt <<!

drop table ACCOUNT;

create table ACCOUNT (
ACCOUNT_ID integer,
BRANCH_ID integer not null,
SSN char(13) not null,

12. Examples | 289

BALANCE number,

ACCT_TYPE char(1),

LAST_NAME char(21),

FIRST_NAME char(21),

MID_INIT char(1),

PHONE char(15),

ADDRESS char(61),

CONSTRAINT ACCOUNT_PK PRIMARY KEY(ACCOUNT_ID)
ik
quit

Client Program

The following is an example.

<client.c>

#include <stdio.h>
#include <usrinc/atmi.h>
#include "../sd1/demo.s"

#fdefine TEMP_PHONE "6283-2115"
#define TEMP_ADDRESS "Korea"

void main(int argc, char *argv[])
{
struct input *sndbuf;
char *revbuf;
int acntid, timeout;
long revent, rcvlen;
int cd, n;

if (arge 1= 2) {
fprintf(stderr, "Usage:%s acntid\n", argv[0]);
exit(1);

}

acntid = atoi(argv[1]);
timeout = 5;
n = tmaxreadenv("tmax.env", "tmax");

if (n<0) {
fprintf(stderr, "tmaxreadenv fail tperrno = %d\n", tperrno);
exit(1);

}

n = tpstart((TPSTART_T *)NULL);

if (n<0) {
fprintf(stderr, "tpstart fail tperrno = %s\n", tperrno);
exit(1);

}

printf("tpstart ok!\n");
sndbuf = (struct input *)tpalloc("STRUCT", "input", sizeof(struct input));
if (sndbuf == NULL) {
fprintf(stderr, "tpalloc fail: sndbuf tperrno = %d\n", tperrno);
tpend();

290 | Application Development Guide

exit(1);
}

rcvbuf = (char *)tpalloc("CARRAY", NULL, 0);

if (revbuf == NULL) {
fprintf(stderr, "tpalloc fail: rcvbuf tperrno = %d\n", tperrno);
tpend();
exit(1);

}

sndbuf->account_id = acntid;
sndbuf->branch_id = acntid;
strepy(sndbuf->phone, TEMP_PHONE);
strepy(sndbuf->address, TEMP_ADDRESS);

tx_set _transaction_timeout(timeout);
n = tx_begin();
if (n < 0)
fprintf(stderr, "tx begin fail tx error = %d\n", n);
printf("tx begin ok!\n");

cd = tpconnect("UPDATE", (char *)sndbuf, @, TPSENDONLY);

if (ed < 0) {
fprintf(stderr, "tpconnect fail tperrno = %d\n", tperrno);
tpend();
exit(1);

}

while (1) {
n = tpsend(cd, (char *)sndbuf, sizeof(struct input), TPRECVONLY,
&revent);
if (n<0) {
fprintf(stderr, "tpsend fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);
}
printf("tpsend ok\n");

n = tprecv(cd, (char **)&rcvbuf, (long *)&rcvlen, TPNOTIME, &revent);
if (n < 0 & revent != TPEV_SENDONLY) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);
I3
printf("tprecv ok\n");
sndbuf->account_id++;

if (revent != TPEV_SENDONLY)
break;
}
n = tprecv(cd, (char **)&rcvbuf, (long *)&rcvlen, TPNOTIME, &revent);
if (n < 0 & revent != TPEV_SVCSUCC) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tx_rollback();
tpend();
exit(1);

12. Examples | 291

printf("rcvbuf = [%s]\n", rcvbuf);

n = tx_commit();
if (n<0) {
fprintf(stderr, "tx commit fail tx error = %d\n", n);
tx_rollback();
tpend();
exit(1);
}
printf("tx commit ok!\n");
printf("rtn msg = %s\n", rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

Server program

The following is an example.

<update.pc>

#include
#include
#include
#include

<stdio.h>
<ctype.h>
<usrinc/atmi.h>
"../sd1/demo.s"

void _db_work();

#define OKMSG "YOU COMPLETE THE TRANSACTION"

EXEC SQL include sqlca.h;
EXEC SQL BEGIN DECLARE SECTION;

int account_id;
int branch_id;
char ssn[15];
char phone[15];
char address[61];

EXEC SQL END DECLARE SECTION;

struct input *rcvbuf;

UPDATE(TPSVCINFO *msg)

{

int ret, count;

long acnt_id;

long revent, rcvlen, flag;
char *send;

rcvbuf = (struct input *)tpalloc("STRUCT", "input", 0);
send = (char *)tpalloc("CARRAY", NULL, 0);

count = 1;
flag = 0;

while (1) {

292 | Application Development Guide

}

ret = tprecv(msg->cd, (char **)&rcvbuf, &rcvlen, TPNOTIME, &revent);
if (ret < 0 && revent != TPEV_SENDONLY) {
fprintf(stderr, "tprecv fail revent = 0x%08x\n", revent);
tpreturn(TPFAIL, -1, (char *)rcvbuf, @, TPNOFLAGS);

}
printf("tprecv ok!\n");

if (count == 10) {
flag &= ~TPRECVONLY;
flag |= TPNOTIME;

}

else
flag |= TPRECVONLY;

ret = tpsend(msg->cd, (char *)send, strlen(send), flag, &revent);
if (ret < 0) {
fprintf(stderr, "tpsend fail revent = 0x%08x\n", revent);
tpreturn(TPFAIL, -1, (char *)NULL, @, TPNOFLAGS);
}
printf("tpsend ok!\n");
_db_work();

/* break after 10 iterations */
if (count == 10)
break;

count++;

}

strepy(send, OKMSG);
printf("tpreturn ok!\n");
tpreturn(TPSUCCESS, 1, (char *)send, strlen(send), TPNOFLAGS);

void _db_work() {

account_id = rcvbuf->account_id;
branch_id = rcvbuf->branch_id;
strepy(phone, rcvbuf->phone);
strepy(address, rcvbuf->address);
strepy(ssn, "1234567");

EXEC SQL UPDATE ACCOUNT
SET BRANCH_ID = :branch_id,
PHONE = :phone,
ADDRESS = :address,
SSN = :ssn
WHERE ACCOUNT_ID = :account_id;

if (sqlca.sqlcode != @ && sqlca.sqlcode != 1403)

{
fprintf(stderr, "update failed sqlcode = %d\n", sqlca.sqlcode);
tpreturn(TPFAIL, -1, (char *)NULL, @, 0);

12

. Examples | 293

12.5. Programs Using TIP

Tmax Information Provider (TIP) is a function process that handles TIPSVC. The following features can
be performed using TIP.

+ System environment information check: static environment information of a system can be
checked.

+ System statistical information check: status of each process can be checked while a system is
operating.

+ System operation management: processes are started or terminated.

12.5.1. TIP Structure

The TIP server has the SYS_SVR server type and is included in the TIP server group. The TIP server
receives a request from a client or server, transfers the request to CLH/TMM, and then returns the
result to the requester. The TIP server uses field keys to handle the service. The client or server saves
data to be requested to a field buffer, sends a request, and then receives the result with the field
buffer.

* CHLOG section (log level change)

CHLOG is the section in which the log levels of TMM, CLH, TMS, and SVR are changed. CHLOG
performs the same action as chlog in tmadmin.

When the TIP service is called, TIPSVC is called after the following are set in the field buffer.

Item Description
TIP_OPERATION (string) GET.
TIP_SEGMENT (string) ADMINISTRATION.
TIP_SECTION (string) CHLOG.

TIP_MODULE (int) Module to dynamically change log. Options are:

s TIP_TMM

* TIP_CLH

* TIP_TMS

* TIP_SVR
TIP_FLAGS (int) Flags. Options are:

* TIP_VFLAG
+ TIP_GFLGA
* TIP_NFLAG
TIP_SVRNAME (string) Server name. Set only when TIP_FLAGS is TIP_VFLAG.

294 | Application Development Guide

Item Description

TIP_SVGNAME (string) Server group name. Set only when TIP_FLAGS is TIP_GFLAG.
TIP_NODENAME (string) Node name. Set only when TIP_FLAGS is TIP_NFLAG.
TIP_LOGLVL (string) Log level. Value must be in lowercase letters. The result value is set
in TIP_ERROR. Options are:

+ compact

* basic

+ detail

+ debug1

+ debug2

* debug3

* debug4
TIP_ERROR (int) Error value. Options are:

+ TIPESVCFAIL: corresponding service was not handled

successfully
+ TIPEOS: memory allocation failed

* TIPEBADFLD: value of TIP_MODULE is not set

* CHTRC section

TMAX_TRACE of TMS and SPR are specified to modify the trace log options in the CHTRC section.
CHTRC performs the same action as chtrc in tmadmin.

When the TIP service is called, TIPSVC is called after setting the following in a field buffer.

Item Description
TIP_OPERATION (string) GET.

TIP_SEGMENT (string) ADMINISTRATION.
TIP_SECTION (string) CHTRC.
TIP_FLAGS (int) Flags. Options are:
+ TIP_PFLAG
* TIP_VFLAG
* TIP_GFLAG
* TIP_NFLAG
TIP_SPRI (int) Sets spri. Set only when TIP_FLAGS is TIP_PFLAG.
TIP_SVGNAME (string) Server group name. Set only when TIP_FLAGS is TIP_GFLAG.

TIP_NODENAME (string) Node name. Set only when TIP_FLAGS is TIP_NFLAG.

12. Examples | 295

Item
TIP_SPEC (string)

TIP_ERROR (int)

Description

Filter spec, receiver spec, and trigger spec. The result value is set in
TIP_ERROR.

Error value. Options are:

* TIPESVCFAIL: corresponding service was not successfully
handled

+ TIPEOS: memory allocation is failed

* TIPEBADFLD: value of TIP_MODULE is not set

The following must be included in requests to TIPSVC.

* Operation (TIP_OPERATION)

Set Value
GET

SET

* Segment (TIP_SEGMENT)

Description

To check statistical information and static environment information
of a system or to operate and manage a system (BOOT/DOWN).

To change system settings. Currently, only GET is supported.

Used to determine which function to execute. The following can be set in the TIP_SEGMENT field.

Set Value
CONFIGURATION

STATISTICS
ADMINISTRATION

» Section (TIP_SECTION)

Description

Checks static configuration information of a system.
Checks statistical information while a system is operating.

Checks system operation and management (BOOT/DOWN).

When TIP_SECTION is set, the following values can be set.

Set Value
CONFIGURATION

STATISTICS

ADMINISTRATION

+ Command (TIP_CMD)

Description

DOMAIN, NODE, SVRGROUP, SERVER, SERVICE, ROUTING, RQ, and
GATEWAY

NODE, TPROC, SPR, SERVICE, RQ, TMGW, NTMGW, TMS, TMMS,
CLHS, and SERVER (SVR)

BOOT, DOWN, CHLOG, and CHTRC

Used only when TIP_SECTION is ADMINISTRATION.

296 | Application Development Guide

Set Value Description
TIP_BOOT Starts the Tmax system.

TIP_DOWN Terminates the Tmax system.

12.5.2. TIP Usage

The following describes how to use TIP and check an error.

TIP Usage

* Environment setting

A user does not need to write a service because the TIP server is a function process provided by
Tmax. However, a user must register the TIP server in a configuration file. The following example
is setting an environment.

*DOMAIN
res ..., TIPSVC = TIPSVC

*NODE
tmaxs1

*SVRGROUP
tsvg ..., SVGTYPE = TIP

*SERVER
TIP SVGNAME = tsvg, SVRTYPE = SYS_SVR

o TIPSVC is registered in the DOMAIN section. If unregistered, TIPSVC is registered by default.
o ATIP server group (SVGTYPE=TIP) is registered in the SYRGROUP section.
o ATIP server (SVRTYPE=SYS_SVR) is registered in the SERVER section.

+ System access

A user must set .tpadmin in the usrname property of the TPSTART_T structure when accessing the
Tmax system. usrname is set only when TIP_SEGMENT is ADMINISTRATION. If usrname is set
incorrectly, the TIPEAUTH error is set in the TIP_ERROR field.

strepy(tpinfo->usrname, ".tpadmin");

« Buffer allocation

A client or a server program must allocate a field key buffer for a request because the TIP server
uses field keys to handle a service.

+ TIP request items

12. Examples | 297

Item
TIP_OPERATION

TIP_SEGMENT
TIP_SECTION
TIP_CMD
TIP_NODENAME

* TIPSVC request

Description

Changes and checks system environment information.
Checks information for system operation and management.
Detailed property settings in SEGMENT.

Set only when TIP_SEGMENT is ADMINISTRATION.

Set only for multiple nodes. If only a single node exists,
TIP_NODENAME is set to a local node by default. If it is incorrectly
set, the TPEINVAL error occurs.

After the required properties for TIP are set, set the configured field buffer to sndbuf and use
tpcall or tpacall to send the TIPSVC request. Both client and server can request a service, and
transactions are not supported.

* Result reception

The service result is saved in a reception field key buffer.

Error Check

* If successfully handled

The TIP_ERROR property of a reception field key buffer is set to 0.

« If an error occurs

Error
TIP_STATUS

TIP_BADFIELD
TIP_ERROR

Description

Detailed error information set in TIP_ERROR can be checked.
Field that caused the error can be checked.

Value greater than 0 is set in TIP_ERROR of a reception field key
buffer. It can be checked in /usrinc/tip.h.

The following are the error values that can be set in TIP_ERROR.

Set Value
TIPNOERROR

TIPEBADFLD

TIPEIMPL
TIPEAUTH
TIPEOS

Description
Error did not occur.

Invalid field key issued. In general, TIPEBADFLD is set when a field
key not compiled by the fdlc utility.

Unavailable feature is requested.
Service not allowed under current privileges.

OS or system error caused by a memory allocation failure,
connection to Tmax system failed, or unstable network status.

298 | Application Development Guide

Set Value Description

TIPENOENT Accessed nonexistent property.
TIPESVCFAIL tpreturn() is called to TPFAIL due to a TIP service routine error.

12.5.3. TIP Usage Example
The following examples use TIP.

Configuration File

The following example uses a single node.

<cfg.m>
*DOMAIN
res SHMKEY=78850, MAXUSER=200, MINCLH=1, MAXCLH=5,
TPORTNO=8850, BLOCKTIME=60, TXTIME=50, RACPORT=3355

*NODE

tmaxh4 TMAXDIR="/datal/starbj81/tmax",
APPDIR="/datal/starbj81/tmax/appbin",
PATHDIR ="/datal/starbj81/tmax/path",
TLOGDIR ="/datal/starbj81/tmax/log/tlog",
ULOGDIR="/data1/starbj81/tmax/1log/ulog",
SLOGDIR="/datal1/starbj81/tmax/1log/slog"

*SVRGROUP

tsvg NODENAME = "tmaxh4", SVGTYPE=TIP

svgl NODENAME = "tmaxh4"

*SERVER

TIP SVGNAME=tsvg, SVRTYPE=SYS_SVR, MIN=1, MAX=1

svr SVGNAME=svg1, MIN=1

*SERVICE

TOUPPER SVRNAME=svr

The following example uses multiple nodes.

<cfg.m>
*DOMAIN
tmax SHMKEY=98850,
TPORTNO=8850,
BLOCKTIME=60,
RACPORT=3355,
MAXUSER=10
*NODE
Tmaxh4 TMAXDIR="/datal/starbj81/tmax",

APPDIR="/datal/starbj81/tmax/appbin",

12. Examples | 299

tmaxh?2

*SVRGROUP
tsvg

svgl
svg2

*SERVER
TIP
svr

*SERVICE
TOUPPER

*ROUTING
rout1

PATHDIR = "/datal/starbj81/tmax/path",
TLOGDIR = "/datal/starbj81/tmax/1log/tlog",
ULOGDIR="/data1/starbj81/tmax/1log/ulog",
SLOGDIR="/data1/starbj81/tmax/1log/slog"

TMAXDIR="/data1/starbj81/tmax",
APPDIR="/datal/starbj81/tmax/appbin",
PATHDIR = "/datal/starbj81/tmax/path",
TLOGDIR = "/datal/starbj81/tmax/log/tlog",
ULOGDIR="/datal/starbj81/tmax/1log/ulog",
SLOGDIR="/data1/starbj81/tmax/1log/slog"

NODENAME = "tmaxh4", SVGTYPE=TIP

NODENAME
NODENAME

"tmaxh4", COUSIN = "svg2"
"tmaxh2"

SVGNAME=tsvg, SVRTYPE=SYS_SVR, MIN=1, MAX=1
SVGNAME=svg1, MIN=1, MAX=5

SVRNAME=svr, ROUTING = "rout1"

FIELD="STRING", RANGES = "'bbbbbbb'-'cccccce'

svg2

Field Key Table

The following is an example.

<tip.f>

#

commo
#

name

*base 1600000
TIP_OPERATION
TIP_SEGMENT
TIP_SECTION
TIP_NODE
TIP_OCCURS
TIP_FLAGS
TIP_CURSOR
TIP_SESTM
TIP_ERROR
TIP_STATE
TIP_MORE
TIP_BADFIELD
TIP_CMD
TIP_CLID
TIP_MSG

n field

number type flags comments
1

0 string
1 string
2 string
3 string
4 int
5 int
6 string
7 int
8 int
9 int
10 int
1 string
12 string
13 int
14 string

300 | Application Development Guide

1 osvgl, *

#

DOMAIN section fields
#

name number
*base 16000100

TIP_NAME 0
TIP_SHMKEY 1
TIP_MINCLH 2
TIP_MAXCLH 3
TIP_MAXUSER 4
TIP_TPORTNO 5
TIP_RACPORT 6
TIP_MAXSACALL 7
TIP_MAXCACALL 8
TIP_MAXCONV_NODE 9
TIP_MAXCONV_SERVER 10
TIP_CMTRET 11
TIP_BLOCKTIME 12
TIP_TXTIME 13
TIP_IDLETIME 14
TIP_CLICHKINT 15
TIP_NLIVEINQ 16
TIP_SECURITY 17
TIP_OWNER 18
TIP_CPC 19
#TIP_LOGINSVC 20
#TIP_LOGOUTSVC 21
TIP_NCLHCHKTIME 22
TIP_DOMAINID 23
TIP_IPCPERM 24
TIP_MAXNODE 25
TIP_MAXSVG 26
TIP_MAXSVR 27
TIP_MAXSVC 28
TIP_MAXSPR 29
TIP_MAXTMS 30
TIP_MAXCPC 31
TIP_MAXROUT 32
TIP_MAXROUTSVG 33
TIP_MAXRQ 34
TIP_MAXGW 35
TIP_MAXCOUSIN 36
TIP_MAXCOUSINSVG 37
TIP_MAXBACKUP 38
TIP_MAXBACKUPSVG 39
TIP_MAXTOTALSVG 40
TIP_MAXPROD 41
TIP_MAXFUNC 42
TIP_TXPENDINGTIME 43
TIP_NO 44
TIP_TIPSVC 45
TIP_NODECOUNT 46
TIP_SVGCOUNT 47
TIP_SVRCOUNT 48
TIP_SVCCOUNT 49
TIP_COUSIN_COUNT
TIP_BACKUP_COUNT
TIP_ROUT_COUNT 52

type

string
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
string
string
int
string
string
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
string
int
int
int
int

50

51

int

flags

int
int

12. Examples | 301

TIP_STYPE 53
TIP_VERSION 54
TIP_EXPDATE 55
TIP_DOMAINCOUNT 56
TIP_RSVG_GCOUNT 57
TIP_RSVG_COUNT 58
TIP_CSVG_GCOUNT 59
TIP_CSVG_COUNT 60
TIP_BSVG_GCOUNT 61
TIP_BSVG_COUNT 62
TIP_PROD_COUNT 63
TIP_FUNC_COUNT 64
TIP_SHMSIZE 65
TIP_CRYPT 66
TIP_DOMAIN_TMMLOGLVL 67
TIP_DOMAIN_CLHLOGLVL 68
TIP_DOMAIN_TMSLOGLVL 69
TIP_DOMAIN_LOGLVL 70
TIP_DOMAIN_MAXTHREAD 71

#

NODE section fields

#

name number type
*base 16000200

#TIP_NAME 0 string
TIP_DOMAINNAME 1 string
#TIP_SHMKEY 2 int
#TIP_MINCLH 3 int
#TIP_MAXCLH 4 int
TIP_CLHQTIMEOUT 5 int
#TIP_IDLETIME 6 int
#TIP_CLICHKINT 7 int
#TIP_TPORTNO 8 int
#TIP_TPORTNO2 9 int
#TIP_TPORTNO3 10 int
#TIP_TPORTNO4 11 int
#TIP_TPORTNO5 12 int
#TIP_RACPORT 13 int
#TIP_TMAXPORT 14 string
TIP_CMPRPORT 15 string
TIP_CMPRSIZE 16 int
#TIP_MAXUSER 17 int
TIP_TMAXDIR 18 string
TIP_TMAXHOME 19 string
TIP_APPDIR 20 string
TIP_PATHDIR 21 string
TIP_TLOGDIR 22 string
TIP_SLOGDIR 23 string
TIP_ULOGDIR 24 string
TIP_ENVFILE 25 string
#TIP_LOGINSVC 26 string
#TIP_LOGOUTSVC 27 string
TIP_IP 28 string
#TIP_PEER 29 string
TIP_TMMOPT 30 string
TIP_CLHOPT 31 string
#TIP_IPCPERM 32 int
#TIP_MAXSVG 33 int

string
string
string
int
int
int
int
int
int
int
int
int
int
string
string
string
string
string
int

flags

302 | Application Development Guide

comments

#TIP_MAXSVR 34 int

#TIP_MAXSPR 35 int
HTIP_MAXTMS 36 int
#TIP_MAXCPC 37 int
TIP_MAXGWSVR 38 int
TIP_MAXRQSVR 39 int
TIP_MAXGWCPC 40 int
TIP_MAXRQCPC 41 int
TIP_CPORTNO 42 int
TIP_REALSVR 43 string
TIP_RSCPC 44 int
TIP_AUTOBACKUP 45 int
TIP_HOSTNAME 46 string
TIP_NODETYPE 47 int

TIP_CPU 48 int
#TIP_MAXRSTART 49 int
#TIP_GPERIOD 50 int
#TIP_RESTART 51 int

TIP_CURCLH 49 int
TIP_LIVECTIME 50 string
TIP_NODE_TMMLOGLVL 51 string
TIP_NODE_CLHLOGLVL 52 string
TIP_NODE_TMSLOGLVL 58 string
TIP_NODE_LOGLVL 54 string
TIP_NODE_MAXTHREAD 55 int
TIP_EXTPORT 56 int
TIP_EXTCLHPORT 57 int
TIP_MSGSIZEWARN 58 int
TIP_MSGSIZEMAX 59 int

#

SVRGROUP section fields

#

name number type flags comments
*base 16000300

#TIP_NAME 0 string
#TIP_NODENAME 1 string
TIP_SVGTYPE 2 string
#TIP_PRODNAME 3 string
TIP_COUSIN 4 string
TIP_BACKUP 5 string
TIP_LOAD 6 int
#TIP_APPDIR 7 string
#TIP_ULOGDIR 8 string
TIP_DBNAME 9 string
TIP_OPENINFO 10 string
TIP_CLOSEINFO 11 string
TIP_MINTMS 12 int
HTIP_MAXTMS 13 int
TIP_TMSNAME 14 string
#TIP_SECURITY 15 string
#TIP_OWNER 16 string
#TIP_ENVFILE 17 string
#TIP_CPC 18 int
TIP_XAOPTION 19 string
TIP_SVG_TMSTYPE 20 string
TIP_SVG_TMSOPT 21 string
TIP_SVG_TMSTHREADS 22 int

12. Examples | 303

TIP_SVG_TMSLOGLVL 23
TIP_SVG_LOGLVL 24
TIP_NODENAME 25

#

SERVER section fields
#

name number type
*base 16000350

#TIP_NAME 0 string
TIP_SVGNAME 1 string
#TIP_NODENAME 2 string
TIP_CLOPT 3 string
TIP_SEQ 4 int
TIP_MIN 5 int
TIP_MAX 6 int
#TIP_ULOGDIR 7 string
TIP_CONV 8 int
TIP_MAXQCOUNT 9 int
TIP_ASQCOUNT 10 int
TIP_MAXRSTART 11 int
TIP_GPERIOD 12 int
TIP_RESTART 13 int
TIP_SVRTYPE 14 string
#TIP_CPC 15
TIP_SCHEDULE 16 int
#TIP_MINTHR 17 int
#TIP_MAXTHR 18 int
TIP_TARGET 19 string
TIP_DEPEND 20 string
TIP_CASCADE 21 int
TIP_PROCNAME 22 string
TIP_LIFESPAN 23 string
TIP_DDRI 24 string
TIP_CURSVR 25 int
TIP_SVGNO 26 int
TIP_SVR_LOGLVL 27 string
#

SERVICE section fields
#

name number type
*base 16000400

#TIP_NAME 0 string
TIP_SVRNAME 1 string
TIP_PRI 2 int
TIP_SVCTIME 3 int
TIP_ROUTING 4 string
TIP_EXPORT 5 int
TIP_AUTOTRAN 6 int

#

ROUTING section fields
#

name number type
*base 16000425

#TIP_NAME 0 string
TIP_FLDTYPE 1 string

string
string
string

flags

int

flags

flags

304 | Application Development Guide

comments

comments

comments

TIP_RANGES 2 string
TIP_SUBTYPE 3 string
TIP_ELEMENT 4 string
TIP_BUFTYPE 5 string
TIP_OFFSET 6 int
TIP_FLDLEN 7 int
#TIP_FLDOFFSET 8 int

#

RQ section fields

#

name number type
*base 16000450

HTIP_NAME 0 string
#TIP_SVGNAME 1 string
TIP_PRESVC 2 string
TIP_QSIZE 3 int
TIP_FILEPATH 4 string
TIP_BOOT 5 string
TIP_FSYNC 6 int
TIP_BUFFERING 7 int
#TIP_ENQSVC 8 int
#TIP_FAILINTERVAL 9 int
#TIP_FAILRETRY 10 int
#TIP_FAILSVC 11 string
#TIP_AFTERSVC 12 string
#

GATEWAY section fields
#

name number
*base 16000500

#TIP_NAME 0
TIP_GWTYPE 1
TIP_PORTNO 2
#TIP_CPC

TIP_RGWADDR 4
TIP_RGWPORTNO 5
#TIP_BACKUP 6
#TIP_NODENAME 7
TIP_KEY 8
TIP_BACKUP_RGWADDR 9
TIP_BACKUP_RGWPORTNO 10
TIP_TIMEOUT 11
TIP_DIRECTION 12
TIP_MAXINRGW 13
TIP_GWOWNER 15
TIP_RGWOWNER 16
TIP_RGWPASSWD 17
TIP_PTIMEOUT 18
TIP_PTIMEINT 19

#

FUNCTION section fields
#

name number

*base 16000550

type

flags

type

string
string
int

3
string
int
string
string
string
string
int
int
string
int
string
string
string
int
int

flags

comments

flags

int

comments

comments

12. Examples | 305

#TIP_NAME 0 string
#TIP_SVRNAME 1 string
TIP_FQSTART 2 int
TIP_FQEND 3 int
TIP_ENTRY 4 string

#

STATISTICS segment fields
#

name number type flags
*base 16000600

#TIP_NAME 0 string
TIP_STATUS 1 string
TIP_STIME 2 string
TIP_TTIME 3 int
TIP_SVC_STIME 4 int
TIP_COUNT 5 int
#TIP_NO 6 int
TIP_NUM_FREE 7 int
TIP_NUM_REPLY 8 int
TIP_NUM_FAIL 9 int
TIP_NUM_REQ 10 int
TIP_ENQ_REQS 11 int
TIP_DEQ_REQS 12 int
TIP_ENQ_REPLYS 13 int
TIP_DEQ_REPLYS 14 int
TIP_CLHNO 15 int
TIP_SVR_NAME 16 string
TIP_SVC_NAME 17 string
TIP_AVERAGE 18 float
TIP_QCOUNT 19 int
TIP_CQCOUNT 20 int
TIP_QAVERAGE 21 float
TIP_MINTIME 22 float
TIP_MAXTIME 23 float
TIP_FAIL_COUNT 24 int
TIP_ERROR_COUNT 25 int
TIP_PID 26 int
TIP_TOTAL_COUNT 27 int
TIP_TOTAL_SVCFAIL_COUNT 28 int
TIP_TOTAL_ERROR_COUNT 29 int
TIP_TOTAL_AVG 30 float
TIP_TOTAL_RUNNING_COUNT 31 int
TIP_TMS_NAME 32 string
TIP_SVG_NAME 33 string
TIP_SPRI 34 int
TIP_TI_THRI 35 int
TIP_TI_AVG 36 float
TIP_TI XID 37 string
TIP_TI_XA_STATUS 38 string
TIP_GW_NAME 39 string
TIP_GW_NO 49 int
TIP_GW_HOSTN 41 string
TIP_GW_CTYPE 42 string
TIP_GW_CTYPE2 43 string
TIP_GW_IPADDR 44 string
TIP_GW_PORT 45 int
TIP_GW_STATUS 46 string

306 | Application Development Guide

comments

#

#

#

name
*base 16

TIP_IPADDR

TIP_USRN
TIP_MODU
TIP_LOGL
TIP_SPEC

#

#

#

name
TIP_BOOT
TIP_BOOT

#

#

#

name
*base 16
TIP_EXTR
TIP_SVRI
TIP_QPCO
TIP_EMCO
TIP_SVR_

ADMIN segment fi

number
000650

AME
LE
VL

BN e

boot time

number
TIME_SEC
TIME_MSEC

EXTRA flag field

number
000700
A_OPTION

1
UNT 2
UNT 3
STATUS 4

elds

type

string
string
int

string
string

type
5
6

S

type

0

int
int
int
string

flags

flags
int
int

flags

int

comments

comments

comments

12.5.4. Program for Checking System Environment Information

The following example is a client program that checks system environment information.

#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#fdefine
#define
#define

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tip.h>

SEC_DOMAIN
SEC_NODE
SEC_SVGROUP
SEC_SERVER
SEC_SERVICE
SEC_ROUTING
SEC_RQ
SEC_GATEWAY

0 ~NOoO Ul s WN =

main(int argc, char *argv[])

{

FBUF *sndbuf, *rcvbuf;

TPSTART_T *tpinf
int i, n, sect

0;

!

12. Examples | 307

long rcvlen;
char nodename[NAMELEN];
int pid, count = @;

if (arge != 3) {
printf("Usage: %s section nodename\n", argv[0]);
printf("section:\n");
printf("\t1: domain\n");
printf("\t2: node\n");
printf("\t3: svrgroup\n");
printf("\t4: server\n");
printf("\t5: service\n");
printf("\t6: routing\n");
printf("\t7: rq\n");
printf("\t8: gateway\n");
exit(1);

}

if (lisdigit(argv[3][0])) {
printf("fork count must be a digit\n");
exit(1);

}

count = atoi(argv[3]);

sect = atoi(argv[1]);

if (sect < SEC_DOMAIN || sect > SEC_GATEWAY) {
printf("out of section [%d - %d]\n", SEC_DOMAIN, SEC_GATEWAY);
exit(1);

}

strncpy(nodename, argv[2], sizeof(nodename) - 1);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);

if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);

}

strepy(tpinfo->usrname, ".tpadmin");

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail [%s]\n", tpstrerror(tperrno));
exit(1);

by

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

308 | Application Development Guide

n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "CONFIGURATION", @);
switch (sect) {
case SEC_DOMAIN:
n = fbput(sndbuf, TIP_SECTION, "DOMAIN", 0);
break;
case SEC_NODE:
n = fbput(sndbuf, TIP_SECTION, "NODE", 0);
break;
case SEC_SVGROUP:
n = fbput(sndbuf, TIP_SECTION, "SVGROUP", @);
break;
case SEC_SERVER:
n = fbput(sndbuf, TIP_SECTION, "SERVER", 0);
break;
case SEC_SERVICE:
n = fbput(sndbuf, TIP_SECTION, "SERVICE", 0);
break;
case SEC_ROUTING:
n = fbput(sndbuf, TIP_SECTION, "ROUTING", @);
break;
case SEC_RQ:
n = fbput(sndbuf, TIP_SECTION, "RQ", 0);
break;
case SEC_GATEWAY:
n = fbput(sndbuf, TIP_SECTION, "GATEWAY", 0);
break;

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);

n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf, &rcvlen,
TPNOFLAGS);

if (n<0) {
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
fbprint(rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);

#if 1
fbprint(recvbuf);
#endif
tpfree((char *)sndbuf);

tpfree((char *)rcvbuf);
tpend();

[Result]

The following is the result (Domain Conf) of the previous program.

12. Examples | 309

$ client 1 tmaxh4
fkey = 217326601, fname

TIP_ERROR, type = int, value = @

fkey = 485762214, fname = TIP_CRYPT, type = string, value = NO
fkey = 485762215, fname = TIP_DOMAIN_TMMLOGLVL, type = string, value = DEBUG1

fkey = 485762216, fname = TIP_DOMAIN_CLHLOGLVL, type = string, value = DEBUG2
fkey = 485762217, fname = TIP_DOMAIN_TMSLOGLVL, type = string, value = DEBUG3
fkey = 485762218, fname = TIP_DOMAIN_LOGLVL, type = string, value = DEBUG4
fkey = 217326763, fname = TIP_DOMAIN_MAXTHREAD, type = int, value = 128

12.5.5. Program for Checking System Statistical Information

The following example is a program that checks system statistics.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <usrinc/atmi.h>
#include <usrinc/fbuf.h>
#include <usrinc/tip.h>

#fdefine SEC_NODE
#define SEC_TPROC
#define SEC_SPR
#define SEC_SERVICE
#define SEC_RQ
#fdefine SEC_TMS
#define SEC_TMMS
#define SEC_CLHS
#define SEC_SERVER 9

0 ~NOoO U s WN =

fidefine NODE_NAME_SIZE 32

main(int argc, char *argv[])

{
FBUF *sndbuf, *rcvbuf;
TPSTART_T *tpinfo;
int 1, n, sect;
long rcvlen;
char nodename[NODE_NAME_SIZE];
int stat;

if (arge 1= 3) {
printf("Usage: %s section node\n", argv[0]);
printf("section:\n");
printf("\t1: node\n");
printf("\t2: tproc\n");
printf("\t3: spr\n");
printf("\t4: service\n");
printf("\t5: rq\n");
printf("\t6: tms\n");
printf("\t7: tmms\n");
printf("\t8: clhs\n");
printf("\t9: server\n");
exit(1);

310 | Application Development Guide

}

sect = atoi(argv[1]);

if (sect < SEC_NODE || sect > SEC_SERVER) {
printf("out of section [%d - %d]\n",SEC_NODE, SEC_SERVER);
exit(1);

}

memset(nodename, 0x00, NODE_NAME_SIZE);
strncpy(nodename, argv[2], NODE_NAME_SIZE - 1);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}
strepy(tpinfo->dompwd, "xamt123");

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "STATISTICS", 0);
switch (sect) {
case SEC_NODE:
n = fbput(sndbuf, TIP_SECTION, "NODE", @);
break;
case SEC_TPROC:
n = fbput(sndbuf, TIP_SECTION, "TPROC", 0);
break;
case SEC_SPR:
n = fbput(sndbuf, TIP_SECTION, "SPR", 0);
break;
case SEC_SERVICE:
n = fbput(sndbuf, TIP_SECTION, "SERVICE", 0);
break;
case SEC_RQ:
n = fbput(sndbuf, TIP_SECTION, "RQ", 0);
break;

12

. Examples | 311

[Result]

case SEC_TMS:
stat = 1;
n = fbput(sndbuf,
n = fbput(sndbuf,

break;

case SEC_TMMS:
n = fbput(sndbuf,

break;

case SEC_CLHS:
n = fbput(sndbuf,

break;
case SEC_SERVER:
n = fbput(sndbuf, TIP_SECTION, "SERVER", 0);
break;

TIP_SECTION, "TMS", 0);
TIP_EXTRA_OPTION, (char *)&stat, 0);

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);

TIP_SECTION, "TMMS", 0);

TIP_SECTION, "CLHS", @);

n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf,
&rcvlen, TPNOFLAGS);

if (n<0) {
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
fbprint(revbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();
exit(1);
}
fbprint(rcvbuf);

tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();

The following is the result (TMS STATISTICS) of the previous program.

$ client 3000 1 2

fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey
fkey

217326601,
485762680,
485762681,
2173272126,
485762649,
217327197,
351544938,
217327212,
2173271227,
351544956,
485762685,
485762686,

fname
fname
fname
fname
fname
fname
fname
fname
fname
fname
fname
fname

TIP_ERROR, type = int, value =
string, value
string, value

TIP_TMS_NAME, type
TIP_SVG_NAME, type

TIP_SPRI, type = int, value = 0
string, value

TIP_STATUS, type =

TIP_COUNT, type = int, value =
float, value

TIP_AVERAGE, type =
TIP_CQCOUNT, type =
TIP_TI_THRI, type =
TIP_TI_AVG, type =

int, value
int, value

0

0

- 1l

tms_ora?
xal

RUN

0.000000

float, value = 0.000000

TIP_TI_XID, type = string, value = 00000013664
TIP_TI_XA_STATUS, type = string, value = COMMIT

312 | Application Development Guide

12.5.6. Program for Starting and Terminating a Server Process

Example 1

The following program starts and terminates a server process.

<cli.c>

#include
#include
#include
#include
#include
#include
#include
#include

#define

main(int

{

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tmaxapi.h>
<usrinc/tip.h>

NODE_NAME_SIZE 32
argc, char *argv[])

FBUF *sndbuf, *rcvbuf;

TPSTART_T *tpinfo;

int i, n, type, clid, count, flags;
long rcvlen;

char svrname[TMAX_NAME SIZE];

char svgname[TMAX_NAME_SIZE];

char nodename[NODE_NAME_SIZE];

int pid, forkent;

if (arge !=6) {

printf("Usage: %s type svrname count nodename forkent\n", argv[0]);

printf("type 1: BOOT, 2: DOWN, 3: DISCON\n");
exit(1);
}

type = atoi(argv[1]);

if ((type !'= 1) & (type != 2) && (type != 3)) {
printf("couldn't support such a type %d\n", type);
exit(1);

}

if (strlen(argv[2]) >= TMAX_NAME_SIZE) {
printf("too large name [%s]\n", argv[1]);
exit(1);

by

strepy(svrname, argv[2]);

count = atoi(argv[3]);

flags = 0;

strncpy(nodename, argv[4], NODE_NAME_SIZE - 1);
forkent = atoi(argv[5]);

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

12

. Examples | 313

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0@);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}

strepy(tpinfo->usrname, ".tpadmin");

for (i = 1; i < forkent; i++) {
if ((pid = fork()) < 0)
exit(1);
else if (pid == 0)
break;

}

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((rcvbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);

tpend();
exit(1);
}
n = fbput(sndbuf, TIP_OPERATION, "GET", 0);
n = fbput(sndbuf, TIP_SEGMENT, "ADMINISTRATION", 0);

if (type == 1)

n = fbput(sndbuf, TIP_CMD, "BOOT", 0);
else if (type == 2)

n = fbput(sndbuf, TIP_CMD, "DOWN", 0);
else

n

fbput(sndbuf, TIP_CMD, "DISCON", 0);

if (type == 3) {
clid = count; /* at type 3 */
flags |= TIP_SFLAG;

n = fbput(sndbuf, TIP_CLID, (char *)&clid, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags, 0);
} else {

flags |= TIP_SFLAG;

n = fbput(sndbuf, TIP_SVRNAME, svrname, 0);

n = fbput(sndbuf, TIP_COUNT, (char *)&count, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags, 0);

n = fbput(sndbuf, TIP_NODENAME, nodename, 0);
n = tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf,

&rcvlen, TPNOFLAGS);
if (n<0) {

314 | Application Development Guide

printf("tpcall failed! errno = %d[%s]\n", tperrno, tpstrerror(tperrno));
fbprint(rcvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();
exit(1);
}

fbprint(rcvbuf);
tpfree((char *)sndbuf);

tpfree((char *)rcvbuf);
tpend();

Example 2

The following program changes the log level of a server named 'vr23_stat_ins' to debug4.

#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
int case

#define

main(int

{

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
<usrinc/atmi.h>
<usrinc/fbuf.h>
<usrinc/tmaxapi.h>
<usrinc/tip.h>
"../fdl/tip_fdl.h"

NFLAG 32

GFLAG 8

VFLAG 1024

_chlog(int, char *[], FBUF *);
NODE_NAME_SIZE 32

argc, char *argv[])

FBUF *sndbuf, *rcvbuf;
TPSTART_T *tpinfo;

in

t i, ret, n, type, clid, count, flags = 0;

long rcvlen;

ch
ch
ch
in

if

ar svrname[TMAX_NAME_SIZE];
ar svgname[TMAX_NAME_SIZE];
ar nodename[NODE_NAME_SIZE];
t pid, forkent;

(arge < 6) {

printf("Usage: %s svgname svrname nodename [chlogmodule] [flags]
[loglvl]\n", argv[@]);

printf("chlogmodule 1: TIP_TMM, 2: TIP_CLH, 4: TIP_TMS, 8: TIP_SVR\n");

printf("flags 1: NFLAGS, 2: GFLAGS, 3: VFLAGS\n");

printf("loglvl : 1: compact, 2: basic, 3: detail, 4: debugl,

5: debug2, 6: debug3, 7: debug4\n");
exit(1);

12. Examples | 315

n = tmaxreadenv("tmax.env", "TMAX");

if (n<0) {
fprintf(stderr, "can't read env\n");
exit(1);

}

tpinfo = (TPSTART_T *)tpalloc("TPSTART", NULL, 0);
if (tpinfo == NULL) {
printf("tpalloc fail tperrno = %d\n", tperrno);
exit(1);
}
strepy(tpinfo->usrname, ".tpadmin");
strepy(svgname, argv[1]);
strepy(svrname, argv[2]);
strncpy(nodename, argv[3], NODE_NAME_SIZE - 1);

if (tpstart((TPSTART_T *)tpinfo) == -1){
printf("tpstart fail tperrno = %d\n", tperrno);
exit(1);

}

if ((sndbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

}

if ((revbuf = (FBUF *)tpalloc("FIELD", NULL, @)) == NULL) {
printf("tpalloc failed! errno = %d\n", tperrno);
tpend();
exit(1);

ret = case_chlog(argc, argv, sndbuf);

= fbput(sndbuf, TIP_OPERATION, "GET", 0);

= fbput(sndbuf, TIP_SEGMENT, "ADMINISTRATION", 0);
= fbput(sndbuf, TIP_CMD, "CHLOG", 0);

= fbput(sndbuf, TIP_NODENAME, nodename, 0);

= fbput(sndbuf, TIP_SVGNAME, svgname , 0);

= fbput(sndbuf, TIP_SVRNAME, svrname, 0);

n=tpcall("TIPSVC", (char *)sndbuf, @, (char **)&rcvbuf, &rcvlen, TPNOFLAGS);
if (n<0) {
printf("tpcall failed! errno = %d[%s]\n", tperrno,
tpstrerror(tperrno));
fbprint(recvbuf);
tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);

tpend();
exit(1);
}
fbprint(recvbuf);

tpfree((char *)sndbuf);
tpfree((char *)rcvbuf);
tpend();

316 | Application Development Guide

int case_chlog(int argc2, char *argv2[], FBUF *sndbuf)

{
int chlogmdl, loglvl, flags, n=0;
char cloglvl[TMAX_NAME_SIZE];
const int true = 1, false = 0;
chlogmdl = atoi(argv2[4]);
if((chlogmdl != 1) && (chlogmdl !'= 2) && (chlogmdl != 4) &&
(chlogmdl != 8)
{
printf("couldn't support such a chlogmdl\n");
exit(1);
}
flags = atoi(argv2[5]);
if((flags != NFLAG) && (flags != GFLAG) && (flags != VFLAG))
{
printf("couldn't support such a flags\n");
exit(1);
}
loglvl = atoi(argv2[6]);
if((loglvl < 1) || (loglvl > 7))
{
printf("couldn't support such a loglvl\n");
exit(1);
}
switch (loglvl)
{
case 1 :
strepy(cloglvl, "compact");
break;
case 2 :
strcpy(cloglvl, "basic");
break;
case 3 :
strepy(cloglvl, "detail");
break;
case 4 :
strepy(cloglvl, "debugl");
break;
case 5 :
strcpy(cloglvl, "debug2");
break;
case 6 :
strepy(cloglvl, "debug3");
break;
case 7 :
strepy(cloglvl, "debugd");
break;
}
n = fbput(sndbuf, TIP_MODULE, (char *)&chlogmdl, 0);
n = fbput(sndbuf, TIP_FLAGS, (char *)&flags , 0);
n = fbput(sndbuf, TIP_LOGLVL, cloglvl , @);
return 1;
+

12. Examples | 317

[Result] (TIP_SVR, => DEBUG4)

$ client xal svr23_stat_ins $HOSTNAME 8 1024 7
fkey = 217326601, fname = TIP_ERROR, type = int, value = 0
>>> tmadmin (cfg -v)

loglvl = DEBUG4

12.6. Local Recursive Calls

When tpcall() is executed in a server, the recursive service call feature is added. Only tpcall() can make
recursive calls through the multicontexting technique in a server. The recursion depth is limited to 8
to prevent an infinite loop.

) To use a local recursive call, -D_MCONTEXT must be added to CFLAGS when a
” server program is compiled and the libsvrmc.so server library must be used
instead of libsvr.so.

Server program

The following is an example.
#include <stdio.h>
#include <stdlib.h>

#include <string.h>
#include <usrinc/atmi.h>

SVC15004_1(TPSVCINFO *msg)

{
int i;
char *rcvbuf;
long rcvlen;
if ((rcvbuf = (char *)tpalloc("STRING", NULL, @)) == NULL)
printf("rcvbuf tpalloc fail[%s]\n",tpstrerror(tperrno));
if (tpcall("SVC15004_2", msg->data, @, &rcvbuf, &rcvlen, @) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, 0, 0, 0);
}
strcat(revbuf, " Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}

SVC15004_2(TPSVCINFO *msg)
{

318 | Application Development Guide

int i;
char *revbuf;
long rcvlen;

if ((revbuf = (char *)tpalloc("STRING", NULL, 0)) == NULL)
printf("rcvbuf tpalloc fail \n");

}
if (tpcall("SVC15004_3", msg->data, @, &rcvbuf, &rcvlen, @) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, 0, 0, 0);
}
strcat(rcvbuf, " _Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}
SVC15004_3(TPSVCINFO *msg)
{
int i;
char *revbuf;
long rcvlen;
if ((revbuf = (char *)tpalloc("STRING", NULL, 0)) == NULL)
printf("rcvbuf tpalloc fail \n");
if (tpcall("SVC15004_4", msg->data, @, &rcvbuf, &rcvlen, 0) == -1)
{
printf("tpcall fail [%s]\n", tpstrerror(tperrno));
tpfree((char *)rcvbuf);
tpreturn(TPFAIL, 0, @, 0, 0);
}
strcat(recvbuf, "_Success");
tpreturn(TPSUCCESS, @, (char *)rcvbuf, 0,0);
}
Makefile

The following is an example.

<Makefile.c.mc>

Server makefile

TARGET = $(COMP_TARGET)
APOB]S = $(TARGET).o

NSDLOB] = $(TMAXDIR)/1ib64/sdl.0

LIBS = -lsvrmc -1nodb

0BJS = $(APOBIS) $(SVCTOBI)

SVCTOBJ = $(TARGET) svctab.o

CFLAGS = -0 -Ae -w +DSblended +DD64 -D_HP -I$(TMAXDIR) -D_MCONTEXT

12. Examples | 319

APPDIR = $(TMAXDIR)/appbin
SVCTDIR = $(TMAXDIR)/svct
LIBDIR = $(TMAXDIR)/1ib64

#
.SUFFIXES : .c

$(CC) $(CFLAGS) -c $<

#
server compile
#

$(TARGET): $(0BIS)
$(CC) $(CFLAGS) -L$(LIBDIR) -0 $(TARGET) $(0BIS) $(LIBS) $(NSDLOBJ)
mv $(TARGET) $(APPDIR)/.
rm -f $(0B1S)

$(APOBJS): $(TARGET).c
$(CC) $(CFLAGS) -c $(TARGET).c

$(SVCTOBI):
cp -f $(SVCTDIR)/$(TARGET) svctab.c .
touch ./$(TARGET) svctab.c
$(CC) $(CFLAGS) -c ./$(TARGET)_ svctab.c

#

clean:
-rm -f *.0 core $(APPDIR)/$(TARGET)

320 | Application Development Guide

Appendix A: Configuring Tmax

This appendix describes the Tmax configuration file.

A.1. Configuration File

The Tmax configuration file enables you to configure Tmax. It is created by a Tmax administrator.
This file is used to create a service table and to start Tmax.

The configuration file includes the following sections.

Section Description Required

DOMAIN Configures the entire environment for a single independent Tmax Required
system.

NODE Configures the environment for each node that comprises the Required

DOMAIN section.

SVRGROUP Configures server groups and databases. Required
SERVER Configures servers. Required
SERVICE Configures services. Required
GATEWAY Configures gateways between domains. Optional
ROUTING Configures data-dependent routings. Optional
RQ Configures reliable queues. Optional

The name of each section starts with an asterisk (*) (for example, * DOMAIN, *NODE) and must start
from the first space of a line. In a section, the definition of each item is separated by a comma (,),
which indicates that the definition of items continues.

For more information about the Tmax configuration file, refer to Tmax
ﬂ Administrator’s Guide.

The configuration file is created as a regular text file and compiled using the cf1 command. The
binary file, created after compilation, is referenced to create a service table and to start Tmax.

cfl -i Tmax_Configuration_File_Name

The following is an example of a Tmax configuration file (items inside angle brackets (< >) can be
changed).

*DOMAIN
<resrc_name> SHMKEY = <UNIQUE IPCKEY>,

Appendix A: Configuring Tmax | 321

MAXUSER = 256
*NODE
<uname> TMAXDIR = "<TMAX installed directory>"
APPDIR = "<APPLICATION DIRECTORY>",
PATHDIR = "<path directory>"
*SVRGROUP
<svg_name> NODENAME = <uname> ,
OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=60"
*SERVER
<Svr_name> SVGNAME = <sgrpname> , MIN = 1, MAX = 3
*SERVICE
<svc_name> SVRNAME = <svrname>

A.1.1. DOMAIN Section

Configures the Tmax system.

*DOMAIN
<resrc_name> SHMKEY = <UNIQUE IPCKEY>,
MAXUSER = 256
Item Description
<resrc_name> Unique name for the Tmax system (Domain). The name must be 63 characters
or less.
SHMKEY Value to internally allocate shared memory. The value must be unique to the
entire system and fall within the range of 32,768 to 262,143.
MAXUSER Maximum number of users that are allowed to concurrently connect to Domain.

A.1.2. NODE Section

Configures the environment for each node that comprises DOMAIN.

*NODE

<uname> TMAXDIR = "<TMAX installed directory>"
APPDIR = "<APPLICATION DIRECTORY>",
PATHDIR = "<path directory>"

322 | Application Development Guide

Item

<uname>

TMAXDIR
APPDIR
PATHDIR

Description

Name up to 63 characters in length. It uses the value returned by the uname -n
command. The return values of hostname and "uname -n" must be the same.

Full path of the Tmax installation directory.
Full path of the Tmax application directory.

Full path of the directory for internal communication between Tmax processes.

A.1.3. SVRGROUP Section

Configures a group of servers logically related on another. A server group is the basic unit for
database utilization, load balancing, and fault tolerance. At least one server group is defined for each

Server.

*SVRGROUP
<svg_name>

Item

<svg_name>

NODENAME

DBNAME
OPENINFO

NODENAME = <uname> ,

OPENINFO = "Oracle_XA+Acc=P/scott/tiger+SesTm=60",
DBNAME = ORACLE,
TMSNAME = tms_ora

Description

Server group name up to 63 characters in length. It must be unique in the
SVRGROUP section.

Name of the node where a server group exists. Since a server group requires
specification of a database, the following three items must be specified when a
database is used: DBNAME, OPENINFO, and TMSNAME.

Database name (for example, ORACLE).

Registers information in Tmax to connect to a database. The information can be
up to 256 characters in length and the registration varies depending on the
database type.

* Oracle

OPENINFO = "Oracle_XA+Acc = P/account/password+SesTm = 60"
« Informix

OPENINFO = "database name"

Appendix A: Configuring Tmax | 323

Item
CLOSEINFO

TMSNAME

Description

Registers information to disconnect the server group from a database. The
information can be up to 256 characters in length. The registration process
varies depending on the database type.

* Oracle

CLOSEINFO = ""

e Informix

CLOSEINFO = ""

TMS process name. The name can be up to 63 characters in length.

A.1.4. SERVER Section

Configures the application servers.

*SERVER
<svr_name>

Item

<svr_name>

SVGNAME

CLOPT

MIN

MAX

CONV

SVGNAME = <sgrpname> , MIN = 1, MAX = 3

Description

Name of the executable file of the server that provides services. The name can
be up to 63 characters in length.

Server group name to which the server process belongs. SVGNAME must be
defined in *SVRGROUP.

Parameter that processes the options of a command line. A hyphen (—) is used
as a delimiter to separate system options from user options. This line is
processed by the tpsvrinit() function.

Number of servers that start by default when a user wants to start multiple
servers.

Maximum number of servers that can be dynamically started in addition to the
default number.

Indicates whether interactive servers are participating in interactive
communication (Default value: N).

A.1.5. SERVICE Section

Configures services.

324 | Application Development Guide

*SERVICE

<svc_name> SVRNAME = <svrname>
Item Description
<svc_name> Name of the function called by a client when specified with a name. The name

can be up to 63 characters in length and must be unique. Only services
registered in the SERVICE section are supported.

SVRNAME Name of a server that provides specific services.

A.2. Makefile

This section describes TMS Makefile for Oracle and Informix.

TMS Makefile for Oracle

The following is an example of a TMS Makefile (Solaris 32-bit) for Oracle.

#

include $(ORACLE_HOME)/precomp/1lib/env_precomp.mk
ORALIBDIR = $(LIBHOME)

ORALIB = $(PROLDLIBS) $(LIBCLNTSH)

TARGET = tms_ora
APOB] = dumy.o

APPDIR = $(TMAXDIR)/appbin
TMAXLIBD= $(TMAXDIR)/1ib

TMAXLIBS = -1tms -loras -lsocket -1nsl
all: $(TARGET)
$(TARGET): $(APOBJ)
$(CC) -L$(TMAXLIBD) -o $(TARGET) -L$(ORALIBDIR) $(ORALIB) $(APOBJ)
$(TMAXLIBS)
mv $(TARGET) $(APPDIR)
$(APOBJ):
$(CC) -c dumy.c
#

clean:
-rm -f *.0 core $(TARGET)

TMS Makefile for Informix

The following is an example of a TMS Makefile (Solaris 32-bit) for Informix.

Appendix A: Configuring Tmax | 325

TARGET = tms_info

INFOLIBDIR = ${INFORMIXDIR}/1lib

INFOELIBDIR = ${INFORMIXDIR}/esql

INFOLIBD = ${INFORMIXDIR}/1ib/esql

INFOLIBS = -lifsql -lifasf -lifgen -lifgls -lifos -lnsl -lsocket -laio —-elf -1m -1d1
${INFOLIBDIR}/esql/checkapi.o -1lifglx -lifxa

TMAXLIBDIR = $(TMAXDIR)/1ib
TMAXLIBS = -1tms -linfs

$(TARGET) :
$(CC) -o $(TARGET) -L$(TMAXLIBDIR) -L$(INFOLIBD) -L$(INFOLIBDIR)
~L$(INFOELIBDIR) $(TMAXLIBS) $(INFOLIBS)
cp $(TARGET) $(TMAXDIR)/appbin

#

clean:
-rm -f core $(TARGET)

326 | Application Development Guide

	Application Development Guide
	Contents
	1. Introduction to Tmax Applications
	1.1. Overview
	1.2. Structure
	1.3. Characteristics

	2. Client Programs
	2.1. Characteristics and Components
	2.2. Development Environments and Tools
	2.3. Program Flow
	2.4. Compiling a Program
	2.5. Starting and Terminating a Process
	2.5.1. sdlc
	2.5.2. fdlc

	3. Server Programs
	3.1. Characteristics and Components
	3.1.1. TCS
	3.1.2. UCS

	3.2. Development Environments and Tools
	3.3. Program Flow
	3.3.1. TCS
	3.3.2. UCS

	3.4. Compiling a Program
	3.4.1. Compiling a TCS Server Program
	3.4.2. UCS

	3.5. Creating and Terminating a Process

	4. Communication Mode
	4.1. Overview
	4.2. Synchronous Communication
	4.3. Asynchronous Communication
	4.4. Interactive Communication
	4.4.1. Events Related to Interactive Communication

	5. Buffer Types
	5.1. Overview
	5.2. Buffer Types
	5.3. Managing a Buffer
	5.3.1. Struct Buffers
	5.3.2. Field Buffers

	6. Transactions
	6.1. Overview
	6.2. Distributed Transaction
	6.2.1. XA Mode
	6.2.2. Non-XA Mode

	6.3. Transaction Errors
	6.3.1. TX Error
	6.3.2. XA Error

	7. Multithreading and Multicontexting
	7.1. Overview
	7.2. Client Program
	7.2.1. Program Flow
	7.2.2. Implementation
	7.2.3. Program Example

	7.3. Server Program
	7.3.1. Overview
	7.3.2. Program Flow
	7.3.3. Implementation
	7.3.4. Service Processing Program Example
	7.3.5. Context-Sharing Program Example

	8. Security System
	8.1. Overview
	8.2. Level 1 Security (System Access Control)
	8.3. Level 2 (User Authentication)
	8.4. Level 3 (Service Access Control)

	9. Client API
	9.1. Overview
	9.2. Connection and Disconnection
	9.2.1. tpstart
	9.2.2. tpend

	9.3. Synchronous Communication
	9.3.1. tpcall

	9.4. Asynchronous Communication
	9.4.1. tpacall
	9.4.2. tpgetrply
	9.4.3. tpcancel

	9.5. Interactive Communication
	9.5.1. tpconnect
	9.5.2. tpsend
	9.5.3. tprecv
	9.5.4. tpdiscon

	9.6. Unsolicited Message Processing
	9.6.1. tpsetunsol
	9.6.2. tpgetunsol

	9.7. Timeout Change
	9.7.1. tpset_timeout
	9.7.2. tpsetsvctimeout

	9.8. Buffer Management
	9.8.1. tpalloc
	9.8.2. tprealloc
	9.8.3. tpfree
	9.8.4. tptypes

	9.9. Transaction Management
	9.9.1. tx_begin
	9.9.2. tx_commit
	9.9.3. tx_info
	9.9.4. tx_rollback
	9.9.5. tx_set_transaction_timeout
	9.9.6. tx_set_transaction_control
	9.9.7. tx_set_commit_return

	9.10. RQ System
	9.10.1. tpenq
	9.10.2. tpdeq
	9.10.3. tpqstat
	9.10.4. tpextsvcname

	9.11. Functions using Events
	9.11.1. tpsubscribe
	9.11.2. tpunsubscribe
	9.11.3. tppost

	9.12. Broadcast and Multicast
	9.12.1. tpbroadcast

	9.13. Environment Program
	9.13.1. WinTmaxAcall
	9.13.2. WinTmaxAcall2
	9.13.3. WinTmaxStart
	9.13.4. WinTmaxEnd
	9.13.5. WinTmaxSetContext
	9.13.6. WinTmaxSend

	9.14. Multithread and Multicontext
	9.14.1. tpgetctxt
	9.14.2. tpsetctxt

	10. Server API
	10.1. TCS
	10.1.1. tpreturn
	10.1.2. tpforward
	10.1.3. tpsvrinit
	10.1.4. tpsvrdone
	10.1.5. tpsvrthrinit
	10.1.6. tpsvrthrdone
	10.1.7. tpgetctxt
	10.1.8. tpsetctxt
	10.1.9. tpsendtocli
	10.1.10. tpgetclid
	10.1.11. tpchkclid

	10.2. UCS
	10.2.1. tpschedule
	10.2.2. tpuschedule
	10.2.3. tpsetfd
	10.2.4. tpissetfd
	10.2.5. tpclrfd
	10.2.6. tpsavectx
	10.2.7. tpgetctx
	10.2.8. tpcancelctx
	10.2.9. tprelay
	10.2.10. tpregcb
	10.2.11. tpunregcb

	11. Error Handling
	11.1. Overview
	11.2. API Level Error Processing
	11.2.1. tpstrerror

	11.3. System Level Error Processing
	11.3.1. Uunixerr
	11.3.2. Uunix_err
	11.3.3. Ustrerror
	11.3.4. tmaxoserrno

	11.4. Debug
	11.4.1. Debug CLH
	11.4.2. Debug Library

	12. Examples
	12.1. Programs for Each Communication Type
	12.1.1. Synchronous Communication
	12.1.2. Asynchronous Communication
	12.1.3. Interactive Communication

	12.2. Global Transaction Programs
	12.3. Database Programs
	12.3.1. Oracle Insert Program
	12.3.2. Oracle Select Program
	12.3.3. Informix Insert Program
	12.3.4. Informix Select Program
	12.3.5. DB2 Program

	12.4. Database Integration Programs
	12.4.1. Synchronous Mode (Homogeneous Database)
	12.4.2. Synchronous Mode (Heterogeneous Database)
	12.4.3. Asynchronous Mode (Homogeneous Database)
	12.4.4. Interactive Mode (Homogeneous Database)

	12.5. Programs Using TIP
	12.5.1. TIP Structure
	12.5.2. TIP Usage
	12.5.3. TIP Usage Example
	12.5.4. Program for Checking System Environment Information
	12.5.5. Program for Checking System Statistical Information
	12.5.6. Program for Starting and Terminating a Server Process

	12.6. Local Recursive Calls

	Appendix A: Configuring Tmax
	A.1. Configuration File
	A.1.1. DOMAIN Section
	A.1.2. NODE Section
	A.1.3. SVRGROUP Section
	A.1.4. SERVER Section
	A.1.5. SERVICE Section

	A.2. Makefile

